1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
use crate::indices::*;
use crate::search::*;
use hashbrown::{hash_map::Entry, HashMap};
use std::cmp::{max, min};

/// This threshold determines whether to perform a brute-force search in a bucket
/// instead of a targeted search if the amount of nodes is less than this number.
///
/// Since we do a brute force search in an internal node with < `TAU` leaves,
/// this also defines the threshold at which a vector must be split into a hash table.
///
/// This should be improved by changing the threshold on a per-level of the tree basis.
const TAU: usize = 16384;

/// This determines how much space is initially allocated for a leaf vector.
const INITIAL_CAPACITY: usize = 16;

enum Internal {
    /// This always contains leaves.
    Vec(Vec<u32>),
    /// This always points to another internal node.
    Map(HashMap<usize, u32>),
}

impl Default for Internal {
    fn default() -> Self {
        Internal::Vec(Vec::with_capacity(INITIAL_CAPACITY))
    }
}

pub struct Hwt {
    /// If a `u32` has a high bit set to `1` then it is a leaf node, otherwise it is an internal node.
    /// A `u32` pointing to an internal node is just an index into the internals array, which is
    /// just a bump allocator for internal nodes. It is possible to have more than 2^31 entries, but
    /// 2^31 internal nodes cannot be exceeded.
    internals: Vec<Internal>,
    count: usize,
}

impl Hwt {
    /// Makes an empty `Hwt`.
    ///
    /// ```
    /// # use hwt::Hwt;
    /// let hwt = Hwt::new();
    /// assert!(hwt.is_empty());
    /// ```
    pub fn new() -> Self {
        Self::default()
    }

    /// Gets the number of entries in the `Hwt`.
    ///
    /// ```
    /// # use hwt::Hwt;
    /// let mut hwt = Hwt::new();
    /// hwt.insert(0b101, 0, |_| 0b010);
    /// assert_eq!(hwt.len(), 1);
    /// ```
    pub fn len(&self) -> usize {
        self.count
    }

    /// Checks if the `Hwt` is empty.
    ///
    /// ```
    /// # use hwt::Hwt;
    /// let mut hwt = Hwt::new();
    /// assert!(hwt.is_empty());
    /// hwt.insert(0b101, 0, |_| 0b010);
    /// assert!(!hwt.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn allocate_internal(&mut self) -> u32 {
        let internal = self.internals.len() as u32;
        assert!(internal < std::u32::MAX);
        self.internals.push(Internal::default());
        internal
    }

    /// Converts an internal node from a `Vec` of leaves to a `HashMap` from indices to internal nodes.
    ///
    /// `internal` must be the internal node index which should be replaced
    /// `level` must be set from 0 to 6 inclusive. If it is 0, this is a bucket in the top level.
    /// `lookup` must allow looking up the feature of leaves.
    fn convert<F>(&mut self, internal: usize, level: usize, mut lookup: F)
    where
        F: FnMut(u32) -> u128,
    {
        // Swap a temporary vec with the one in the store to avoid the wrath of the borrow checker.
        let mut old_vec = Internal::Vec(Vec::new());
        std::mem::swap(&mut self.internals[internal], &mut old_vec);
        // Use the old vec to create a new map for the node.
        self.internals[internal] = match old_vec {
            Internal::Vec(v) => {
                let mut map = HashMap::new();
                for leaf in v.into_iter() {
                    let leaf_feature = lookup(leaf);
                    let leaf_indices = indices128(leaf_feature);
                    let new_internal = *map
                        .entry(leaf_indices[level])
                        .or_insert_with(|| self.allocate_internal());
                    if let Internal::Vec(ref mut v) = self.internals[new_internal as usize] {
                        v.push(leaf);
                    } else {
                        unreachable!(
                            "cannot have InternalStore::Map in subtable when just created"
                        );
                    }
                }
                Internal::Map(map)
            }
            _ => panic!("tried to convert an InternalStore::Map"),
        }
    }

