1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
use ethers::types::{I256, U256};
use eyre::{eyre, Result};
use fixedpointmath::{fixed, FixedPoint};
use crate::calculate_effective_share_reserves;
pub trait YieldSpace {
/// The effective share reserves.
fn ze(&self) -> Result<FixedPoint<U256>> {
calculate_effective_share_reserves(self.z(), self.zeta())
}
/// The share reserves.
fn z(&self) -> FixedPoint<U256>;
/// The share adjustment.
fn zeta(&self) -> I256;
/// The bond reserves.
fn y(&self) -> FixedPoint<U256>;
/// The share price.
fn c(&self) -> FixedPoint<U256>;
/// The initial vault share price.
fn mu(&self) -> FixedPoint<U256>;
/// The YieldSpace time parameter.
fn t(&self) -> FixedPoint<U256>;
// The current spot price ignoring slippage.
fn calculate_spot_price(&self) -> Result<FixedPoint<U256>> {
if self.y() <= fixed!(0) {
return Err(eyre!("expected y={} > 0", self.y()));
}
((self.mu() * self.ze()?) / self.y()).pow(self.t())
}
/// Calculates the amount of bonds a user will receive from the pool by
/// providing a specified amount of shares. We underestimate the amount of
/// bonds out to prevent sandwiches.
fn calculate_bonds_out_given_shares_in_down(
&self,
dz: FixedPoint<U256>,
) -> Result<FixedPoint<U256>> {
// NOTE: We round k up to make the rhs of the equation larger.
//
// k = (c / µ) * (µ * ze)^(1 - t) + y^(1 - t)
let k = self.k_up()?;
// NOTE: We round z down to make the rhs of the equation larger.
//
// (µ * (ze + dz))^(1 - t)
let mut ze = (self.mu() * (self.ze()? + dz)).pow(fixed!(1e18) - self.t())?;
// (c / µ) * (µ * (ze + dz))^(1 - t)
ze = self.c().mul_div_down(ze, self.mu());
// NOTE: We round _y up to make the rhs of the equation larger.
//
// k - (c / µ) * (µ * (ze + dz))^(1 - t))^(1 / (1 - t)))
if k < ze {
return Err(eyre!("expected k={} >= ze={}", k, ze));
}
let mut y = k - ze;
if y >= fixed!(1e18) {
// Rounding up the exponent results in a larger result.
y = y.pow(fixed!(1e18).div_up(fixed!(1e18) - self.t()))?;
} else {
// Rounding down the exponent results in a larger result.
y = y.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
}
// Δy = y - (k - (c / µ) * (µ * (z + dz))^(1 - t))^(1 / (1 - t)))
if self.y() < y {
return Err(eyre!("expected y={} >= delta_y={}", self.y(), y));
}
Ok(self.y() - y)
}
/// Calculates the amount of shares a user must provide the pool to receive
/// a specified amount of bonds. We overestimate the amount of shares in.
fn calculate_shares_in_given_bonds_out_up(
&self,
dy: FixedPoint<U256>,
) -> Result<FixedPoint<U256>> {
// NOTE: We round k up to make the lhs of the equation larger.
//
// k = (c / µ) * (µ * z)^(1 - t) + y^(1 - t)
let k = self.k_up()?;
// (y - dy)^(1 - t)
if self.y() < dy {
return Err(eyre!(
"calculate_shares_in_given_bonds_out_up: y = {} < {} = dy",
self.y(),
dy,
));
}
let y = (self.y() - dy).pow(fixed!(1e18) - self.t())?;
// NOTE: We round _z up to make the lhs of the equation larger.
//
// ((k - (y - dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))
if k < y {
return Err(eyre!(
"calculate_shares_in_given_bonds_out_up: k = {} < {} = y",
k,
y,
));
}
let mut _z = (k - y).mul_div_up(self.mu(), self.c());
if _z >= fixed!(1e18) {
// Rounding up the exponent results in a larger result.
_z = _z.pow(fixed!(1e18).div_up(fixed!(1e18) - self.t()))?;
} else {
// Rounding down the exponent results in a larger result.
_z = _z.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
}
// ((k - (y - dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))) / µ
_z = _z.div_up(self.mu());
// Δz = (((k - (y - dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))) / µ - ze
if _z < self.ze()? {
return Err(eyre!(
"calculate_shares_in_given_bonds_out_up: _z = {} < {} = ze",
_z,
self.ze()?,
));
}
Ok(_z - self.ze()?)
