fix/
lib.rs

1//! Fixed-point number types.
2//!
3//! # What?
4//!
5//! Fixed-point is a number representation with a fixed number of digits before and after the radix
6//! point. This means that range is static rather than dynamic, as with floating-point. It also
7//! means that they can be represented as integers, with their scale tracked by the type system.
8//!
9//! In this library, the scale of a `Fix` is represented as two type-level integers: the base and
10//! the exponent. Any underlying integer primitive can be used to store the number. Arithmetic can
11//! be performed on these numbers, and they can be converted to different scale exponents.
12//!
13//! # Why?
14//!
15//! A classic example: let's sum 10 cents and 20 cents using floating-point. We expect a result of
16//! 30 cents.
17//!
18//! ```should_panic
19//! assert_eq!(0.30, 0.10 + 0.20);
20//! ```
21//!
22//! Wrong! We get an extra forty quintillionths of a dollar.
23//!
24//! ```text
25//! assertion failed: `(left == right)` (left: `0.3`, right: `0.30000000000000004`)'
26//! ```
27//!
28//! This is due to neither 0.1 nor 0.2 being exactly representable in base-2, just as a third can't
29//! be represented exactly in base-10. With `Fix`, we can choose the precision we want in base-10,
30//! at compile-time. In this case, hundredths of a dollar will do.
31//!
32//! ```
33//! use fix::aliases::si::Centi; // Fix<_, U10, N2>
34//! assert_eq!(Centi::new(0_30), Centi::new(0_10) + Centi::new(0_20));
35//! ```
36//!
37//! But decimal is inefficient for binary computers, right? Multiplying and dividing by 10 is
38//! slower than bit-shifting, but that's only needed when _moving_ the point. With `Fix`, this is
39//! only done explicitly with the `convert` method.
40//!
41//! ```
42//! use fix::aliases::si::{Centi, Milli};
43//! assert_eq!(Milli::new(0_300), Centi::new(0_30).convert());
44//! ```
45//!
46//! We can also choose a base-2 scale just as easily.
47//!
48//! ```
49//! use fix::aliases::iec::{Kibi, Mebi};
50//! assert_eq!(Kibi::new(1024), Mebi::new(1).convert());
51//! ```
52//!
53//! It's also worth noting that the type-level scale changes when multiplying and dividing,
54//! avoiding any implicit conversion.
55//!
56//! ```
57//! use fix::aliases::iec::{Gibi, Kibi, Mebi};
58//! assert_eq!(Mebi::new(3), Gibi::new(6) / Kibi::new(2));
59//! ```
60//!
61//! # `no_std`
62//!
63//! This crate is `no_std`.
64
65//#![no_std]
66
67pub extern crate muldiv;
68pub extern crate num_traits;
69pub extern crate typenum;
70
71pub mod aliases;
72pub mod fix_value;
73pub mod prelude;
74pub mod util;
75
76use core::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
77use core::fmt::{Debug, Error, Formatter};
78use core::hash::{Hash, Hasher};
79use core::marker::PhantomData;
80use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
81use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
82
83use muldiv::MulDiv;
84use num_traits::{CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, SaturatingAdd, SaturatingSub};
85use paste::paste;
86use typenum::consts::Z0;
87use typenum::marker_traits::{Bit, Integer, Unsigned};
88use typenum::operator_aliases::{AbsVal, Diff, Le, Sum};
89use typenum::type_operators::{Abs, IsLess};
90
91/// Fixed-point number representing _Bits × Base <sup>Exp</sup>_.
92///
93/// - `Bits` is an integer primitive type, or any type which can be created from a type-level
94///   integer and exponentiated.
95/// - `Base` is an [`Unsigned`] type-level integer.
96/// - `Exp` is a signed type-level [`Integer`].
97///
98/// [`Unsigned`]: ../typenum/marker_traits/trait.Unsigned.html
99/// [`Integer`]: ../typenum/marker_traits/trait.Integer.html
100///
101/// # Summary of operations
102///
103/// Lower case variables represent values of _Bits_. Upper case _B_ and _E_ represent type-level
104/// integers _Base_ and _Exp_, respectively.
