hugr_core/builder/
build_traits.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
use crate::extension::prelude::MakeTuple;
use crate::hugr::hugrmut::InsertionResult;
use crate::hugr::views::HugrView;
use crate::hugr::{NodeMetadata, ValidationError};
use crate::ops::{self, OpTag, OpTrait, OpType, Tag, TailLoop};
use crate::utils::collect_array;
use crate::{Extension, IncomingPort, Node, OutgoingPort};

use std::iter;
use std::sync::Arc;

use super::{
    handle::{BuildHandle, Outputs},
    CircuitBuilder,
};
use super::{BuilderWiringError, FunctionBuilder};

use crate::{
    ops::handle::{ConstID, DataflowOpID, FuncID, NodeHandle},
    types::EdgeKind,
};

use crate::extension::{ExtensionRegistry, ExtensionSet, TO_BE_INFERRED};
use crate::types::{PolyFuncType, Signature, Type, TypeArg, TypeRow};

use itertools::Itertools;

use super::{
    cfg::CFGBuilder, conditional::ConditionalBuilder, dataflow::DFGBuilder,
    tail_loop::TailLoopBuilder, BuildError, Wire,
};

use crate::Hugr;

use crate::hugr::HugrMut;

/// Trait for HUGR container builders.
/// Containers are nodes that are parents of sibling graphs.
/// Implementations of this trait allow the child sibling graph to be added to
/// the HUGR.
pub trait Container {
    /// The container node.
    fn container_node(&self) -> Node;
    /// The underlying [`Hugr`] being built
    fn hugr_mut(&mut self) -> &mut Hugr;
    /// Immutable reference to HUGR being built
    fn hugr(&self) -> &Hugr;
    /// Add an [`OpType`] as the final child of the container.
    ///
    /// Adds the extensions required by the op to the HUGR, if they are not already present.
    fn add_child_node(&mut self, node: impl Into<OpType>) -> Node {
        let node: OpType = node.into();

        // Add the extension the operation is defined in to the HUGR.
        let used_extensions = node
            .used_extensions()
            .unwrap_or_else(|e| panic!("Build-time signatures should have valid extensions. {e}"));
        self.use_extensions(used_extensions);

        let parent = self.container_node();
        self.hugr_mut().add_node_with_parent(parent, node)
    }

    /// Adds a non-dataflow edge between two nodes. The kind is given by the operation's [`other_inputs`] or  [`other_outputs`]
    ///
    /// [`other_inputs`]: crate::ops::OpTrait::other_input
    /// [`other_outputs`]: crate::ops::OpTrait::other_output
    fn add_other_wire(&mut self, src: Node, dst: Node) -> Wire {
        let (src_port, _) = self.hugr_mut().add_other_edge(src, dst);
        Wire::new(src, src_port)
    }

    /// Add a constant value to the container and return a handle to it.
    ///
    /// Adds the extensions required by the op to the HUGR, if they are not already present.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error in adding the
    /// [`OpType::Const`] node.
    fn add_constant(&mut self, constant: impl Into<ops::Const>) -> ConstID {
        self.add_child_node(constant.into()).into()
    }

    /// Add a [`ops::FuncDefn`] node and returns a builder to define the function
    /// body graph.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error in adding the
    /// [`ops::FuncDefn`] node.
    fn define_function(
        &mut self,
        name: impl Into<String>,
        signature: impl Into<PolyFuncType>,
    ) -> Result<FunctionBuilder<&mut Hugr>, BuildError> {
        let signature = signature.into();
        let body = signature.body().clone();
        let f_node = self.add_child_node(ops::FuncDefn {
            name: name.into(),
            signature,
        });

        // Add the extensions used by the function types.
        self.use_extensions(
            body.used_extensions().unwrap_or_else(|e| {
                panic!("Build-time signatures should have valid extensions. {e}")
            }),
        );

        let db = DFGBuilder::create_with_io(self.hugr_mut(), f_node, body)?;
        Ok(FunctionBuilder::from_dfg_builder(db))
    }

    /// Insert a HUGR as a child of the container.
    fn add_hugr(&mut self, child: Hugr) -> InsertionResult {
        let parent = self.container_node();
        self.hugr_mut().insert_hugr(parent, child)
    }

    /// Insert a copy of a HUGR as a child of the container.
    fn add_hugr_view(&mut self, child: &impl HugrView) -> InsertionResult {
        let parent = self.container_node();
        self.hugr_mut().insert_from_view(parent, child)
    }

    /// Add metadata to the container node.
    fn set_metadata(&mut self, key: impl AsRef<str>, meta: impl Into<NodeMetadata>) {
        let parent = self.container_node();
        // Implementor's container_node() should be a valid node
        self.hugr_mut().set_metadata(parent, key, meta);
    }

    /// Add metadata to a child node.
    ///
    /// Returns an error if the specified `child` is not a child of this container
    fn set_child_metadata(
        &mut self,
        child: Node,
        key: impl AsRef<str>,
        meta: impl Into<NodeMetadata>,
    ) {
        self.hugr_mut().set_metadata(child, key, meta);
    }

