1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
use ethers::types::U256;
use eyre::{eyre, Result};
use fixedpointmath::{fixed, FixedPoint};

use crate::{State, YieldSpace};

impl State {
    fn calculate_close_short_flat<F: Into<FixedPoint<U256>>>(
        &self,
        bond_amount: F,
        maturity_time: U256,
        current_time: U256,
    ) -> FixedPoint<U256> {
        // NOTE: We overestimate the trader's share payment to avoid sandwiches.
        let bond_amount = bond_amount.into();
        let normalized_time_remaining =
            self.calculate_normalized_time_remaining(maturity_time, current_time);
        bond_amount.mul_div_up(
            fixed!(1e18) - normalized_time_remaining,
            self.vault_share_price(),
        )
    }

    fn calculate_close_short_curve<F: Into<FixedPoint<U256>>>(
        &self,
        bond_amount: F,
        maturity_time: U256,
        current_time: U256,
    ) -> Result<FixedPoint<U256>> {
        let bond_amount = bond_amount.into();
        let normalized_time_remaining =
            self.calculate_normalized_time_remaining(maturity_time, current_time);
        if normalized_time_remaining > fixed!(0) {
            // NOTE: Round the `shareCurveDelta` up to overestimate the share
            // payment.
            //
            let curve_bonds_in = bond_amount.mul_up(normalized_time_remaining);
            Ok(self.calculate_shares_in_given_bonds_out_up(curve_bonds_in)?)
        } else {
            Ok(fixed!(0))
        }
    }

    fn calculate_close_short_flat_plus_curve<F: Into<FixedPoint<U256>>>(
        &self,
        bond_amount: F,
        maturity_time: U256,
        current_time: U256,
    ) -> Result<FixedPoint<U256>> {
        let bond_amount = bond_amount.into();
        // Calculate the flat part of the trade
        let flat = self.calculate_close_short_flat(bond_amount, maturity_time, current_time);
        // Calculate the curve part of the trade
        let curve = self.calculate_close_short_curve(bond_amount, maturity_time, current_time)?;

        Ok(flat + curve)
    }

    /// Calculates the proceeds in shares of closing a short position. This
    /// takes into account the trading profits, the interest that was
    /// earned by the short, the flat fee the short pays, and the amount of
    /// margin that was released by closing the short. The adjusted value in
    /// shares that underlies the bonds is given by:
    ///
    /// ```math
    /// P_{\text{adj}} = \left( \frac{c1}{c_0 \cdot c} + \phi_f \right)
    /// \cdot \frac{\Delta y}{c}
    /// ```
    ///
    /// and the short proceeds are given by:
    ///
    /// ```math
    /// \text{proceeds} =
    /// \begin{cases}
    ///     P_\text{adj} - dz,
    ///       & \text{if } P_{\text{adj}} > dz \\
    ///     0,              & \text{otherwise}
    /// \end{cases}
    /// ```
    ///
    /// where `$dz$` is the pool share adjustment. In the event that the
    /// interest is negative and outweighs the trading profits and margin
    /// released, the short's proceeds are marked to zero.
    pub fn calculate_short_proceeds_up(
        &self,
        bond_amount: FixedPoint<U256>,
        share_amount: FixedPoint<U256>,
        open_vault_share_price: FixedPoint<U256>,
        close_vault_share_price: FixedPoint<U256>,
    ) -> FixedPoint<U256> {
        // NOTE: Round up to overestimate the short proceeds.
        //
        // The total value is the amount of shares that underlies the bonds that
        // were shorted. The bonds start by being backed 1:1 with base, and the
        // total value takes into account all of the interest that has accrued
        // since the short was opened.
        //
        // total_value = (c1 / (c0 * c)) * dy
        let mut total_value = bond_amount
            .mul_div_up(close_vault_share_price, open_vault_share_price)
            .div_up(self.vault_share_price());

        // NOTE: Round up to overestimate the short proceeds.
        //
        // We increase the total value by the flat fee amount, because it is
        // included in the total amount of capital underlying the short.
        total_value += bond_amount.mul_div_up(self.flat_fee(), self.vault_share_price());