105///
106/// - _−(x B<sup>E</sup>) = (−x) B<sup>E</sup>_
107/// - _(x B<sup>E</sup>) + (y B<sup>E</sup>) = (x + y) B<sup>E</sup>_
108/// - _(x B<sup>E</sup>) − (y B<sup>E</sup>) = (x − y) B<sup>E</sup>_
109/// - _(x B<sup>E<sub>x</sub></sup>) × (y B<sup>E<sub>y</sub></sup>) =
110///   (x × y) B<sup>E<sub>x</sub> + E<sub>y</sub></sup>_
111/// - _(x B<sup>E<sub>x</sub></sup>) ÷ (y B<sup>E<sub>y</sub></sup>) =
112///   (x ÷ y) B<sup>E<sub>x</sub> − E<sub>y</sub></sup>_
113/// - _(x B<sup>E<sub>x</sub></sup>) % (y B<sup>E<sub>y</sub></sup>) =
114///   (x % y) B<sup>E<sub>x</sub></sup>_
115/// - _(x B<sup>E</sup>) × y = (x × y) B<sup>E</sup>_
116/// - _(x B<sup>E</sup>) ÷ y = (x ÷ y) B<sup>E</sup>_
117/// - _(x B<sup>E</sup>) % y = (x % y) B<sup>E</sup>_
118pub struct Fix<Bits, Base, Exp> {
119    /// The underlying integer.
120    pub bits: Bits,
121
122    marker: PhantomData<(Base, Exp)>,
123}
124
125impl<Bits, Base, Exp> Fix<Bits, Base, Exp> {
126    /// Creates a number.
127    ///
128    /// # Examples
129    ///
130    /// ```
131    /// use fix::aliases::si::{Kilo, Milli};
132    /// Milli::new(25); // 0.025
133    /// Kilo::new(25); // 25 000
134    /// ```
135    pub fn new(bits: Bits) -> Self {
136        Fix {
137            bits,
138            marker: PhantomData,
139        }
140    }
141
142    /// Like `Self::new`, but creates numbers in the constant context.
143    pub const fn constant(bits: Bits) -> Self {
144        Fix {
145            bits,
146            marker: PhantomData,
147        }
148    }
149
150    /// Converts to another _Exp_.
151    ///
152    /// # Examples
153    ///
154    /// ```
155    /// use fix::aliases::si::{Kilo, Milli};
156    /// let kilo = Kilo::new(5);
157    /// let milli = Milli::new(5_000_000);
158    /// assert_eq!(kilo, milli.convert());
159    /// assert_eq!(milli, kilo.convert());
160    /// ```
161    pub fn convert<ToExp>(self) -> Fix<Bits, Base, ToExp>
162    where
163        Bits: FromUnsigned + Pow + Mul<Output = Bits> + Div<Output = Bits>,
164        Base: Unsigned,
165        Exp: Sub<ToExp>,
166        Diff<Exp, ToExp>: Abs + IsLess<Z0>,
167        AbsVal<Diff<Exp, ToExp>>: Integer,
168    {
169        let base = Bits::from_unsigned::<Base>();
170        let diff = AbsVal::<Diff<Exp, ToExp>>::to_i32();
171        let inverse = Le::<Diff<Exp, ToExp>, Z0>::to_bool();
172
173        // FIXME: Would like to do this with typenum::Pow, but that
174        // seems to result in overflow evaluating requirements.
175        let ratio = base.pow(diff.unsigned_abs());
176
177        if inverse {
178            Fix::new(self.bits / ratio)
179        } else {
180            Fix::new(self.bits * ratio)
181        }
182    }
183
184    /// Converts the underlying bits to a wider type.
185    ///
186    /// # Examples
187    ///
188    /// ```
189    /// use fix::aliases::si::Milli;
190    /// let one = Milli::new(16899u64);
191    /// let mapped = one.widen::<u128>();
192    /// assert_eq!(mapped, Milli::new(16899u128));
193    /// ```
194    ///
195    pub fn widen<ToBits>(self) -> Fix<ToBits, Base, Exp>
196    where
197        ToBits: From<Bits>,
198    {
199        Fix::<ToBits, Base, Exp>::new(self.bits.into())
200    }
201
202    /// Attempts to converts underlying bits to a narrower type.
203    /// Returns `None` if conversion fails.
204    ///
205    /// # Examples
206    ///
207    /// ```
208    /// use fix::aliases::si::Milli;
209    /// let one = Milli::new(16899u128);
210    /// let mapped = one.narrow::<u64>();
211    /// assert_eq!(mapped, Some(Milli::new(16899u64)));
212    /// ```
213    ///
214    pub fn narrow<ToBits>(self) -> Option<Fix<ToBits, Base, Exp>>
215    where
216        ToBits: TryFrom<Bits>,
217    {
218        self.bits.try_into().ok().map(Fix::<ToBits, Base, Exp>::new)
219    }
220}
221
222/// Conversion from type-level [`Unsigned`] integers.
