1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! Bitfield module. Exposes `{data, tree, index}` internally. Serializable to
//! disk.
//!
//! TODO(yw): Document the magic mask format. (Will help to look at binary
//! versions of the numbers).
//!
//! TODO(yw): Document the use cases for this module, especially when opposed to
//! `sparse_bitfield`.
//!
//! NOTE(yw): in the JavaScript version, this code uses a single pager under the
//! hood. Because of Rust's borrow rules, that would be tricky to pull off for
//! us. So instead we've chosen to create three separate instances, with three
//! separate pagers powering it.
//! This means that when serializing to disk, we need to weave the contents of
//! all three of the pagers into a single instance. And when restoring it from
//! disk, we must do so again.
//! We need to make sure the performance impact of this stays well within
//! bounds.

mod masks;

use self::masks::Masks;
use flat_tree::{self, Iterator as FlatIterator};
pub use sparse_bitfield::{Bitfield as SparseBitfield, Change};
use std::ops::Range;

/// Bitfield with `{data, tree, index} fields.`
#[derive(Debug)]
pub struct Bitfield {
  data: SparseBitfield,
  /// FIXME: SLEEP protocol tree field.
  pub tree: SparseBitfield,
  index: SparseBitfield,
  page_len: usize,
  length: usize,
  masks: Masks,
  iterator: FlatIterator,
}

impl Default for Bitfield {
  fn default() -> Self {
    Bitfield::new()
  }
}

impl Bitfield {
  /// Create a new instance.
  pub fn new() -> Self {
    Self {
      data: SparseBitfield::new(1024),
      tree: SparseBitfield::new(2048),
      index: SparseBitfield::new(256),
      page_len: 3328,
      length: 0,
      masks: Masks::new(),
      iterator: FlatIterator::new(0),
    }
  }

  /// Set a value at an index.
  pub fn set(&mut self, index: usize, value: bool) -> Change {
    let o = mask_8b(index);
    let index = (index - o) / 8;

    let value = if value {
      self.data.get_byte(index) | 128 >> o
    } else {
      self.data.get_byte(index) & self.masks.data_update[o]
    };

    if self.data.set_byte(index, value).is_unchanged() {
      return Change::Unchanged;
    }

    self.length = self.data.len();
    self.set_index(index, value);
    Change::Changed
  }

  /// Get a value at a position in the bitfield.
  pub fn get(&mut self, index: usize) -> bool {
    self.data.get(index)
  }

  /// Calculate the total for the whole data.
  pub fn total(&mut self) -> u8 {
    let len = self.data.len();
    self.total_with_range(0..len)
  }

  /// Calculate the total of ... TODO(yw)
  pub fn total_with_start(&mut self, start: usize) -> u8 {
    let len = self.data.len();
    self.total_with_range(start..len)
  }

  /// Calculate the total of ... TODO(yw)
  pub fn total_with_range(&mut self, range: Range<usize>) -> u8 {
    let start = range.start;
    let end = range.end;

    if end < start {
      return 0;
    }

    if end > self.data.len() {
      self.expand(end);
    }

    let o = mask_8b(start);
    let e = mask_8b(end);

    let pos = (start - o) / 8;
    let last = (end - e) / 8;

    let left_mask = if o == 0 {
      255
    } else {
      255 - self.masks.data_iterate[o - 1]
    };

    let right_mask = if e == 0 {
      0
    } else {
      self.masks.data_iterate[e - 1]
    };

    let byte = self.data.get_byte(pos);
    if pos == last {
      let index = (byte & left_mask & right_mask) as usize;
      return self.masks.total_1_bits[index];
    }
    let index = (byte & left_mask) as usize;
    let mut total = self.masks.total_1_bits[index];

    for i in pos + 1..last {
      let index = self.data.get_byte(i) as usize;
      total += self.masks.total_1_bits[index];
    }

    let index: usize = self.data.get_byte(last) as usize & right_mask as usize;
    total + self.masks.total_1_bits[index]
  }

  /// Set a value at index.
  ///
  ///```txt
  ///                    (a + b | c + d | e + f | g + h)
  /// -> (a | b | c | d)                                (e | f | g | h)
  ///```
  ///
  /// NOTE(yw): lots of magic values going on; I have no idea what we're doing
  /// here.
  fn set_index(&mut self, mut index: usize, value: u8) -> Change {
    let o = index & 3;
    index = (index - o) / 4;

    let start = tree_index(index);

    let left = self.index.get_byte(start) & self.masks.index_update[o];
    let right = get_index_value(value) >> tree_index(o);
    let mut byte = left | right;
    let len = self.index.len();
    let max_len = self.page_len * 256;

    self.iterator.seek(start);

    while self.iterator.index() < max_len
      && self
        .index
        .set_byte(self.iterator.index(), byte)
        .is_changed()
    {
      if self.iterator.is_left() {
        let index: usize = self.index.get_byte(self.iterator.sibling()).into();
        byte = self.masks.map_parent_left[byte as usize]
          | self.masks.map_parent_right[index];
      } else {
        let index: usize = self
          .index
          .get_byte(self.iterator.sibling()) // FIXME: out of bounds read
          .into();
        byte = self.masks.map_parent_right[byte as usize]
          | self.masks.map_parent_left[index];
      }
      self.iterator.parent();
    }

    if len != self.index.len() {
      self.expand(len);
    }

    if self.iterator.index() == start {
      Change::Unchanged
    } else {
      Change::Changed
    }
  }

  fn expand(&mut self, len: usize) {
    let mut roots = vec![]; // FIXME: alloc.
    flat_tree::full_roots(tree_index(len), &mut roots);
    let bf = &mut self.index;
    let ite = &mut self.iterator;
    let masks = &self.masks;
    let mut byte;

    for root in roots {
      ite.seek(root);
      byte = bf.get_byte(ite.index());

      loop {
        if ite.is_left() {
          let index = bf.get_byte(ite.sibling()) as usize;
          byte = masks.map_parent_left[byte as usize]
            | masks.map_parent_right[index];
        } else {
          let index = bf.get_byte(ite.sibling()) as usize;
          byte = masks.map_parent_right[byte as usize]
            | masks.map_parent_left[index];
        }

        if set_byte_no_alloc(bf, ite.parent(), byte).is_unchanged() {
          break;
        }
      }
    }
  }
}

// NOTE: can we move this into `sparse_bitfield`?
fn set_byte_no_alloc(
  bf: &mut SparseBitfield,
  index: usize,
  byte: u8,
) -> Change {
  if 8 * index >= bf.len() {
    return Change::Unchanged;
  }
  bf.set_byte(index, byte)
}

#[inline]
fn get_index_value(index: u8) -> u8 {
  match index {
    255 => 192,
    0 => 0,
    _ => 64,
  }
}

#[inline]
fn mask_8b(num: usize) -> usize {
  num & 7
}

/// Convert the index to the index in the tree.
#[inline]
fn tree_index(index: usize) -> usize {
  2 * index
}