}
/// Calculates the amount of shares a user must provide the pool to receive
/// a specified amount of bonds. We underestimate the amount of shares in.
fn calculate_shares_in_given_bonds_out_down(
&self,
dy: FixedPoint<U256>,
) -> Result<FixedPoint<U256>> {
// NOTE: We round k down to make the lhs of the equation smaller.
//
// k = (c / µ) * (µ * ze)^(1 - t) + y^(1 - t)
let k = self.k_down()?;
// (y - dy)^(1 - t)
let y = (self.y() - dy).pow(fixed!(1e18) - self.t())?;
// NOTE: We round _ze down to make the lhs of the equation smaller.
//
// ((k - (y - dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))
let mut ze = (k - y).mul_div_down(self.mu(), self.c());
if ze >= fixed!(1e18) {
// Rounding down the exponent results in a smaller result.
ze = ze.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
} else {
// Rounding up the exponent results in a smaller result.
ze = ze.pow(fixed!(1e18).div_up(fixed!(1e18) - self.t()))?;
}
// ((k - (y - dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))) / µ
ze /= self.mu();
// Δz = (((k - (y - dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))) / µ - ze
Ok(ze - self.ze()?)
}
/// Calculates the amount of shares a user will receive from the pool by
/// providing a specified amount of bonds. This function reverts if an
/// integer overflow or underflow occurs. We underestimate the amount of
/// shares out.
fn calculate_shares_out_given_bonds_in_down(
&self,
dy: FixedPoint<U256>,
) -> Result<FixedPoint<U256>> {
// NOTE: We round k up to make the rhs of the equation larger.
//
// k = (c / µ) * (µ * ze)^(1 - t) + y^(1 - t)
let k = self.k_up()?;
// (y + dy)^(1 - t)
let y = (self.y() + dy).pow(fixed!(1e18) - self.t())?;
// If k is less than y, we return with a failure flag.
if k < y {
return Err(eyre!(
"calculate_shares_out_given_bonds_in_down: k = {} < {} = y",
k,
y
));
}
// NOTE: We round _ze up to make the rhs of the equation larger.
//
// ((k - (y + dy)^(1 - t)) / (c / µ))^(1 / (1 - t)))
let mut ze = (k - y).mul_div_up(self.mu(), self.c());
if ze >= fixed!(1e18) {
// Rounding the exponent up results in a larger outcome.
ze = ze.pow(fixed!(1e18).div_up(fixed!(1e18) - self.t()))?;
} else {
// Rounding the exponent down results in a larger outcome.
ze = ze.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
}
// ((k - (y + dy)^(1 - t) ) / (c / µ))^(1 / (1 - t))) / µ
ze = ze.div_up(self.mu());
// Δz = ze - ((k - (y + dy)^(1 - t) ) / (c / µ))^(1 / (1 - t)) / µ
if self.ze()? > ze {
Ok(self.ze()? - ze)
} else {
Ok(fixed!(0))
}
}
/// Calculates the share payment required to purchase the maximum
/// amount of bonds from the pool.
fn calculate_max_buy_shares_in(&self) -> Result<FixedPoint<U256>> {
// We solve for the maximum buy using the constraint that the pool's
// spot price can never exceed 1. We do this by noting that a spot price
// of 1, ((mu * ze) / y) ** tau = 1, implies that mu * ze = y. This
// simplifies YieldSpace to:
//
// k = ((c / mu) + 1) * (mu * ze') ** (1 - tau),
//
// This gives us the maximum share reserves of:
//
// ze' = (1 / mu) * (k / ((c / mu) + 1)) ** (1 / (1 - tau)).
let k = self.k_down()?;
let mut optimal_ze = k.div_down(self.c().div_up(self.mu()) + fixed!(1e18));
if optimal_ze >= fixed!(1e18) {
// Rounding the exponent up results in a larger outcome.
optimal_ze = optimal_ze.pow(fixed!(1e18).div_down(fixed!(1e18) - self.t()))?;
} else {
// Rounding the exponent down results in a larger outcome.
optimal_ze = optimal_ze.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
}
optimal_ze = optimal_ze.div_down(self.mu());
// The optimal trade size is given by dz = ze' - ze. If the calculation
// underflows, we return a failure flag.
if optimal_ze >= self.ze()? {
Ok(optimal_ze - self.ze()?)