223///
224/// Enables being generic over types which can be created from type-level integers. It should
225/// probably be in `typenum` itself...
226///
227/// [`Unsigned`]: ../typenum/marker_traits/trait.Unsigned.html
228pub trait FromUnsigned {
229    /// Creates a value from a type.
230    fn from_unsigned<U>() -> Self
231    where
232        U: Unsigned;
233}
234
235macro_rules! impl_from_unsigned {
236    ($ty:ident) => {
237        impl FromUnsigned for $ty {
238            fn from_unsigned<U: Unsigned>() -> Self {
239                paste! { U::[<to_$ty>]() }
240            }
241        }
242    };
243}
244
245impl_from_unsigned!(u8);
246impl_from_unsigned!(u16);
247impl_from_unsigned!(u32);
248impl_from_unsigned!(u64);
249impl_from_unsigned!(u128);
250impl_from_unsigned!(usize);
251impl_from_unsigned!(i8);
252impl_from_unsigned!(i16);
253impl_from_unsigned!(i32);
254impl_from_unsigned!(i64);
255impl_from_unsigned!(i128);
256impl_from_unsigned!(isize);
257
258/// Exponentiation.
259///
260/// Enables being generic over integers which can be exponentiated. Why must we do this, standard
261/// library?
262pub trait Pow {
263    /// Raises `self` to the power of `exp`.
264    #[must_use]
265    fn pow(self, exp: u32) -> Self;
266}
267
268macro_rules! impl_pow {
269    ($ty:ident) => {
270        impl Pow for $ty {
271            #[inline]
272            fn pow(self, exp: u32) -> Self {
273                self.pow(exp)
274            }
275        }
276    };
277}
278
279impl_pow!(u8);
280impl_pow!(u16);
281impl_pow!(u32);
282impl_pow!(u64);
283impl_pow!(u128);
284impl_pow!(usize);
285impl_pow!(i8);
286impl_pow!(i16);
287impl_pow!(i32);
288impl_pow!(i64);
289impl_pow!(i128);
290impl_pow!(isize);
291
292// The usual traits.
293
294impl<Bits, Base, Exp> Copy for Fix<Bits, Base, Exp> where Bits: Copy {}
295
296impl<Bits, Base, Exp> Clone for Fix<Bits, Base, Exp>
297where
298    Bits: Clone,
299{
300    fn clone(&self) -> Self {
301        Self::new(self.bits.clone())
302    }
303}
304
305impl<Bits, Base, Exp> Default for Fix<Bits, Base, Exp>
306where
307    Bits: Default,
308{
309    fn default() -> Self {
310        Self::new(Bits::default())
311    }
312}
313
314impl<Bits, Base, Exp> Hash for Fix<Bits, Base, Exp>
315where
316    Bits: Hash,
317{
318    fn hash<H>(&self, state: &mut H)
319    where
320        H: Hasher,
321    {
322        self.bits.hash(state);
323    }
324}
325
326impl<Bits, Base, Exp> Debug for Fix<Bits, Base, Exp>
327where
328    Bits: Debug,
329    Base: Unsigned,
330    Exp: Integer,
331{
332    fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
333        write!(f, "{:?}x{}^{}", self.bits, Base::to_u64(), Exp::to_i64())
334    }
335}
336
337// Comparison.
338
339impl<Bits, Base, Exp> Eq for Fix<Bits, Base, Exp> where Bits: Eq {}
340impl<Bits, Base, Exp> PartialEq for Fix<Bits, Base, Exp>
341where
342    Bits: PartialEq,
343{
344    fn eq(&self, rhs: &Self) -> bool {
345        self.bits == rhs.bits
346    }
347}
348
349impl<Bits, Base, Exp> PartialOrd for Fix<Bits, Base, Exp>
350where
351    Bits: PartialOrd,
352{
353    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
354        self.bits.partial_cmp(&rhs.bits)
355    }
356}
357
358impl<Bits, Base, Exp> Ord for Fix<Bits, Base, Exp>
359where
360    Bits: Ord,
361{
362    fn cmp(&self, rhs: &Self) -> Ordering {
363        self.bits.cmp(&rhs.bits)
364    }
365}
366
367// Arithmetic.