    /// Inserts an item ID to the `Hwt`.
    ///
    /// - `F`: A function which should give the `feature` for the given ID.
    ///
    /// The most significant bit must not be set on the `item`.
    ///
    /// Returns `Some(t)` if item `t` was replaced by `item`.
    ///
    /// ```
    /// # use hwt::Hwt;
    /// let mut hwt = Hwt::new();
    /// hwt.insert(0b101, 0, |_| 0b010);
    /// hwt.insert(0b010, 1, |_| 0b101);
    /// assert_eq!(hwt.len(), 2);
    /// ```
    pub fn insert<F>(&mut self, feature: u128, item: u32, mut lookup: F)
    where
        F: FnMut(u32) -> u128,
    {
        // No matter what we will insert the item, so increase the count now.
        self.count += 1;
        // Compute the indices of the buckets and the sizes of the buckets
        // for each layer of the tree.
        let indices = indices128(feature);
        // The first index in the tree is actually the overall weight of
        // the whole number.
        let weight = feature.count_ones() as usize;
        let mut node = weight;
        let mut bucket = 0;
        let mut create_internal = false;
        #[allow(clippy::needless_range_loop)]
        for i in 0..7 {
            match &mut self.internals[bucket] {
                Internal::Vec(ref mut v) => {
                    v.push(item);
                    if v.len() > TAU {
                        self.convert(bucket, i, &mut lookup);
                    }
                    return;
                }
                Internal::Map(ref mut map) => {
                    match map.entry(node) {
                        Entry::Occupied(o) => {
                            let internal = *o.get();
                            // Go to the next node.
                            bucket = internal as usize;
                            node = indices[i];
                        }
                        Entry::Vacant(_) => {
                            create_internal = true;
                            break;
                        }
                    }
                }
            }
        }
        if create_internal {
            // Allocate a new internal Vec node.
            let new_internal = self.allocate_internal();
            // Add the item to the new internal Vec.
            if let Internal::Vec(ref mut v) = self.internals[new_internal as usize] {
                v.push(item);
            } else {
                unreachable!("cannot have InternalStore::Map in subtable when just created");
            }
            // Add the new internal to the vacant map spot.
            if let Internal::Map(ref mut map) = &mut self.internals[bucket] {
                map.insert(node, new_internal);
            } else {
                unreachable!("shouldn't ever get vec after finding vacant map node");
            }
        } else {
            // We are just adding this item to the bottom of the tree in a Vec.
            match self.internals[bucket] {
                Internal::Vec(ref mut v) => v.push(item),
                _ => panic!("Can't have InternalStore::Map at bottom of tree"),
            }
        }
    }

    /// Looks up an item ID from the `Hwt`.
    ///
    /// Returns `Some(t)` if item `t` was in the `Hwt`, otherwise `None`.
    ///
    /// ```
    /// # use hwt::Hwt;
    /// let mut hwt = Hwt::new();
    /// let lookup = |n| match n { 0 => 0b101, 1 => 0b010, _ => panic!() };
    /// hwt.insert(0b101, 0, lookup);
    /// hwt.insert(0b010, 1, lookup);
    /// assert_eq!(hwt.get(0b101, lookup), Some(0));
    /// assert_eq!(hwt.get(0b010, lookup), Some(1));
    /// assert_eq!(hwt.get(0b000, lookup), None);
    /// assert_eq!(hwt.get(0b111, lookup), None);
    /// ```
    pub fn get<F>(&mut self, feature: u128, mut lookup: F) -> Option<u32>
    where
        F: FnMut(u32) -> u128,
    {
        // Compute the indices of the buckets and the sizes of the buckets
        // for each layer of the tree.
        let indices = indices128(feature);
        // The first index in the tree is actually the overall weight of
        // the whole number.
        let weight = feature.count_ones() as usize;
        let mut bucket = 0;
        let mut node = weight;
        for &index in &indices {
            match &self.internals[bucket] {
                Internal::Vec(vec) => return vec.iter().cloned().find(|&n| lookup(n) == feature),
                Internal::Map(map) => {
                    if let Some(&occupied_node) = map.get(&node) {
                        bucket = occupied_node as usize;
                        node = index;
                    } else {
                        return None;
                    }
                }
            }
        }
        None
    }

    /// Find the nearest neighbors to a feature. This will give the nearest
    /// neighbors first and expand outwards. This evaluates lazily, so use
    /// `Iterator::take()` to just take as many as you need.
    pub fn nearest<'a, F: 'a>(
        &'a self,
        feature: u128,
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        (0..=128)
            .map(move |r| {
                self.search_radius(r, feature, lookup)
                    .filter(move |&n| (lookup(n) ^ feature).count_ones() == r)
            })
            .flatten()
    }

    /// Find all neighbors within a given radius.
    pub fn search_radius<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // Manually compute the range of `tw` (which is also index)
        // for the root node since it is unique.
        let sw = feature.count_ones() as i32;
        let start = max(0, sw - radius as i32) as u32;
        let end = min(128, sw + radius as i32) as u32;
        // Iterate over every applicable index in the root.
        self.bucket_scan(
            radius,
            feature,
            0,
            lookup,
            // The index is the `tw` because at the root node indices
            // are target weights.
            (start..=end).map(|tw| (tw as usize, [tw])),
            Self::neighbors2,
        )
    }

