1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
use ethers::types::{I256, U256};
use eyre::{eyre, Result};
use fixedpointmath::{fixed, FixedPoint};
use crate::{calculate_effective_share_reserves, State, YieldSpace};
impl State {
/// Calculates the minimum price that the pool can support.
///
/// YieldSpace intersects the y-axis with a finite slope, so there is a
/// minimum price that the pool can support. This is the price at which the
/// share reserves are equal to the minimum share reserves.
///
/// We can solve for the bond reserves `$y_{\text{max}}$` implied by the share reserves
/// being equal to `$z_{\text{min}}$` using the current k value:
///
/// ```math
/// k = \tfrac{c}{\mu} \cdot \left( \mu \cdot z_{min} \right)^{1 - t_s}
/// + y_{max}^{1 - t_s} \\
/// \implies \\
/// y_{max} = \left( k - \tfrac{c}{\mu} \cdot \left(
/// \mu \cdot z_{min} \right)^{1 - t_s} \right)^{\tfrac{1}{1 - t_s}}
/// ```
///
/// From there, we can calculate the spot price as normal as:
///
/// ```math
/// p = \left( \tfrac{\mu \cdot z_{min}}{y_{max}} \right)^{t_s}
/// ```
pub fn calculate_min_spot_price(&self) -> Result<FixedPoint<U256>> {
let y_max = (self.k_up()?
- (self.vault_share_price() / self.initial_vault_share_price())
* (self.initial_vault_share_price() * self.minimum_share_reserves())
.pow(fixed!(1e18) - self.time_stretch())?)
.pow(fixed!(1e18).div_up(fixed!(1e18) - self.time_stretch()))?;
((self.initial_vault_share_price() * self.minimum_share_reserves()) / y_max)
.pow(self.time_stretch())
}
// TODO: Make it clear to the consumer that the maximum number of iterations
// is 2 * max_iterations.
//
/// Calculates the max short that can be opened with the given budget.
///
/// We start by finding the largest possible short (irrespective of budget),
/// and then we iteratively approach a solution using Newton's method if the
/// budget isn't satisified.
///
/// The user can provide `maybe_conservative_price`, which is a lower bound
/// on the realized price that the short will pay. This is used to help the
/// algorithm converge faster in real world situations. If this is `None`,
/// then we'll use the theoretical worst case realized price.
pub fn calculate_max_short<
F1: Into<FixedPoint<U256>>,
F2: Into<FixedPoint<U256>>,
I: Into<I256>,
>(
&self,
budget: F1,
open_vault_share_price: F2,
checkpoint_exposure: I,
maybe_conservative_price: Option<FixedPoint<U256>>, // TODO: Is there a nice way of abstracting the inner type?
maybe_max_iterations: Option<usize>,
) -> Result<FixedPoint<U256>> {
let budget = budget.into();
let open_vault_share_price = open_vault_share_price.into();
let checkpoint_exposure = checkpoint_exposure.into();
// Sanity check that we can open any shorts at all.
if self
.solvency_after_short(self.minimum_transaction_amount(), checkpoint_exposure)
.is_err()
{
return Err(eyre!("No solvent short is possible."));
}
// To avoid the case where Newton's method overshoots and stays on
// the invalid side of the optimization equation (i.e., when deposit > budget),
// we artificially set the target budget to be less than the actual budget.
//
// If the budget is less than the minimum transaction amount, then we return early.
let target_budget = if budget < self.minimum_transaction_amount() {
return Err(eyre!(
"expected budget={} >= min_transaction_amount={}",
budget,
self.minimum_transaction_amount(),
));
}
// If the budget equals the minimum transaction amount, then we return.
// We know it is ok because we already checked solvency after opening a
// short with the minimum txn amount.
else if budget == self.minimum_transaction_amount() {
return Ok(self.minimum_transaction_amount());
}
// If the budget is greater than the minimum transaction amount, then we set the target budget.
else {
budget - self.minimum_transaction_amount()
};
// If the open share price is zero, then we'll use the current share
// price since the checkpoint hasn't been minted yet.
let open_vault_share_price = if open_vault_share_price != fixed!(0) {
open_vault_share_price
} else {
self.vault_share_price()
};
// Assuming the budget is infinite, find the largest possible short that
// can be opened. If the short satisfies the budget, this is the max
// short amount.
let spot_price = self.calculate_spot_price()?;
// The initial guess should be guaranteed correct, and we should only get better from there.