368
369impl<Bits, Base, Exp> Neg for Fix<Bits, Base, Exp>
370where
371    Bits: Neg<Output = Bits>,
372{
373    type Output = Self;
374    fn neg(self) -> Self {
375        Self::new(-self.bits)
376    }
377}
378
379impl<Bits, Base, Exp> Add for Fix<Bits, Base, Exp>
380where
381    Bits: Add<Output = Bits>,
382{
383    type Output = Self;
384    fn add(self, rhs: Self) -> Self {
385        Self::new(self.bits + rhs.bits)
386    }
387}
388
389impl<Bits, Base, Exp> Sub for Fix<Bits, Base, Exp>
390where
391    Bits: Sub<Output = Bits>,
392{
393    type Output = Self;
394    fn sub(self, rhs: Self) -> Self {
395        Self::new(self.bits - rhs.bits)
396    }
397}
398
399impl<Bits, Base, LExp, RExp> Mul<Fix<Bits, Base, RExp>> for Fix<Bits, Base, LExp>
400where
401    Bits: Mul<Output = Bits>,
402    LExp: Add<RExp>,
403{
404    type Output = Fix<Bits, Base, Sum<LExp, RExp>>;
405    fn mul(self, rhs: Fix<Bits, Base, RExp>) -> Self::Output {
406        Self::Output::new(self.bits * rhs.bits)
407    }
408}
409
410impl<Bits, Base, LExp, RExp> Div<Fix<Bits, Base, RExp>> for Fix<Bits, Base, LExp>
411where
412    Bits: Div<Output = Bits>,
413    LExp: Sub<RExp>,
414{
415    type Output = Fix<Bits, Base, Diff<LExp, RExp>>;
416    fn div(self, rhs: Fix<Bits, Base, RExp>) -> Self::Output {
417        Self::Output::new(self.bits / rhs.bits)
418    }
419}
420
421impl<Bits, Base, Exp> Rem for Fix<Bits, Base, Exp>
422where
423    Bits: Rem<Output = Bits>,
424{
425    type Output = Self;
426    fn rem(self, rhs: Self) -> Self {
427        Self::new(self.bits % rhs.bits)
428    }
429}
430
431impl<Bits, Base, Exp> Mul<Bits> for Fix<Bits, Base, Exp>
432where
433    Bits: Mul<Output = Bits>,
434{
435    type Output = Self;
436    fn mul(self, rhs: Bits) -> Self {
437        Self::new(self.bits * rhs)
438    }
439}
440
441impl<Bits, Base, Exp> Div<Bits> for Fix<Bits, Base, Exp>
442where
443    Bits: Div<Output = Bits>,
444{
445    type Output = Self;
446    fn div(self, rhs: Bits) -> Self {
447        Self::new(self.bits / rhs)
448    }
449}
450
451impl<Bits, Base, Exp> Rem<Bits> for Fix<Bits, Base, Exp>
452where
453    Bits: Rem<Output = Bits>,
454{
455    type Output = Self;
456    fn rem(self, rhs: Bits) -> Self {
457        Self::new(self.bits % rhs)
458    }
459}
460
461impl<Bits, Base, Exp> AddAssign for Fix<Bits, Base, Exp>
462where
463    Bits: AddAssign,
464{
465    fn add_assign(&mut self, rhs: Self) {
466        self.bits += rhs.bits;
467    }
468}
469
470impl<Bits, Base, Exp> SubAssign for Fix<Bits, Base, Exp>
471where
472    Bits: SubAssign,
473{
474    fn sub_assign(&mut self, rhs: Self) {
475        self.bits -= rhs.bits;
476    }
477}
478
479impl<Bits, Base, Exp> MulAssign<Bits> for Fix<Bits, Base, Exp>
480where
481    Bits: MulAssign,
482{
483    fn mul_assign(&mut self, rhs: Bits) {
484        self.bits *= rhs;
485    }
486}
487
488impl<Bits, Base, Exp> DivAssign<Bits> for Fix<Bits, Base, Exp>
489where
490    Bits: DivAssign,
491{
492    fn div_assign(&mut self, rhs: Bits) {
493        self.bits /= rhs;
494    }
495}
496
497impl<Bits, Base, LExp, RExp> RemAssign<Fix<Bits, Base, RExp>> for Fix<Bits, Base, LExp>
498where
499    Bits: RemAssign,
500{
501    fn rem_assign(&mut self, rhs: Fix<Bits, Base, RExp>) {
502        self.bits %= rhs.bits;
503    }
504}
505
506impl<Bits, Base, Exp> RemAssign<Bits> for Fix<Bits, Base, Exp>
507where
508    Bits: RemAssign,
509{
510    fn rem_assign(&mut self, rhs: Bits) {
511        self.bits %= rhs;
512    }
513}
514
515// Checked arithmetic.