        // If the interest is more negative than the trading profits and margin
        // released, then the short proceeds are marked to zero. Otherwise, we
        // calculate the proceeds as the sum of the trading proceeds, the
        // interest proceeds, and the margin released.
        if total_value > share_amount {
            // proceeds = (c1 / c0 * c) * dy - dz
            total_value - share_amount
        } else {
            fixed!(0)
        }
    }

    /// Calculates the proceeds in shares of closing a short position. This
    /// takes into account the trading profits, the interest that was
    /// earned by the short, the flat fee the short pays, and the amount of
    /// margin that was released by closing the short. The adjusted value in
    /// shares that underlies the bonds is given by:
    ///
    /// ```math
    /// P_{\text{adj}} = \left( \frac{c1}{c_0 \cdot c} + \phi_f \right)
    /// \cdot \frac{\Delta y}{c}
    /// ```
    ///
    /// and the short proceeds are given by:
    ///
    /// ```math
    /// \text{proceeds} =
    /// \begin{cases}
    ///     P_\text{adj} - dz
    ///       & \text{if } P_{\text{adj}} > dz \\
    ///     0,              & \text{otherwise}
    /// \end{cases}
    /// ```
    ///
    /// where `$dz$` is the pool share adjustment. In the event that the
    /// interest is negative and outweighs the trading profits and margin
    /// released, the short's proceeds are marked to zero.
    fn calculate_short_proceeds_down(
        &self,
        bond_amount: FixedPoint<U256>,
        share_amount: FixedPoint<U256>,
        open_vault_share_price: FixedPoint<U256>,
        close_vault_share_price: FixedPoint<U256>,
    ) -> FixedPoint<U256> {
        // NOTE: Round down to underestimate the short proceeds.
        //
        // The total value is the amount of shares that underlies the bonds that
        // were shorted. The bonds start by being backed 1:1 with base, and the
        // total value takes into account all of the interest that has accrued
        // since the short was opened.
        //
        // total_value = (c1 / (c0 * c)) * dy
        let mut total_value = bond_amount
            .mul_div_down(close_vault_share_price, open_vault_share_price)
            .div_down(self.vault_share_price());

        // NOTE: Round down to underestimate the short proceeds.
        //
        // We increase the total value by the flat fee amount, because it is
        // included in the total amount of capital underlying the short.
        total_value += bond_amount.mul_div_down(self.flat_fee(), self.vault_share_price());

        // If the interest is more negative than the trading profits and margin
        // released, then the short proceeds are marked to zero. Otherwise, we
        // calculate the proceeds as the sum of the trading proceeds, the
        // interest proceeds, and the margin released.
        if total_value > share_amount {
            // proceeds = (c1 / c0 * c) * dy - dz
            total_value - share_amount
        } else {
            fixed!(0)
        }
    }

    /// Since traders pay a curve fee when they close shorts on Hyperdrive,
    /// it is possible for traders to receive a negative interest rate even
    /// if curve's spot price is less than or equal to 1.
    //
    /// Given the curve fee `$\phi_c$` and the starting spot price `$p_0$`, the
    /// maximum spot price is given by:
    ///
    /// ```math
    /// p_{\text{max}} = 1 - \phi_c \cdot (1 - p_0)
    /// ```
    fn calculate_close_short_max_spot_price(&self) -> Result<FixedPoint<U256>> {
        Ok(fixed!(1e18)
            - self
                .curve_fee()
                .mul_up(fixed!(1e18) - self.calculate_spot_price()?))
    }

    /// Calculates the amount of shares the trader will receive after fees for closing a short
    pub fn calculate_close_short<F: Into<FixedPoint<U256>>>(
        &self,
        bond_amount: F,
        open_vault_share_price: F,
        close_vault_share_price: F,
        maturity_time: U256,
        current_time: U256,
    ) -> Result<FixedPoint<U256>> {
        let bond_amount = bond_amount.into();
        let open_vault_share_price = open_vault_share_price.into();
        let close_vault_share_price = close_vault_share_price.into();

        if bond_amount < self.config.minimum_transaction_amount.into() {
            return Err(eyre!("MinimumTransactionAmount: Input amount too low"));
        }