let absolute_max_bond_amount = self.calculate_absolute_max_short(
spot_price,
checkpoint_exposure,
maybe_max_iterations,
)?;
// The max bond amount might be below the pool's minimum. If so, no short can be opened.
if absolute_max_bond_amount < self.minimum_transaction_amount() {
return Err(eyre!("No solvent short is possible."));
}
// Figure out the base deposit for the absolute max bond amount.
let absolute_max_deposit =
self.calculate_open_short(absolute_max_bond_amount, open_vault_share_price)?;
if absolute_max_deposit <= target_budget {
return Ok(absolute_max_bond_amount);
}
// Make an initial guess to refine.
let mut max_bond_amount = self
.max_short_guess(
target_budget,
spot_price,
open_vault_share_price,
maybe_conservative_price,
)
.max(self.minimum_transaction_amount());
let mut best_valid_max_bond_amount =
match self.solvency_after_short(max_bond_amount, checkpoint_exposure) {
Ok(_) => max_bond_amount,
Err(_) => self.minimum_transaction_amount(),
};
// Use Newton's method to iteratively approach a solution. We use the
// short deposit in base minus the budget as our objective function,
// which will converge to the amount of bonds that need to be shorted
// for the short deposit to consume the entire budget. Using the
// notation from the function comments, we can write our objective
// function as:
//
// ```math
// F(x) = B - D(x)
// ```
//
// Since `$B$` is just a constant, `$F'(x) = -D'(x)$`. Given the current guess
// of `$x_n$`, Newton's method gives us an updated guess of `$x_{n+1}$`:
//
// ```math
// \begin{aligned}
// x_{n+1} &= x_n - \tfrac{F(x_n)}{F'(x_n)} \\
// &= x_n + \tfrac{B - D(x_n)}{D'(x_n)}
// \end{aligned}
// ```
//
// The guess that we make is very important in determining how quickly
// we converge to the solution.
//
// TODO: This can get stuck in a loop if the Newton update pushes the bond amount to be too large.
for _ in 0..maybe_max_iterations.unwrap_or(7) {
let deposit = match self.calculate_open_short(max_bond_amount, open_vault_share_price) {
Ok(valid_deposit) => valid_deposit,
Err(_) => {
// The pool is insolvent for the guess at this point.
// We use the absolute max bond amount and deposit
// for the next guess iteration
max_bond_amount = best_valid_max_bond_amount;
// Should work this time.
self.calculate_open_short(max_bond_amount, open_vault_share_price)?
}
};
// We update the best valid max bond amount if the deposit amount
// is valid and the current guess is bigger than the previous best.
if deposit <= target_budget && max_bond_amount >= best_valid_max_bond_amount {
best_valid_max_bond_amount = max_bond_amount;
// Stop if we found the exact solution.
if deposit == target_budget {
break;
}
}
// Iteratively update max_bond_amount via Newton's method.
let derivative = self.calculate_open_short_derivative(
max_bond_amount,
open_vault_share_price,
Some(spot_price),
)?;
if deposit < target_budget {
max_bond_amount += (target_budget - deposit) / derivative
}
// deposit > target_budget
else {
max_bond_amount -= (deposit - target_budget) / derivative
}
// TODO this always iterates for max_iterations unless
// it makes the pool insolvent. Likely want to check an
// epsilon to early break
}
// Verify that the max short satisfies the budget.
if target_budget
< self.calculate_open_short(best_valid_max_bond_amount, open_vault_share_price)?
{
return Err(eyre!("max short exceeded budget"));
}
// Ensure that the max bond amount is within the absolute max bond amount.
if best_valid_max_bond_amount > absolute_max_bond_amount {
return Err(eyre!(
"max short bond amount exceeded absolute max bond amount"
));
}
Ok(best_valid_max_bond_amount)
}
/// Calculates an initial guess for the max short calculation.