    /// Add an extension to the set of extensions used by the hugr.
    fn use_extension(&mut self, ext: impl Into<Arc<Extension>>) {
        self.hugr_mut().use_extension(ext);
    }

    /// Extend the set of extensions used by the hugr with the extensions in the registry.
    fn use_extensions<Reg>(&mut self, registry: impl IntoIterator<Item = Reg>)
    where
        ExtensionRegistry: Extend<Reg>,
    {
        self.hugr_mut().extensions_mut().extend(registry);
    }
}

/// Types implementing this trait can be used to build complete HUGRs
/// (with varying root node types)
pub trait HugrBuilder: Container {
    /// Finish building the HUGR, perform any validation checks and return it.
    fn finish_hugr(self) -> Result<Hugr, ValidationError>;
}

/// Types implementing this trait build a container graph region by borrowing a HUGR
pub trait SubContainer: Container {
    /// A handle to the finished container node, typically returned when the
    /// child graph has been finished.
    type ContainerHandle;
    /// Consume the container builder and return the handle, may perform some
    /// checks before finishing.
    fn finish_sub_container(self) -> Result<Self::ContainerHandle, BuildError>;
}
/// Trait for building dataflow regions of a HUGR.
pub trait Dataflow: Container {
    /// Return the number of inputs to the dataflow sibling graph.
    fn num_inputs(&self) -> usize;
    /// Return indices of input and output nodes.
    fn io(&self) -> [Node; 2] {
        self.hugr()
            .children(self.container_node())
            .take(2)
            .collect_vec()
            .try_into()
            .expect("First two children should be IO")
    }
    /// Handle to input node.
    fn input(&self) -> BuildHandle<DataflowOpID> {
        (self.io()[0], self.num_inputs()).into()
    }
    /// Handle to output node.
    fn output(&self) -> DataflowOpID {
        self.io()[1].into()
    }
    /// Return iterator over all input Value wires.
    fn input_wires(&self) -> Outputs {
        self.input().outputs()
    }
    /// Add a dataflow [`OpType`] to the sibling graph, wiring up the `input_wires` to the
    /// incoming ports of the resulting node.
    ///
    /// Adds the extensions required by the op to the HUGR, if they are not already present.
    ///
    /// # Errors
    ///
    /// Returns a [`BuildError::OperationWiring`] error if the `input_wires` cannot be connected.
    fn add_dataflow_op(
        &mut self,
        nodetype: impl Into<OpType>,
        input_wires: impl IntoIterator<Item = Wire>,
    ) -> Result<BuildHandle<DataflowOpID>, BuildError> {
        let outs = add_node_with_wires(self, nodetype, input_wires)?;

        Ok(outs.into())
    }

    /// Insert a hugr-defined op to the sibling graph, wiring up the
    /// `input_wires` to the incoming ports of the resulting root node.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when adding the
    /// node.
    fn add_hugr_with_wires(
        &mut self,
        hugr: Hugr,
        input_wires: impl IntoIterator<Item = Wire>,
    ) -> Result<BuildHandle<DataflowOpID>, BuildError> {
        let optype = hugr.get_optype(hugr.root()).clone();
        let num_outputs = optype.value_output_count();
        let node = self.add_hugr(hugr).new_root;

        wire_up_inputs(input_wires, node, self)
            .map_err(|error| BuildError::OperationWiring { op: optype, error })?;

        Ok((node, num_outputs).into())
    }

    /// Copy a hugr-defined op into the sibling graph, wiring up the
    /// `input_wires` to the incoming ports of the resulting root node.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when adding the
    /// node.
    fn add_hugr_view_with_wires(
        &mut self,
        hugr: &impl HugrView,
        input_wires: impl IntoIterator<Item = Wire>,
    ) -> Result<BuildHandle<DataflowOpID>, BuildError> {
        let node = self.add_hugr_view(hugr).new_root;
        let optype = hugr.get_optype(hugr.root()).clone();
        let num_outputs = optype.value_output_count();

        wire_up_inputs(input_wires, node, self)
            .map_err(|error| BuildError::OperationWiring { op: optype, error })?;

        Ok((node, num_outputs).into())
    }

    /// Wire up the `output_wires` to the input ports of the Output node.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when wiring up.
    fn set_outputs(
        &mut self,
        output_wires: impl IntoIterator<Item = Wire>,
    ) -> Result<(), BuildError> {
        let [_, out] = self.io();
        wire_up_inputs(output_wires.into_iter().collect_vec(), out, self).map_err(|error| {
            BuildError::OutputWiring {
                container_op: self.hugr().get_optype(self.container_node()).clone(),
                container_node: self.container_node(),
                error,
            }
        })
    }

    /// Return an array of the input wires.
    ///
    /// # Panics
    ///
    /// Panics if the number of input Wires does not match the size of the array.
    fn input_wires_arr<const N: usize>(&self) -> [Wire; N] {
        collect_array(self.input_wires())
    }