        // Ensure that the trader didn't purchase bonds at a negative interest
        // rate after accounting for fees.
        let share_curve_delta =
            self.calculate_close_short_curve(bond_amount, maturity_time, current_time)?;
        let bond_reserves_delta = bond_amount
            .mul_up(self.calculate_normalized_time_remaining(maturity_time, current_time));
        let short_curve_spot_price = {
            let mut state: State = self.clone();
            state.info.bond_reserves -= bond_reserves_delta.into();
            state.info.share_reserves += share_curve_delta.into();
            state.calculate_spot_price()?
        };
        let max_spot_price = self.calculate_close_short_max_spot_price()?;
        if short_curve_spot_price > max_spot_price {
            return Err(eyre!("InsufficientLiquidity: Negative Interest"));
        }

        // Ensure ending spot price is less than one
        let curve_fee = self.close_short_curve_fee(bond_amount, maturity_time, current_time)?;
        let share_curve_delta_with_fees = share_curve_delta + curve_fee
            - self.close_short_governance_fee(
                bond_amount,
                maturity_time,
                current_time,
                Some(curve_fee),
            )?;
        let share_curve_delta_with_fees_spot_price = {
            let mut state: State = self.clone();
            state.info.bond_reserves -= bond_reserves_delta.into();
            state.info.share_reserves += share_curve_delta_with_fees.into();
            state.calculate_spot_price()?
        };
        if share_curve_delta_with_fees_spot_price > fixed!(1e18) {
            return Err(eyre!("InsufficientLiquidity: Negative Interest"));
        }

        // Now calculate short proceeds
        // TODO we've already calculated a couple of internal variables needed by this function,
        // rework to avoid recalculating the curve and bond reserves
        // https://github.com/delvtech/hyperdrive/issues/943
        let share_reserves_delta =
            self.calculate_close_short_flat_plus_curve(bond_amount, maturity_time, current_time)?;
        // Calculate flat + curve and subtract the fees from the trade.
        let share_reserves_delta_with_fees = share_reserves_delta
            + self.close_short_curve_fee(bond_amount, maturity_time, current_time)?
            + self.close_short_flat_fee(bond_amount, maturity_time, current_time);

        // Calculate the share proceeds owed to the short.
        Ok(self.calculate_short_proceeds_down(
            bond_amount,
            share_reserves_delta_with_fees,
            open_vault_share_price,
            close_vault_share_price,
        ))
    }

    /// Calculates the amount of shares the trader will receive after fees for closing a short
    /// assuming no slippage, market impact, or liquidity constraints. This is the spot valuation.
    ///
    /// To get this value, we use the same calculations as `calculate_close_short`, except
    /// for the curve part of the trade, where we replace `calculate_shares_in_given_bonds_out`
    /// for the following:
    ///
    /// `$\text{curve} = \tfrac{\Delta y}{c} \cdot p \cdot t$`
    ///
    /// `$\Delta y = \text{bond_amount}$`
    /// `$c = \text{close_vault_share_price (current if non-matured)}$`
    pub fn calculate_market_value_short<F: Into<FixedPoint<U256>>>(
        &self,
        bond_amount: F,
        open_vault_share_price: F,
        close_vault_share_price: F,
        maturity_time: U256,
        current_time: U256,
    ) -> Result<FixedPoint<U256>> {
        let bond_amount = bond_amount.into();
        let open_vault_share_price = open_vault_share_price.into();
        let close_vault_share_price = close_vault_share_price.into();

        let spot_price = self.calculate_spot_price()?;
        if spot_price > fixed!(1e18) {
            return Err(eyre!("Negative fixed interest!"));
        }

        // get the time remaining
        let time_remaining = self.calculate_normalized_time_remaining(maturity_time, current_time);

        // calculate_close_short_flat = dy * (1 - t) / c
        let flat = self.calculate_close_short_flat(bond_amount, maturity_time, current_time);