///
/// The user can specify a conservative price that they know is less than
/// the worst-case realized price. This significantly improves the speed of
/// convergence of Newton's method.
fn max_short_guess(
&self,
budget: FixedPoint<U256>,
spot_price: FixedPoint<U256>,
open_vault_share_price: FixedPoint<U256>,
maybe_conservative_price: Option<FixedPoint<U256>>,
) -> FixedPoint<U256> {
// If a conservative price is given, we can use it to solve for an
// initial guess for what the max short is. If this conservative price
// is an overestimate or if a conservative price isn't given, we revert
// to using the theoretical worst case scenario as our guess.
if let Some(conservative_price) = maybe_conservative_price {
// Given our conservative price `$p_c$`, we can write the short deposit
// function as:
//
// ```math
// D(x) = \left( \tfrac{c}{c_0} - $p_c$ \right) \cdot x
// + \phi_{flat} \cdot x + \phi_{curve} \cdot (1 - p) \cdot x
// ```
//
// We then solve for $x^*$ such that $D(x^*) = B$, which gives us a
// guess of:
//
// ```math
// x^* = \tfrac{B}{\tfrac{c}{c_0} - $p_c$ + \phi_{flat}
// + \phi_{curve} \cdot (1 - p)}
// ```
//
// If the budget can cover the actual short deposit on `$x^*$`, we
// return it as our guess. Otherwise, we revert to the worst case
// scenario.
let guess = budget
/ (self.vault_share_price().div_up(open_vault_share_price)
+ self.flat_fee()
+ self.curve_fee() * (fixed!(1e18) - spot_price)
- conservative_price);
if let Ok(deposit) = self.calculate_open_short(guess, open_vault_share_price) {
if budget >= deposit {
return guess;
}
}
}
// We know that the max short's bond amount is greater than 0 which
// gives us an absolute lower bound, but we can do better most of the
// time. If the fixed rate was infinite, the max loss for shorts would
// be 1 per bond since the spot price would be 0. With this in mind, the
// max short amount would be equal to the budget before we consider the
// flat fee, curve fee, and back-paid interest. Considering that the
// budget also needs to cover the fees and back-paid interest, we
// subtract these components from the budget to get a better estimate of
// the max bond amount. If subtracting these components results in a
// negative number, we just 0 as our initial guess.
let worst_case_deposit = match self.calculate_open_short(budget, open_vault_share_price) {
Ok(d) => d,
Err(_) => return fixed!(0),
};
if budget >= worst_case_deposit {
budget - worst_case_deposit
} else {
fixed!(0)
}
}
/// Calculates the max short that can be opened on the YieldSpace curve
/// without considering solvency constraints.
fn calculate_max_short_upper_bound(&self) -> Result<FixedPoint<U256>> {
// We have the twin constraints that $z \geq z_{min}$ and
// $z - \zeta \geq z_{min}$. Combining these together, we calculate
// the optimal share reserves as $z_{optimal} = z_{min} + max(0, \zeta)$.
let optimal_share_reserves = self.minimum_share_reserves()
+ FixedPoint::try_from(self.share_adjustment().max(I256::zero()))?;
// We calculate the optimal bond reserves by solving for the bond
// reserves that is implied by the optimal share reserves. We can do
// this as follows:
//
// k = (c / mu) * (mu * (z' - zeta)) ** (1 - t_s) + y' ** (1 - t_s)
// =>
// y' = (k - (c / mu) * (mu * (z' - zeta)) ** (1 - t_s)) ** (1 / (1 - t_s))
let optimal_effective_share_reserves =
calculate_effective_share_reserves(optimal_share_reserves, self.share_adjustment())?;
let optimal_bond_reserves = self.k_down()?
- self.vault_share_price().mul_div_up(
self.initial_vault_share_price()
.mul_up(optimal_effective_share_reserves)
.pow(fixed!(1e18) - self.time_stretch())?,
self.initial_vault_share_price(),
);
let optimal_bond_reserves = if optimal_bond_reserves >= fixed!(1e18) {
// Rounding the exponent down results in a smaller outcome.
optimal_bond_reserves.pow(fixed!(1e18).div_down(fixed!(1e18) - self.time_stretch()))?
} else {
// Rounding the exponent up results in a smaller outcome.
optimal_bond_reserves.pow(fixed!(1e18).div_up(fixed!(1e18) - self.time_stretch()))?
};
Ok(optimal_bond_reserves - self.bond_reserves())
}
/// Calculates the absolute max short that can be opened without violating the
/// pool's solvency constraints.
pub fn calculate_absolute_max_short(
&self,
spot_price: FixedPoint<U256>,
checkpoint_exposure: I256,
maybe_max_iterations: Option<usize>,
) -> Result<FixedPoint<U256>> {
// We start by calculating the maximum short that can be opened on the
// YieldSpace curve.
let absolute_max_bond_amount = self.calculate_max_short_upper_bound()?;
if self
.solvency_after_short(absolute_max_bond_amount, checkpoint_exposure)
.is_ok()
{
return Ok(absolute_max_bond_amount);
}
// Use Newton's method to iteratively approach a solution. We use pool's
// solvency $S(x)$ w.r.t. the amount of bonds shorted $x$ as our
// objective function, which will converge to the maximum short amount
// when $S(x) = 0$. The derivative of $S(x)$ is negative (since solvency
// decreases as more shorts are opened). The fixed point library doesn't
// support negative numbers, so we use the negation of the derivative to
// side-step the issue.