516
517impl<Bits, Base, Exp> CheckedAdd for Fix<Bits, Base, Exp>
518where
519    Bits: CheckedAdd,
520{
521    fn checked_add(&self, v: &Self) -> Option<Self> {
522        self.bits.checked_add(&v.bits).map(Self::new)
523    }
524}
525
526impl<Bits, Base, Exp> CheckedSub for Fix<Bits, Base, Exp>
527where
528    Bits: CheckedSub,
529{
530    fn checked_sub(&self, v: &Self) -> Option<Self> {
531        self.bits.checked_sub(&v.bits).map(Self::new)
532    }
533}
534
535impl<Bits, Base, Exp> Fix<Bits, Base, Exp>
536where
537    Self: CheckedSub,
538    Bits: Copy,
539{
540    #[must_use]
541    pub fn abs_diff(&self, v: &Self) -> Fix<Bits, Base, Exp> {
542        self.checked_sub(v).unwrap_or_else(|| *v - *self)
543    }
544}
545
546/// Adapts `CheckedMul` concept to this library with computed `Output` type.
547pub trait CheckedMulFix<Rhs> {
548    type Output;
549    fn checked_mul(&self, v: &Rhs) -> Option<Self::Output>;
550}
551
552impl<Bits, Base, LExp, RExp> CheckedMulFix<Fix<Bits, Base, RExp>> for Fix<Bits, Base, LExp>
553where
554    Bits: CheckedMul,
555    LExp: Add<RExp>,
556{
557    type Output = Fix<Bits, Base, Sum<LExp, RExp>>;
558    fn checked_mul(&self, v: &Fix<Bits, Base, RExp>) -> Option<Self::Output> {
559        self.bits.checked_mul(&v.bits).map(Self::Output::new)
560    }
561}
562
563/// Adapts `CheckedDiv` to this library with computed `Output` type.
564pub trait CheckedDivFix<Rhs> {
565    type Output;
566    fn checked_div(&self, v: &Rhs) -> Option<Self::Output>;
567}
568
569impl<Bits, Base, LExp, RExp> CheckedDivFix<Fix<Bits, Base, RExp>> for Fix<Bits, Base, LExp>
570where
571    Bits: CheckedDiv,
572    LExp: Sub<RExp>,
573{
574    type Output = Fix<Bits, Base, Diff<LExp, RExp>>;
575    fn checked_div(&self, v: &Fix<Bits, Base, RExp>) -> Option<Self::Output> {
576        self.bits.checked_div(&v.bits).map(Self::Output::new)
577    }
578}
579
580impl<Bits, Base, LExp, RExp> MulDiv<Fix<Bits, Base, RExp>> for Fix<Bits, Base, LExp>
581where
582    Bits: MulDiv,
583{
584    type Output = Fix<<Bits as MulDiv>::Output, Base, LExp>;
585    fn mul_div_ceil(
586        self,
587        num: Fix<Bits, Base, RExp>,
588        denom: Fix<Bits, Base, RExp>,
589    ) -> Option<Self::Output> {
590        self.bits
591            .mul_div_ceil(num.bits, denom.bits)
592            .map(Self::Output::new)
593    }
594    fn mul_div_floor(
595        self,
596        num: Fix<Bits, Base, RExp>,
597        denom: Fix<Bits, Base, RExp>,
598    ) -> Option<Self::Output> {
599        self.bits
600            .mul_div_floor(num.bits, denom.bits)
601            .map(Self::Output::new)
602    }
603    fn mul_div_round(
604        self,
605        num: Fix<Bits, Base, RExp>,
606        denom: Fix<Bits, Base, RExp>,
607    ) -> Option<Self::Output> {
608        self.bits
609            .mul_div_round(num.bits, denom.bits)
610            .map(Self::Output::new)
611    }
612}
613
614// Saturating arithmetic.