} else {
Err(eyre!(
"calculate_max_buy_shares_in: optimal_ze = {} < {} = ze",
optimal_ze,
self.ze()?,
))
}
}
/// Calculates the maximum amount of bonds that can be purchased with the
/// specified reserves. We round so that the max buy amount is
/// underestimated.
fn calculate_max_buy_bonds_out(&self) -> Result<FixedPoint<U256>> {
// We solve for the maximum buy using the constraint that the pool's
// spot price can never exceed 1. We do this by noting that a spot price
// of 1, (mu * ze) / y ** tau = 1, implies that mu * ze = y. This
// simplifies YieldSpace to k = ((c / mu) + 1) * y' ** (1 - tau), and
// gives us the maximum bond reserves of
// y' = (k / ((c / mu) + 1)) ** (1 / (1 - tau)) and the maximum share
// reserves of ze' = y/mu.
let k = self.k_up()?;
let mut optimal_y = k.div_up(self.c() / self.mu() + fixed!(1e18));
if optimal_y >= fixed!(1e18) {
// Rounding the exponent up results in a larger outcome.
optimal_y = optimal_y.pow(fixed!(1e18).div_up(fixed!(1e18) - self.t()))?;
} else {
// Rounding the exponent down results in a larger outcome.
optimal_y = optimal_y.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
}
// The optimal trade size is given by dy = y - y'. If the calculation
// underflows, we return a failure flag.
if self.y() >= optimal_y {
Ok(self.y() - optimal_y)
} else {
Err(eyre!(
"calculate_max_buy_bonds_out: y = {} < {} = optimal_y",
self.y(),
optimal_y,
))
}
}
/// Calculates the maximum amount of bonds that can be sold with the
/// specified reserves. We round so that the max sell amount is
/// underestimated.
fn calculate_max_sell_bonds_in(&self, mut z_min: FixedPoint<U256>) -> Result<FixedPoint<U256>> {
// If the share adjustment is negative, the minimum share reserves is
// given by `z_min - zeta`, which ensures that the share reserves never
// fall below the minimum share reserves. Otherwise, the minimum share
// reserves is just zMin.
if self.zeta() < I256::zero() {
z_min += FixedPoint::try_from(-self.zeta())?;
}
// We solve for the maximum sell using the constraint that the pool's
// share reserves can never fall below the minimum share reserves zMin.
// Substituting z = zMin simplifies YieldSpace to
// k = (c / mu) * (mu * (zMin)) ** (1 - tau) + y' ** (1 - tau), and
// gives us the maximum bond reserves of
// y' = (k - (c / mu) * (mu * (zMin)) ** (1 - tau)) ** (1 / (1 - tau)).
let k = self.k_down()?;
let mut optimal_y = k - self.c().mul_div_up(
self.mu().mul_up(z_min).pow(fixed!(1e18) - self.t())?,
self.mu(),
);
if optimal_y >= fixed!(1e18) {
// Rounding the exponent down results in a smaller outcome.
optimal_y = optimal_y.pow(fixed!(1e18) / (fixed!(1e18) - self.t()))?;
} else {
// Rounding the exponent up results in a smaller outcome.
optimal_y = optimal_y.pow(fixed!(1e18).div_up(fixed!(1e18) - self.t()))?;
}
// The optimal trade size is given by dy = y' - y. If this subtraction
// will underflow, we return a failure flag.
if optimal_y >= self.y() {
Ok(optimal_y - self.y())
} else {
Err(eyre!(
"calculate_max_sell_bonds_in: optimal_y = {} < {} = y",
optimal_y,
self.y(),
))
}
}
/// Calculates the YieldSpace invariant k. This invariant is given by:
///
/// k = (c / µ) * (µ * ze)^(1 - t) + y^(1 - t)
///
/// This variant of the calculation overestimates the result.
fn k_up(&self) -> Result<FixedPoint<U256>> {
Ok(self.c().mul_div_up(
(self.mu().mul_up(self.ze()?)).pow(fixed!(1e18) - self.t())?,
self.mu(),
) + self.y().pow(fixed!(1e18) - self.t())?)
}
/// Calculates the YieldSpace invariant k. This invariant is given by:
///
/// k = (c / µ) * (µ * ze)^(1 - t) + y^(1 - t)
///
/// This variant of the calculation underestimates the result.
fn k_down(&self) -> Result<FixedPoint<U256>> {
Ok(self.c().mul_div_down(
(self.mu() * self.ze()?).pow(fixed!(1e18) - self.t())?,
self.mu(),
) + self.y().pow(fixed!(1e18) - self.t())?)