//
// Given the current guess of $x_n$, Newton's method gives us an updated
// guess of $x_{n+1}$:
//
// ```math
// \begin{aligned}
// x_{n+1} &= x_n - \tfrac{S(x_n)}{S'(x_n)} \\
// &= x_n + \tfrac{S(x_n)}{-S'(x_n)}
// \end{aligned}
// ```
//
// The guess that we make is very important in determining how quickly
// we converge to the solution.
let mut max_bond_guess = self.absolute_max_short_guess(spot_price, checkpoint_exposure)?;
// If the initial guess is insolvent, we need to throw an error.
let mut solvency = self.solvency_after_short(max_bond_guess, checkpoint_exposure)?;
for _ in 0..maybe_max_iterations.unwrap_or(7) {
// TODO: It may be better to gracefully handle crossing over the
// root by extending the fixed point math library to handle negative
// numbers or even just using an if-statement to handle the negative
// numbers.
//
// Calculate the next iteration of Newton's method. If the candidate
// is larger than the absolute max, we've gone too far and something
// has gone wrong.
let derivative = match self.solvency_after_short_derivative(max_bond_guess, spot_price)
{
Ok(derivative) => derivative,
Err(_) => break,
};
let possible_max_bond_amount = max_bond_guess + solvency / derivative;
if possible_max_bond_amount > absolute_max_bond_amount {
break;
}
// If the candidate is insolvent, we've gone too far and can stop
// iterating. Otherwise, we update our guess and continue.
solvency =
match self.solvency_after_short(possible_max_bond_amount, checkpoint_exposure) {
Ok(solvency) => {
max_bond_guess = possible_max_bond_amount;
solvency
}
Err(_) => break,
};
}
Ok(max_bond_guess)
}
/// Calculates an initial guess for the absolute max short. This is a conservative
/// guess that will be less than the true absolute max short, which is what
/// we need to start Newton's method.
///
/// To calculate our guess, we assume an unrealistically good realized
/// price `$p_r$` for opening the short. This allows us to approximate
/// `$P(x) \approx \tfrac{1}{c} \cdot p_r \cdot x$`. Plugging this
/// into our solvency function `$S(x)$`, we get an approximation of our
/// solvency as:
///
/// ```math
/// S(x) \approx (z_0 - \tfrac{1}{c} \cdot (
/// p_r - \phi_{c} \cdot (1 - p) + \phi_{g} \cdot \phi_{c} \cdot (1 - p)
/// )) - \tfrac{e_0 - max(e_{c}, 0)}{c} - z_{min}
/// ```
///
/// Setting this equal to zero, we can solve for our initial guess:
///
/// ```math
/// x = \frac{c \cdot (s_0 + \tfrac{max(e_{c}, 0)}{c})}{
/// p_r - \phi_{c} \cdot (1 - p) + \phi_{g} \cdot \phi_{c} \cdot (1 - p)
/// }
/// ```
fn absolute_max_short_guess(
&self,
spot_price: FixedPoint<U256>,
checkpoint_exposure: I256,
) -> Result<FixedPoint<U256>> {
let checkpoint_exposure_shares =
FixedPoint::try_from(checkpoint_exposure.max(I256::zero()))?
.div_down(self.vault_share_price());
// solvency = share_reserves - long_exposure / vault_share_price - min_share_reserves
let solvency = self.calculate_solvency()? + checkpoint_exposure_shares;
let guess = self.vault_share_price().mul_down(solvency);
let curve_fee = self.curve_fee().mul_down(fixed!(1e18) - spot_price);
let gov_curve_fee = self.governance_lp_fee().mul_down(curve_fee);
Ok(guess.div_down(spot_price - curve_fee + gov_curve_fee))
}
/// Calculates the pool's solvency after opening a short.