615
616impl<Bits, Base, Exp> SaturatingAdd for Fix<Bits, Base, Exp>
617where
618    Bits: SaturatingAdd,
619{
620    fn saturating_add(&self, v: &Self) -> Self {
621        Self::new(self.bits.saturating_add(&v.bits))
622    }
623}
624
625impl<Bits, Base, Exp> SaturatingSub for Fix<Bits, Base, Exp>
626where
627    Bits: SaturatingSub,
628{
629    fn saturating_sub(&self, v: &Self) -> Self {
630        Self::new(self.bits.saturating_sub(&v.bits))
631    }
632}
633
634#[cfg(test)]
635mod tests {
636    use num_traits::{SaturatingAdd, SaturatingSub};
637
638    use crate::aliases::si::{Kilo, Milli, Unit};
639    use crate::{CheckedAdd, CheckedDivFix, CheckedMulFix, CheckedSub, MulDiv};
640
641    #[test]
642    fn convert_milli_to_kilo() {
643        assert_eq!(Kilo::new(15), Milli::new(15_000_000).convert());
644    }
645
646    #[test]
647    fn convert_kilo_to_milli() {
648        assert_eq!(Milli::new(15_000_000), Kilo::new(15).convert());
649    }
650
651    #[test]
652    fn cmp() {
653        assert!(Kilo::new(1) < Kilo::new(2));
654    }
655
656    #[test]
657    fn neg() {
658        assert_eq!(Kilo::new(-1), -Kilo::new(1i32));
659    }
660
661    #[test]
662    fn add() {
663        assert_eq!(Kilo::new(3), Kilo::new(1) + Kilo::new(2));
664    }
665
666    #[test]
667    fn sub() {
668        assert_eq!(Kilo::new(1), Kilo::new(3) - Kilo::new(2));
669    }
670
671    #[test]
672    fn mul() {
673        assert_eq!(Unit::new(6), Kilo::new(2) * Milli::new(3));
674    }
675
676    #[test]
677    fn div() {
678        assert_eq!(Unit::new(3), Kilo::new(6) / Kilo::new(2));
679    }
680
681    #[test]
682    fn rem() {
683        assert_eq!(Kilo::new(1), Kilo::new(6) % Kilo::new(5));
684    }
685
686    #[test]
687    fn mul_bits() {
688        assert_eq!(Kilo::new(6), Kilo::new(2) * 3);
689    }
690
691    #[test]
692    fn div_bits() {
693        assert_eq!(Kilo::new(3), Kilo::new(6) / 2);
694    }
695
696    #[test]
697    fn rem_bits() {
698        assert_eq!(Kilo::new(1), Kilo::new(6) % 5);
699    }
700
701    #[test]
702    fn add_assign() {
703        let mut a = Kilo::new(1);
704        a += Kilo::new(2);
705        assert_eq!(Kilo::new(3), a);
706    }
707
708    #[test]
709    fn sub_assign() {
710        let mut a = Kilo::new(3);
711        a -= Kilo::new(2);
712        assert_eq!(Kilo::new(1), a);
713    }
714
715    #[test]
716    fn mul_assign_bits() {
717        let mut a = Kilo::new(2);
718        a *= 3;
719        assert_eq!(Kilo::new(6), a);
720    }
721
722    #[test]
723    fn div_assign_bits() {
724        let mut a = Kilo::new(6);
725        a /= 2;
726        assert_eq!(Kilo::new(3), a);
727    }
728
729    #[test]
730    fn rem_assign() {
731        let mut a = Kilo::new(6);
732        a %= Milli::new(5);
733        assert_eq!(Kilo::new(1), a);
734    }
735
736    #[test]
737    fn rem_assign_bits() {
738        let mut a = Kilo::new(6);
739        a %= 5;
740        assert_eq!(Kilo::new(1), a);
741    }
742
743    #[test]
744    fn checked_add_neg() {
745        let max = Kilo::new(u8::MAX);
746        let one = Kilo::new(1);
747        assert!(max.checked_add(&one).is_none())
748    }
749
750    #[test]
751    fn checked_add_pos() {
752        let forty = Kilo::new(40);
753        let two = Kilo::new(2);
754        assert_eq!(forty.checked_add(&two), Some(Kilo::new(42)))
755    }
756
757    #[test]
758    fn checked_sub_neg() {
759        let one = Kilo::new(1);
760        let max = Kilo::new(u8::MAX);
761        assert!(one.checked_sub(&max).is_none())
762    }
763
764    #[test]
765    fn checked_sub_pos() {
766        let fifty = Kilo::new(50);
767        let eight = Kilo::new(8);
768        assert_eq!(fifty.checked_sub(&eight), Some(Kilo::new(42)))