}
}
#[cfg(test)]
mod tests {
use std::panic;
use hyperdrive_test_utils::{chain::TestChain, constants::FAST_FUZZ_RUNS};
use rand::{thread_rng, Rng};
use super::*;
use crate::State;
#[tokio::test]
async fn fuzz_calculate_bonds_out_given_shares_in() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let in_ = rng.gen::<FixedPoint<U256>>();
// We need to catch panics because of overflows.
let actual =
panic::catch_unwind(|| state.calculate_bonds_out_given_shares_in_down(in_));
match chain
.mock_yield_space_math()
.calculate_bonds_out_given_shares_in_down(
state.ze()?.into(),
state.y().into(),
in_.into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok(expected) => assert_eq!(actual.unwrap().unwrap(), FixedPoint::from(expected)),
Err(_) => assert!(actual.is_err() || actual.unwrap().is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_shares_in_given_bonds_out_up() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let in_ = rng.gen::<FixedPoint<U256>>();
let actual = state.calculate_shares_in_given_bonds_out_up(in_);
match chain
.mock_yield_space_math()
.calculate_shares_in_given_bonds_out_up(
state.ze()?.into(),
state.y().into(),
in_.into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok(expected) => {
assert_eq!(actual.unwrap(), FixedPoint::from(expected));
}
Err(_) => assert!(actual.is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_shares_in_given_bonds_out_down() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let out = rng.gen::<FixedPoint<U256>>();
let actual =
panic::catch_unwind(|| state.calculate_shares_in_given_bonds_out_down(out));
match chain
.mock_yield_space_math()
.calculate_shares_in_given_bonds_out_down(
state.ze()?.into(),
state.y().into(),
out.into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok(expected) => {
assert_eq!(actual.unwrap().unwrap(), FixedPoint::from(expected));
}
Err(_) => assert!(actual.is_err() || actual.unwrap().is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_shares_out_given_bonds_in_down() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let in_ = rng.gen::<FixedPoint<U256>>();
let actual = state.calculate_shares_out_given_bonds_in_down(in_);
match chain
.mock_yield_space_math()
.calculate_shares_out_given_bonds_in_down_safe(
state.ze()?.into(),
state.y().into(),
in_.into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok((expected_out, expected_status)) => {
assert_eq!(actual.is_ok(), expected_status);
assert_eq!(actual.unwrap_or(fixed!(0)), FixedPoint::from(expected_out));
}
Err(_) => assert!(actual.is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_max_buy_shares_in() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let actual = state.calculate_max_buy_shares_in();
match chain
.mock_yield_space_math()
.calculate_max_buy_shares_in_safe(
state.ze()?.into(),
state.y().into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok((expected_out, expected_status)) => {
assert_eq!(actual.is_ok(), expected_status);
assert_eq!(actual.unwrap_or(fixed!(0)), FixedPoint::from(expected_out));
}
Err(_) => assert!(actual.is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_max_buy_bounds_out() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let actual = state.calculate_max_buy_bonds_out();
match chain
.mock_yield_space_math()
.calculate_max_buy_bonds_out_safe(
state.ze()?.into(),
state.y().into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok((expected_out, expected_status)) => {
assert_eq!(actual.is_ok(), expected_status);
assert_eq!(actual.unwrap_or(fixed!(0)), FixedPoint::from(expected_out));
}
Err(_) => assert!(actual.is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_max_sell_bonds_in() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let z_min = rng.gen::<FixedPoint<U256>>();
let actual = panic::catch_unwind(|| state.calculate_max_sell_bonds_in(z_min));
match chain
.mock_yield_space_math()
.calculate_max_sell_bonds_in_safe(
state.z().into(),
state.zeta(),
state.y().into(),
z_min.into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok((expected_out, expected_status)) => {
let actual = actual.unwrap();
assert_eq!(actual.is_ok(), expected_status);
assert_eq!(actual.unwrap_or(fixed!(0)), FixedPoint::from(expected_out));
}
Err(e) => assert!(actual.is_err() || actual.unwrap().is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_k_down() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let actual = state.k_down();
match chain
.mock_yield_space_math()
.k_down(
state.ze()?.into(),
state.y().into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok(expected) => assert_eq!(actual.unwrap(), FixedPoint::from(expected)),
Err(_) => assert!(actual.is_err()),
}
}
Ok(())
}
#[tokio::test]
async fn fuzz_k_up() -> Result<()> {
let chain = TestChain::new().await?;
// Fuzz the rust and solidity implementations against each other.
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let actual = state.k_up();
match chain
.mock_yield_space_math()
.k_up(
state.ze()?.into(),
state.y().into(),
(fixed!(1e18) - state.t()).into(),
state.c().into(),
state.mu().into(),
)
.call()
.await
{
Ok(expected) => assert_eq!(actual.unwrap(), FixedPoint::from(expected)),
Err(_) => assert!(actual.is_err()),
}
}
Ok(())
}
}