///
/// We can express the pool's solvency after opening a short of `$x$` bonds
/// as:
///
/// ```math
/// s(x) = z(x) - \tfrac{e(x)}{c} - z_{min}
/// ```
///
/// where `$z(x)$` represents the pool's share reserves after opening the
/// short:
///
/// ```math
/// z(x) = z_0 - \left(
/// P(x) - \left( \tfrac{c(x)}{c} - \tfrac{g(x)}{c} \right)
/// \right)
/// ```
///
/// and `$e(x)$` represents the pool's exposure after opening the short:
///
/// ```math
/// e(x) = e_0 - min(x + D(x), max(e_{c}, 0))
/// ```
///
/// We simplify our `$e(x)$` formula by noting that the max short is only
/// constrained by solvency when `$x + D(x) > max(e_{c}, 0)$` since
/// `$x + D(x)$` grows faster than
/// `$P(x) - \tfrac{\phi_{c}}{c} \cdot \left( 1 - p \right) \cdot x$`.
/// With this in mind, `$min(x + D(x), max(e_{c}, 0)) = max(e_{c}, 0)$`
/// whenever solvency is actually a constraint, so we can write:
///
/// ```math
/// e(x) = e_0 - max(e_{c}, 0)
/// ```
fn solvency_after_short(
&self,
bond_amount: FixedPoint<U256>,
checkpoint_exposure: I256,
) -> Result<FixedPoint<U256>> {
let share_delta = self.calculate_pool_share_delta_after_open_short(bond_amount)?;
if self.share_reserves() < share_delta {
return Err(eyre!(
"expected share_reserves={:#?} >= share_delta={:#?}",
self.share_reserves(),
share_delta
));
}
let new_share_reserves = self.share_reserves() - share_delta;
let exposure_shares = {
let checkpoint_exposure = FixedPoint::try_from(checkpoint_exposure.max(I256::zero()))?;
if self.long_exposure() < checkpoint_exposure {
return Err(eyre!(
"expected long_exposure={:#?} >= checkpoint_exposure={:#?}.",
self.long_exposure(),
checkpoint_exposure
));
} else {
(self.long_exposure() - checkpoint_exposure) / self.vault_share_price()
}
};
if new_share_reserves >= exposure_shares + self.minimum_share_reserves() {
Ok(new_share_reserves - exposure_shares - self.minimum_share_reserves())
} else {
Err(eyre!("Short would result in an insolvent pool."))
}
}
/// Calculates the derivative of the pool's solvency w.r.t. the short
/// amount.
///
/// The derivative is calculated as:
///
/// ```math
/// \begin{aligned}
/// s'(x) &= z'(x) - 0 - 0
/// &= 0 - \left( P'(x) - \frac{(c'(x) - g'(x))}{c} \right)
/// &= -P'(x) + \frac{
/// \phi_{c} \cdot (1 - p) \cdot (1 - \phi_{g})
/// }{c}
/// \end{aligned}
/// ```
///
/// Since solvency decreases as the short amount increases, we negate the
/// derivative. This avoids issues with the fixed point library which
/// doesn't support negative values.
fn solvency_after_short_derivative(
&self,
bond_amount: FixedPoint<U256>,
spot_price: FixedPoint<U256>,
) -> Result<FixedPoint<U256>> {
let lhs = self.calculate_short_principal_derivative(bond_amount)?;
let rhs = self.curve_fee()
* (fixed!(1e18) - spot_price)
* (fixed!(1e18) - self.governance_lp_fee())
/ self.vault_share_price();
if lhs >= rhs {
Ok(lhs - rhs)
} else {
Err(eyre!("Invalid derivative."))
}
}
}
#[cfg(test)]
mod tests {
use std::panic;
use ethers::types::{U128, U256};
use fixedpointmath::{fixed, uint256};
use hyperdrive_test_utils::{
chain::TestChain,
constants::{FAST_FUZZ_RUNS, FUZZ_RUNS, SLOW_FUZZ_RUNS},
};
use hyperdrive_wrappers::wrappers::{
ihyperdrive::{Checkpoint, Options},
mock_hyperdrive_math::MaxTradeParams,
};
use rand::{thread_rng, Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::test_utils::{
agent::HyperdriveMathAgent, preamble::initialize_pool_with_random_state,
};
/// This test differentially fuzzes the `calculate_max_short` function against
/// the Solidity analogue `calculateMaxShort`. `calculateMaxShort` doesn't take
/// a trader's budget into account, so it only provides a subset of
/// `calculate_max_short`'s functionality. With this in mind, we provide
/// `calculate_max_short` with a budget of `U256::MAX` to ensure that the two
/// functions are equivalent.
