1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
use ethers::types::U256;
use eyre::Result;
use fixedpointmath::{fixed, FixedPoint};
use crate::State;
impl State {
/// Calculates the curve fee paid when opening shorts with a given bond amount.
///
/// The open short curve fee, `$\Phi_{c,os}(\Delta y)$`, is paid in base and
/// is given by:
///
/// ```math
/// \Phi_{c,os}(\Delta y) = \phi_c \cdot (1 - p) \cdot \Delta y
/// ```
pub fn open_short_curve_fee(&self, bond_amount: FixedPoint<U256>) -> Result<FixedPoint<U256>> {
// NOTE: Round up to overestimate the curve fee.
Ok(self
.curve_fee()
.mul_up(fixed!(1e18) - self.calculate_spot_price()?)
.mul_up(bond_amount))
}
/// Calculates the governance fee paid when opening shorts with a given bond
/// amount.
///
/// The open short governance fee, `$\Phi_{g,os}(\Delta y)$`, is paid in
/// base and is given by:
///
/// ```math
/// \Phi_{g,os}(\Delta y) = \phi_g \cdot \Phi_{c,os}(\Delta y)
/// ```
pub fn open_short_governance_fee(
&self,
bond_amount: FixedPoint<U256>,
maybe_curve_fee: Option<FixedPoint<U256>>,
) -> Result<FixedPoint<U256>> {
let curve_fee = match maybe_curve_fee {
Some(maybe_curve_fee) => maybe_curve_fee,
None => self.open_short_curve_fee(bond_amount)?,
};
// NOTE: Round down to underestimate the governance fee.
Ok(curve_fee.mul_down(self.governance_lp_fee()))
}
/// Calculates the curve fee paid when opening shorts with a given bond
/// amount.
///
/// The close short curve fee, `$\Phi_{c,cs}(\Delta y)$`, is paid in shares
/// and is given by:
///
/// ```math
/// \Phi_{c,cs}(\Delta y) = \frac{\phi_c \cdot (1-p) \cdot \Delta y \cdot t}{c}
/// ```
///
/// where $t$ is the normalized time remaining until bond maturity.
pub fn close_short_curve_fee(
&self,
bond_amount: FixedPoint<U256>,
maturity_time: U256,
current_time: U256,
) -> Result<FixedPoint<U256>> {
let normalized_time_remaining =
self.calculate_normalized_time_remaining(maturity_time, current_time);
// NOTE: Round up to overestimate the curve fee.
Ok(self
.curve_fee()
.mul_up(fixed!(1e18) - self.calculate_spot_price()?)
.mul_up(bond_amount)
.mul_div_up(normalized_time_remaining, self.vault_share_price()))
}
/// Calculate the governance fee paid when closing shorts with a given bond
/// amount.
///
/// The close short governance fee, `$\Phi_{g,cs}(\Delta y)$`, is paid in
/// shares and is given by:
///
/// ```math
/// \Phi_{g,cs}(\Delta y) = \Phi_{c,cs}(\Delta y) * \phi_g
/// ```
///
/// NOTE: Round down to underestimate the governance curve fee
pub fn close_short_governance_fee(
&self,
bond_amount: FixedPoint<U256>,
maturity_time: U256,
current_time: U256,
maybe_curve_fee: Option<FixedPoint<U256>>,
) -> Result<FixedPoint<U256>> {
let curve_fee = match maybe_curve_fee {
Some(maybe_curve_fee) => maybe_curve_fee,
None => self.close_short_curve_fee(bond_amount, maturity_time, current_time)?,
};
// NOTE: Round down to underestimate the governance fee.
Ok(curve_fee.mul_down(self.governance_lp_fee()))
}
/// Calculate the flat fee paid when closing shorts with a given bond
/// amount.
///
/// The close short flat fee, `$\Phi_{f,cs}(\Delta y)$`, is paid in shares
/// and is given by:
///
/// ```math
/// \Phi_{f,cs}(\Delta y) = \frac{\Delta y \cdot (1 - t) \cdot \phi_f}{c}
/// ```
///
/// where `$t$` is the normalized time remaining until bond maturity.
pub fn close_short_flat_fee(
&self,
bond_amount: FixedPoint<U256>,
maturity_time: U256,
current_time: U256,
) -> FixedPoint<U256> {
let normalized_time_remaining =
self.calculate_normalized_time_remaining(maturity_time, current_time);
// NOTE: Round up to overestimate the flat fee.
bond_amount
.mul_div_up(
fixed!(1e18) - normalized_time_remaining,
self.vault_share_price(),
)
.mul_up(self.flat_fee())
}
}