    /// Find all neighbors in a bucket at depth `0` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors2<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 1],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // The number of bits per substring.
        const NBITS: u32 = 128 / 2;
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search2(NBITS, feature, tws[0], radius).map(|(index, _, _, tws)| (index, tws)),
            Self::neighbors4,
        )
    }

    /// Find all neighbors in a bucket at depth `1` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors4<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 2],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // The number of bits per substring.
        const NBITS: u32 = 128 / 4;
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search4(NBITS, feature, tws, radius).map(|(index, _, _, tws)| (index, tws)),
            Self::neighbors8,
        )
    }

    /// Find all neighbors in a bucket at depth `2` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors8<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 4],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // The number of bits per substring.
        const NBITS: u32 = 128 / 8;
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search8(NBITS, feature, tws, radius).map(|(index, _, _, tws)| (index, tws)),
            Self::neighbors16,
        )
    }

    /// Find all neighbors in a bucket at depth `3` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors16<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 8],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // The number of bits per substring.
        const NBITS: u32 = 128 / 16;
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search16(NBITS, feature, tws, radius).map(|(index, _, _, tws)| (index, tws)),
            Self::neighbors32,
        )
    }

    /// Find all neighbors in a bucket at depth `4` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors32<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 16],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // The number of bits per substring.
        const NBITS: u32 = 128 / 32;
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search32(NBITS, feature, tws, radius).map(|(index, _, _, tws)| (index, tws)),
            Self::neighbors64,
        )
    }

    /// Find all neighbors in a bucket at depth `5` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors64<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 32],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        // The number of bits per substring.
        const NBITS: u32 = 128 / 64;
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search64(NBITS, feature, tws, radius).map(|(index, _, _, tws)| (index, tws)),
            Self::neighbors128,
        )
    }

    /// Find all neighbors in a bucket at depth `6` of the tree
    /// (`-1` is the root) with a hamming distance less or equal to `radius`.
    fn neighbors128<'a, F: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        tws: [u32; 64],
        lookup: &'a F,
    ) -> impl Iterator<Item = u32> + 'a
    where
        F: Fn(u32) -> u128,
    {
        self.bucket_scan(
            radius,
            feature,
            bucket,
            lookup,
            search128(feature, tws, radius).map(|index| (index, ())),
            // We just outright lie about the type there because otherwise
            // it can't infer the type.
            |_, _, _, bucket, _, _| -> Box<dyn Iterator<Item = u32> + 'a> {
                panic!(
                    "hwt::Hwt::neighbors128(): it is an error to find an internal node this far down in the tree (bucket: {})", bucket, 
                )
            },
        )
    }

    /// Search the given `bucket` with the `indices` iterator, using `subtable`
    /// to recursively iterate over buckets found inside this bucket.
    #[allow(clippy::too_many_arguments)]
    fn bucket_scan<'a, F: 'a, I: 'a, TWS: 'a>(
        &'a self,
        radius: u32,
        feature: u128,
        bucket: usize,
        lookup: &'a F,
        indices: impl Iterator<Item = (usize, TWS)> + 'a,
        subtable: impl Fn(&'a Self, u32, u128, usize, TWS, &'a F) -> I + 'a,
    ) -> Box<dyn Iterator<Item = u32> + 'a>
    where
        F: Fn(u32) -> u128,
        I: Iterator<Item = u32>,
        TWS: Clone,
    {
        match &self.internals[bucket] {
            Internal::Vec(v) => Box::new(
                v.iter()
                    .cloned()
                    .filter(move |&leaf| (lookup(leaf) ^ feature).count_ones() <= radius),
            ) as Box<dyn Iterator<Item = u32> + 'a>,
            Internal::Map(m) => {
                Box::new(indices.flat_map(move |(index, tws)| {
                    if let Some(&occupied_node) = m.get(&index) {
                        // The node is an internal.
                        let subbucket = occupied_node as usize;
                        either::Right(subtable(self, radius, feature, subbucket, tws, lookup))
                    } else {
                        either::Left(None.into_iter())
                    }
                })) as Box<dyn Iterator<Item = u32> + 'a>
            }
        }
    }
}

impl Default for Hwt {
    fn default() -> Self {
        // The number of child nodes of the root is determined by the different
        // possible hamming weights. The maximum hamming weight is the number
        // of bits and the minimum is 0, so this means that there are
        // `NBits + 1` child nodes.
        Self {
            internals: vec![Internal::default()],
            count: 0,
        }
    }
}