#[tokio::test]
async fn fuzz_sol_calculate_max_short_without_budget() -> Result<()> {
// TODO: We should be able to pass these tests with a much lower (if not zero) tolerance.
let sol_correctness_tolerance = fixed!(1e17);
// Fuzz the rust and solidity implementations against each other.
let chain = TestChain::new().await?;
let mut rng = thread_rng();
for _ in 0..*FAST_FUZZ_RUNS {
let state = rng.gen::<State>();
let checkpoint_exposure = {
let value = rng.gen_range(fixed!(0)..=FixedPoint::from(U256::from(U128::MAX)));
if rng.gen() {
-I256::try_from(value)?
} else {
I256::try_from(value)?
}
};
let max_iterations = 7;
// We need to catch panics because of overflows.
let rust_max_bond_amount = panic::catch_unwind(|| {
state.calculate_absolute_max_short(
state.calculate_spot_price()?,
checkpoint_exposure,
Some(max_iterations),
)
});
// Run the solidity function & compare outputs.
match chain
.mock_hyperdrive_math()
.calculate_max_short(
MaxTradeParams {
share_reserves: state.info.share_reserves,
bond_reserves: state.info.bond_reserves,
longs_outstanding: state.info.longs_outstanding,
long_exposure: state.info.long_exposure,
share_adjustment: state.info.share_adjustment,
time_stretch: state.config.time_stretch,
vault_share_price: state.info.vault_share_price,
initial_vault_share_price: state.config.initial_vault_share_price,
minimum_share_reserves: state.config.minimum_share_reserves,
curve_fee: state.config.fees.curve,
flat_fee: state.config.fees.flat,
governance_lp_fee: state.config.fees.governance_lp,
},
checkpoint_exposure,
max_iterations.into(),
)
.call()
.await
{
Ok(sol_max_bond_amount) => {
// Make sure the solidity & rust runctions gave the same value.
let rust_max_bonds_unwrapped = rust_max_bond_amount.unwrap().unwrap();
let sol_max_bonds_fp = FixedPoint::from(sol_max_bond_amount);
let error = if sol_max_bonds_fp > rust_max_bonds_unwrapped {
sol_max_bonds_fp - rust_max_bonds_unwrapped
} else {
rust_max_bonds_unwrapped - sol_max_bonds_fp
};
assert!(
error < sol_correctness_tolerance,
"expected abs(solidity_amount={} - rust_amount={})={} < tolerance={}",
sol_max_bonds_fp,
rust_max_bonds_unwrapped,
error,
sol_correctness_tolerance,
);
}
// Hyperdrive Solidity calculate_max_short threw an error
Err(sol_err) => {
assert!(
rust_max_bond_amount.is_err()
|| rust_max_bond_amount.as_ref().unwrap().is_err(),
"expected rust_max_short={:#?} to have an error.\nsolidity error={:#?}",
rust_max_bond_amount,
sol_err
);
}
};
}
Ok(())
}
#[tokio::test]
async fn fuzz_calculate_max_short_budget_consumed() -> Result<()> {
// TODO: This should be fixed!(0.0001e18) == 0.01%
let budget_tolerance = fixed!(1e18);
// Spawn a test chain and create two agents -- Alice and Bob. Alice
// is funded with a large amount of capital so that she can initialize
// the pool. Bob is funded with a small amount of capital so that we
// can test `calculate_max_short` when budget is the primary constraint.
let mut rng = thread_rng();
// Initialize the chain and the agents.
let chain = TestChain::new().await?;
let mut alice = chain.alice().await?;
let mut bob = chain.bob().await?;
let config = alice.get_config().clone();
for _ in 0..*FUZZ_RUNS {
// Snapshot the chain.
let id = chain.snapshot().await?;
// Fund Alice and Bob.
let contribution = rng.gen_range(fixed!(100_000e18)..=fixed!(100_000_000e18));
alice.fund(contribution).await?;
// Alice initializes the pool.
let fixed_rate = rng.gen_range(fixed!(0.01e18)..=fixed!(0.1e18));
alice.initialize(fixed_rate, contribution, None).await?;
// Some of the checkpoint passes and variable interest accrues.
alice
.checkpoint(alice.latest_checkpoint().await?, uint256!(0), None)
.await?;
let variable_rate = rng.gen_range(fixed!(0)..=fixed!(0.5e18));
alice
.advance_time(
variable_rate,
FixedPoint::from(config.checkpoint_duration) * fixed!(0.5e18),
)
.await?;
// Get the current state of the pool.
let state = alice.get_state().await?;
let Checkpoint {
vault_share_price: open_vault_share_price,
weighted_spot_price: _,
last_weighted_spot_price_update_time: _,
} = alice
.get_checkpoint(state.to_checkpoint(alice.now().await?))