        // curve = dy * p * t / c
        let curve = bond_amount
            .mul_up(spot_price)
            .mul_up(time_remaining)
            .div_up(self.vault_share_price());
        let flat_fees_paid = self.close_short_flat_fee(bond_amount, maturity_time, current_time);
        let curve_fees_paid =
            self.close_short_curve_fee(bond_amount, maturity_time, current_time)?;

        // calculate share_reserves_delta to use it for calculate_short_proceeds_down.
        let share_reserves_delta = flat + curve;
        let share_reserves_delta_with_fees =
            share_reserves_delta + flat_fees_paid + curve_fees_paid;

        // Calculate the share proceeds owed to the short.
        // calculate_short_proceeds_down also takes the yield accrued into account
        Ok(self.calculate_short_proceeds_down(
            bond_amount,
            share_reserves_delta_with_fees,
            open_vault_share_price,
            close_vault_share_price,
        ))
    }
}

#[cfg(test)]
mod tests {
    use std::panic;

    use ethers::types::I256;
    use fixedpointmath::int256;
    use hyperdrive_test_utils::{chain::TestChain, constants::FAST_FUZZ_RUNS};
    use rand::{thread_rng, Rng};

    use super::*;

    #[tokio::test]
    async fn fuzz_sol_calculate_short_proceeds_up() -> Result<()> {
        let chain = TestChain::new().await?;

        // Fuzz the rust and solidity implementations against each other.
        let mut rng = thread_rng();
        for _ in 0..*FAST_FUZZ_RUNS {
            let state = rng.gen::<State>();
            let bond_amount = rng.gen_range(fixed!(0)..=state.bond_reserves());
            let share_amount = rng.gen_range(fixed!(0)..=bond_amount);
            let open_vault_share_price = rng.gen_range(fixed!(0)..=state.vault_share_price());
            let actual = panic::catch_unwind(|| {
                state.calculate_short_proceeds_up(
                    bond_amount,
                    share_amount,
                    open_vault_share_price,
                    state.vault_share_price(),
                )
            });
            match chain
                .mock_hyperdrive_math()
                .calculate_short_proceeds_up(
                    bond_amount.into(),
                    share_amount.into(),
                    open_vault_share_price.into(),
                    state.vault_share_price().into(),
                    state.vault_share_price().into(),
                    state.flat_fee().into(),
                )
                .call()
                .await
            {
                Ok(expected) => assert_eq!(actual.unwrap(), FixedPoint::from(expected)),
                Err(_) => assert!(actual.is_err()),
            }
        }

        Ok(())
    }

    #[tokio::test]
    async fn fuzz_sol_calculate_short_proceeds_down() -> Result<()> {
        let chain = TestChain::new().await?;

        // Fuzz the rust and solidity implementations against each other.
        let mut rng = thread_rng();
        for _ in 0..*FAST_FUZZ_RUNS {
            let state = rng.gen::<State>();
            let bond_amount = rng.gen_range(fixed!(0)..=state.bond_reserves());
            let share_amount = rng.gen_range(fixed!(0)..=bond_amount);
            let open_vault_share_price = rng.gen_range(fixed!(0)..=state.vault_share_price());
            let actual = panic::catch_unwind(|| {
                state.calculate_short_proceeds_down(
                    bond_amount,
                    share_amount,
                    open_vault_share_price,
                    state.vault_share_price(),
                )
            });
            match chain
                .mock_hyperdrive_math()
                .calculate_short_proceeds_down(
                    bond_amount.into(),
                    share_amount.into(),
                    open_vault_share_price.into(),
                    state.vault_share_price().into(),
                    state.vault_share_price().into(),
                    state.flat_fee().into(),
                )
                .call()
                .await
            {
                Ok(expected) => assert_eq!(actual.unwrap(), FixedPoint::from(expected)),
                Err(_) => assert!(actual.is_err()),
            }
        }

        Ok(())
    }

    #[tokio::test]
    async fn fuzz_sol_calculate_close_short_flat_plus_curve() -> Result<()> {
        let chain = TestChain::new().await?;