769    }
770
771    #[test]
772    fn checked_mul_neg() {
773        let fifty = Kilo::new(50);
774        let max = Kilo::new(u8::MAX);
775        assert!(fifty.checked_mul(&max).is_none())
776    }
777
778    #[test]
779    fn checked_mul_pos() {
780        let fifty = Kilo::new(50_u64);
781        assert_eq!(
782            fifty.checked_mul(&fifty).map(|out| out.convert()),
783            Some(Kilo::new(2_500_000_u64))
784        )
785    }
786
787    #[test]
788    fn checked_div_neg() {
789        let one = Unit::new(0);
790        assert!(one.checked_div(&one).is_none())
791    }
792
793    #[test]
794    fn checked_div_pos() {
795        let hundred = Kilo::new(100);
796        let five = Kilo::new(5);
797        assert_eq!(hundred.checked_div(&five), Some(Unit::new(20)))
798    }
799
800    #[test]
801    fn narrow_succeeds() {
802        let one = Milli::new(1000u128);
803        let mapped = one.narrow::<u64>();
804        assert_eq!(mapped, Some(Milli::new(1000u64)));
805    }
806
807    #[test]
808    fn narrow_fails() {
809        let one = Milli::new(1699u64);
810        let mapped = one.narrow::<u8>();
811        assert_eq!(mapped, None);
812    }
813
814    #[test]
815    fn widen_succeeds() {
816        let one = Milli::new(1340191u64);
817        let mapped = one.widen::<u128>();
818        assert_eq!(mapped, Milli::new(1340191u128));
819    }
820
821    #[test]
822    fn mul_div_ceil() {
823        let start = Milli::new(313459u64);
824        let mul = Milli::new(1200u64);
825        let div = Milli::new(2450u64);
826        assert_eq!(start.mul_div_ceil(mul, div), Some(Milli::new(153531)));
827    }
828
829    #[test]
830    fn mul_div_ceil_unit() {
831        let start = Milli::new(31345934u64);
832        let mul = Milli::new(1000u64);
833        let div = Milli::new(2000u64);
834        assert_eq!(start.mul_div_ceil(mul, div), Some(Milli::new(15672967u64)));
835    }
836
837    #[test]
838    fn mul_div_floor() {
839        let start = Milli::new(69_693u64);
840        let mul = Milli::new(5_192u64);
841        let div = Milli::new(190u64);
842        assert_eq!(start.mul_div_floor(mul, div), Some(Milli::new(1904452u64)));
843    }
844
845    #[test]
846    fn mul_div_floor_unit() {
847        let start = Milli::new(69_693u64);
848        let mul = Milli::new(1000u64);
849        let div = Milli::new(9u64);
850        assert_eq!(start.mul_div_floor(mul, div), Some(Milli::new(7743666u64)));
851    }
852
853    #[test]
854    fn mul_div_round() {
855        let start = Milli::new(1892u64);
856        let mul = Milli::new(3222u64);
857        let div = Milli::new(9999u64);
858        assert_eq!(start.mul_div_round(mul, div), Some(Milli::new(610u64)));
859    }
860
861    #[test]
862    fn mul_div_round_unit() {
863        let start = Milli::new(1892u64);
864        let mul = Milli::new(1000u64);
865        let div = Milli::new(322u64);
866        assert_eq!(start.mul_div_round(mul, div), Some(Milli::new(5876u64)));
867    }
868
869    #[test]
870    fn abs_diff() {
871        let start = Milli::new(u128::MIN);
872        let end = Milli::new(u128::MAX);
873        assert_eq!(start.abs_diff(&end), end);
874    }
875
876    #[test]
877    fn constant() {
878        assert_eq!(Kilo::constant(69u64), Kilo::new(69u64));
879    }
880
881    #[test]
882    fn saturating_sub() {
883        let zero = Kilo::constant(0);
884        let result = zero.saturating_sub(&Kilo::new(69u64));
885        assert_eq!(zero, result);
886    }
887
888    #[test]
889    fn saturating_add() {
890        let max = Kilo::new(u64::MAX);
891        let result = max.saturating_add(&Kilo::new(69u64));
892        assert_eq!(max, result);
893    }
894}