.await?;
let checkpoint_exposure = alice
.get_checkpoint_exposure(state.to_checkpoint(alice.now().await?))
.await?;
let global_max_short_bonds = state.calculate_absolute_max_short(
state.calculate_spot_price()?,
checkpoint_exposure,
None,
)?;
// Bob should always be budget constrained when trying to open the short.
let global_max_base_required = state
.calculate_open_short(global_max_short_bonds, open_vault_share_price.into())?;
let budget = rng.gen_range(
state.minimum_transaction_amount()..=global_max_base_required - fixed!(1e18),
);
bob.fund(budget).await?;
// Bob opens a max short position. We allow for a very small amount
// of slippage to account for interest accrual between the time the
// calculation is performed and the transaction is submitted.
let slippage_tolerance = fixed!(0.0001e18); // 0.01%
let max_short_bonds = bob.calculate_max_short(Some(slippage_tolerance)).await?;
bob.open_short(max_short_bonds, None, None).await?;
// Bob used a slippage tolerance of 0.01%, which means
// that the max short is always consuming at least 99.99% of
// the budget.
let max_allowable_balance =
budget * (fixed!(1e18) - slippage_tolerance) * budget_tolerance;
let remaining_balance = bob.base();
assert!(remaining_balance < max_allowable_balance,
"expected {}% of budget consumed, or remaining_balance={} < max_allowable_balance={}
global_max_short_bonds = {}; max_short_bonds = {}; global_max_base_required={}",
format!("{}", fixed!(100e18)*(fixed!(1e18) - budget_tolerance)).trim_end_matches("0"),
remaining_balance,
max_allowable_balance,
global_max_short_bonds,
max_short_bonds,
global_max_base_required,
);
// Revert to the snapshot and reset the agents' wallets.
chain.revert(id).await?;
alice.reset(Default::default()).await?;
bob.reset(Default::default()).await?;
}
Ok(())
}
#[tokio::test]
async fn fuzz_sol_calculate_max_short_without_budget_then_open_short() -> Result<()> {
let max_bonds_tolerance = fixed!(1e10);
let max_base_tolerance = fixed!(1e10);
let reserves_drained_tolerance = fixed!(1e27);
// Set up a random number generator. We use ChaCha8Rng with a randomly
// generated seed, which makes it easy to reproduce test failures given
// the seed.
let mut rng = {
let mut rng = thread_rng();
let seed = rng.gen();
ChaCha8Rng::seed_from_u64(seed)
};
// Initialize the test chain.
let chain = TestChain::new().await?;
let mut alice = chain.alice().await?;
let mut bob = chain.bob().await?;
let mut celine = chain.celine().await?;
for _ in 0..*SLOW_FUZZ_RUNS {
// Snapshot the chain.
let id = chain.snapshot().await?;
// Run the preamble.
initialize_pool_with_random_state(&mut rng, &mut alice, &mut bob, &mut celine).await?;
// Get the current state from solidity.
let mut state = alice.get_state().await?;
// Get the current checkpoint exposure.
let checkpoint_exposure = alice
.get_checkpoint_exposure(state.to_checkpoint(alice.now().await?))
.await?;
// Get the global max short from Solidity.
let max_iterations = 7;
match chain
.mock_hyperdrive_math()
.calculate_max_short(
MaxTradeParams {
share_reserves: state.info.share_reserves,
bond_reserves: state.info.bond_reserves,
longs_outstanding: state.info.longs_outstanding,
long_exposure: state.info.long_exposure,
share_adjustment: state.info.share_adjustment,
time_stretch: state.config.time_stretch,
vault_share_price: state.info.vault_share_price,
initial_vault_share_price: state.config.initial_vault_share_price,
minimum_share_reserves: state.config.minimum_share_reserves,
curve_fee: state.config.fees.curve,
flat_fee: state.config.fees.flat,
governance_lp_fee: state.config.fees.governance_lp,
},
checkpoint_exposure,
max_iterations.into(),
)
.call()
.await
{
Ok(sol_max_bonds) => {
// Solidity reports everything is good, so we run the Rust fns.