        // Fuzz the rust and solidity implementations against each other.
        let mut rng = thread_rng();
        for _ in 0..*FAST_FUZZ_RUNS {
            let state = rng.gen::<State>();
            let in_ = rng.gen_range(fixed!(0)..=state.bond_reserves());
            let maturity_time = state.position_duration();
            let current_time = rng.gen_range(fixed!(0)..=maturity_time);
            let actual = panic::catch_unwind(|| {
                state.calculate_close_short_flat_plus_curve(
                    in_,
                    maturity_time.into(),
                    current_time.into(),
                )
            });

            let normalized_time_remaining = state
                .calculate_normalized_time_remaining(maturity_time.into(), current_time.into());
            match chain
                .mock_hyperdrive_math()
                .calculate_close_short(
                    state.effective_share_reserves()?.into(),
                    state.bond_reserves().into(),
                    in_.into(),
                    normalized_time_remaining.into(),
                    state.t().into(),
                    state.c().into(),
                    state.mu().into(),
                )
                .call()
                .await
            {
                Ok(expected) => assert_eq!(actual.unwrap().unwrap(), FixedPoint::from(expected.2)),
                Err(_) => assert!(actual.is_err() || actual.unwrap().is_err()),
            }
        }

        Ok(())
    }

    // Tests close short with an amount smaller than the minimum.
    #[tokio::test]
    async fn test_close_short_min_txn_amount() -> Result<()> {
        let mut rng = thread_rng();
        let state = rng.gen::<State>();
        let result = state.calculate_close_short(
            (state.config.minimum_transaction_amount - 10).into(),
            state.calculate_spot_price()?,
            state.vault_share_price(),
            0.into(),
            0.into(),
        );
        assert!(result.is_err());
        Ok(())
    }

    // Tests market valuation against hyperdrive valuation when closing a short.
    // This function aims to give an estimated position value without considering
    // slippage, market impact, or any other liquidity constraints. As such, its
    // divergence with the hyperdrive valuation will grow under low liquidity
    // conditions. For this reason, we relax the error tolerance in such cases.
    #[tokio::test]
    async fn test_calculate_market_value_short() -> Result<()> {
        let tolerance = int256!(1e12); // 0.000001

        // Fuzz the spot valuation and hyperdrive valuation against each other.
        let mut rng = thread_rng();
        for _ in 0..*FAST_FUZZ_RUNS {
            let mut scaled_tolerance = tolerance;

            let state = rng.gen::<State>();
            let bond_amount = state.minimum_transaction_amount();
            let open_vault_share_price = rng.gen_range(fixed!(0.5e18)..=fixed!(2.5e18));
            let maturity_time = U256::try_from(state.position_duration())?;
            let current_time = rng.gen_range(fixed!(0)..=FixedPoint::from(maturity_time));

            // When the reserves ratio is too small, the market impact makes the error between
            // the valuations larger, so we scale the test's tolerance up to make up for it,
            // since this is meant to be an estimate that ignores liquidity constraints.
            let reserves_ratio = state.effective_share_reserves()? / state.bond_reserves();
            if reserves_ratio < fixed!(1e12) {
                scaled_tolerance *= int256!(100);
            } else if reserves_ratio < fixed!(1e14) {
                scaled_tolerance *= int256!(10);
            }

            let hyperdrive_valuation = state.calculate_close_short(
                bond_amount,
                open_vault_share_price,
                state.vault_share_price(),
                maturity_time.into(),
                current_time.into(),
            )?;

            let spot_valuation = state.calculate_market_value_short(
                bond_amount,
                open_vault_share_price,
                state.vault_share_price(),
                maturity_time.into(),
                current_time.into(),
            )?;

            let error = if spot_valuation >= hyperdrive_valuation {
                I256::try_from(spot_valuation - hyperdrive_valuation)?
            } else {
                I256::try_from(hyperdrive_valuation - spot_valuation)?
            };

            assert!(
                error < scaled_tolerance,
                "error {:?} exceeds tolerance of {}",
                error,
                scaled_tolerance
            );
        }

        Ok(())
    }
}