let rust_max_bonds = panic::catch_unwind(|| {
state.calculate_absolute_max_short(
state.calculate_spot_price()?,
checkpoint_exposure,
Some(max_iterations),
)
});
// Compare the max bond amounts.
let rust_max_bonds_unwrapped = rust_max_bonds.unwrap().unwrap();
let sol_max_bonds_fp = FixedPoint::from(sol_max_bonds);
let error = if rust_max_bonds_unwrapped > sol_max_bonds_fp {
rust_max_bonds_unwrapped - sol_max_bonds_fp
} else {
sol_max_bonds_fp - rust_max_bonds_unwrapped
};
assert!(
error < max_bonds_tolerance,
"expected abs(rust_bonds - sol_bonds)={} >= max_bonds_tolerance={}",
error,
max_bonds_tolerance
);
// The amount Celine has to pay will always be less than the bond amount.
celine.fund(sol_max_bonds.into()).await?;
match celine
.hyperdrive()
.open_short(
sol_max_bonds.into(),
FixedPoint::from(U256::MAX).into(),
fixed!(0).into(),
Options {
destination: celine.address(),
as_base: true,
extra_data: [].into(),
},
)
.call()
.await
{
Ok((_, sol_max_base)) => {
// Calling any Solidity Hyperdrive transaction causes the
// mock yield source to accrue some interest. We want to use
// the state before the Solidity OpenShort, but with the
// vault share price after the block tick.
// Get the current vault share price & update state.
let vault_share_price = alice.get_state().await?.vault_share_price();
state.info.vault_share_price = vault_share_price.into();
// Get the open vault share price.
let Checkpoint {
weighted_spot_price: _,
last_weighted_spot_price_update_time: _,
vault_share_price: open_vault_share_price,
} = alice
.get_checkpoint(state.to_checkpoint(alice.now().await?))
.await?;
// Compare the open short call outputs.
let rust_max_base = state.calculate_open_short(
rust_max_bonds_unwrapped,
open_vault_share_price.into(),
);
let rust_max_base_unwrapped = rust_max_base.unwrap();
let sol_max_base_fp = FixedPoint::from(sol_max_base);
let error = if rust_max_base_unwrapped > sol_max_base_fp {
rust_max_base_unwrapped - sol_max_base_fp
} else {
sol_max_base_fp - rust_max_base_unwrapped
};
assert!(
error < max_base_tolerance,
"expected abs(rust_base - sol_base)={} >= max_base_tolerance={}",
error,
max_base_tolerance
);
// Make sure the pool was drained.
let pool_shares = state
.effective_share_reserves()?
.min(state.share_reserves());
let min_share_reserves = state.minimum_share_reserves();
assert!(pool_shares >= min_share_reserves,
"effective_share_reserves={} should always be greater than the minimum_share_reserves={}.",
state.effective_share_reserves()?,
min_share_reserves,
);
let reserve_amount_above_minimum = pool_shares - min_share_reserves;
assert!(reserve_amount_above_minimum < reserves_drained_tolerance,
"share_reserves={} - minimum_share_reserves={} (diff={}) should be < tolerance={}",
pool_shares,
min_share_reserves,
reserve_amount_above_minimum,
reserves_drained_tolerance,
);
}
// Solidity calculate_max_short worked, but passing that bond amount to open_short failed.
Err(_) => assert!(
false,
"Solidity calculate_max_short produced an insolvent answer!"
),
}
}
// Solidity calculate_max_short failed; verify that rust calculate_max_short fails.
Err(_) => {
// Get the current vault share price & update state.
let vault_share_price = alice.get_state().await?.vault_share_price();
state.info.vault_share_price = vault_share_price.into();
// Get the current checkpoint exposure.
let checkpoint_exposure = alice
.get_checkpoint_exposure(state.to_checkpoint(alice.now().await?))
.await?;
// Solidity reports everything is good, so we run the Rust fns.
let rust_max_bonds = panic::catch_unwind(|| {
state.calculate_absolute_max_short(
state.calculate_spot_price()?,
checkpoint_exposure,
Some(max_iterations),
)
});
assert!(rust_max_bonds.is_err() || rust_max_bonds.unwrap().is_err());
}
}
// Revert to the snapshot and reset the agent's wallets.
chain.revert(id).await?;
alice.reset(Default::default()).await?;
bob.reset(Default::default()).await?;
celine.reset(Default::default()).await?;
}
Ok(())
}
}