    /// Return a builder for a [`crate::ops::DFG`] node, i.e. a nested dataflow subgraph,
    /// given a signature describing its input and output types and extension delta,
    /// and the input wires (which must match the input types)
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the DFG node.
    // TODO: Should this be one function, or should there be a temporary "op" one like with the others?
    fn dfg_builder(
        &mut self,
        signature: Signature,
        input_wires: impl IntoIterator<Item = Wire>,
    ) -> Result<DFGBuilder<&mut Hugr>, BuildError> {
        let op = ops::DFG {
            signature: signature.clone(),
        };
        let (dfg_n, _) = add_node_with_wires(self, op, input_wires)?;

        DFGBuilder::create_with_io(self.hugr_mut(), dfg_n, signature)
    }

    /// Return a builder for a [`crate::ops::DFG`] node, i.e. a nested dataflow subgraph,
    /// that is endomorphic (the output types are the same as the input types).
    /// The `inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    fn dfg_builder_endo(
        &mut self,
        inputs: impl IntoIterator<Item = (Type, Wire)>,
    ) -> Result<DFGBuilder<&mut Hugr>, BuildError> {
        let (types, input_wires): (Vec<Type>, Vec<Wire>) = inputs.into_iter().unzip();
        self.dfg_builder(
            Signature::new_endo(types).with_extension_delta(TO_BE_INFERRED),
            input_wires,
        )
    }

    /// Return a builder for a [`crate::ops::CFG`] node,
    /// i.e. a nested controlflow subgraph.
    /// The `inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    /// The `output_types` are the types of the outputs.
    /// The Extension delta will be inferred.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the CFG node.
    fn cfg_builder(
        &mut self,
        inputs: impl IntoIterator<Item = (Type, Wire)>,
        output_types: TypeRow,
    ) -> Result<CFGBuilder<&mut Hugr>, BuildError> {
        self.cfg_builder_exts(inputs, output_types, TO_BE_INFERRED)
    }

    /// Return a builder for a [`crate::ops::CFG`] node,
    /// i.e. a nested controlflow subgraph.
    /// The `inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    /// The `output_types` are the types of the outputs.
    /// `extension_delta` is explicitly specified. Alternatively
    /// [cfg_builder](Self::cfg_builder) may be used to infer it.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the CFG node.
    fn cfg_builder_exts(
        &mut self,
        inputs: impl IntoIterator<Item = (Type, Wire)>,
        output_types: TypeRow,
        extension_delta: impl Into<ExtensionSet>,
    ) -> Result<CFGBuilder<&mut Hugr>, BuildError> {
        let (input_types, input_wires): (Vec<Type>, Vec<Wire>) = inputs.into_iter().unzip();

        let inputs: TypeRow = input_types.into();

        let (cfg_node, _) = add_node_with_wires(
            self,
            ops::CFG {
                signature: Signature::new(inputs.clone(), output_types.clone())
                    .with_extension_delta(extension_delta),
            },
            input_wires,
        )?;
        CFGBuilder::create(self.hugr_mut(), cfg_node, inputs, output_types)
    }

    /// Load a static constant and return the local dataflow wire for that constant.
    /// Adds a [`OpType::LoadConstant`] node.
    fn load_const(&mut self, cid: &ConstID) -> Wire {
        let const_node = cid.node();
        let nodetype = self.hugr().get_optype(const_node);
        let op: ops::Const = nodetype
            .clone()
            .try_into()
            .expect("ConstID does not refer to Const op.");

        let load_n = self
            .add_dataflow_op(
                ops::LoadConstant {
                    datatype: op.get_type().clone(),
                },
                // Constant wire from the constant value node
                vec![Wire::new(const_node, OutgoingPort::from(0))],
            )
            .expect("The constant type should match the LoadConstant type.");

        load_n.out_wire(0)
    }

    /// Load a static constant and return the local dataflow wire for that constant.
    /// Adds a [`ops::Const`] and a [`ops::LoadConstant`] node.
    fn add_load_const(&mut self, constant: impl Into<ops::Const>) -> Wire {
        let cid = self.add_constant(constant);
        self.load_const(&cid)
    }

    /// Load a [`ops::Value`] and return the local dataflow wire for that constant.
    /// Adds a [`ops::Const`] and a [`ops::LoadConstant`] node.
    fn add_load_value(&mut self, constant: impl Into<ops::Value>) -> Wire {
        self.add_load_const(constant.into())
    }

    /// Load a static function and return the local dataflow wire for that function.
    /// Adds a [`OpType::LoadFunction`] node.
    ///
    /// The `DEF` const generic is used to indicate whether the function is defined
    /// or just declared.
    fn load_func<const DEFINED: bool>(
        &mut self,
        fid: &FuncID<DEFINED>,
        type_args: &[TypeArg],
    ) -> Result<Wire, BuildError> {
        let func_node = fid.node();
        let func_op = self.hugr().get_optype(func_node);
        let func_sig = match func_op {
            OpType::FuncDefn(ops::FuncDefn { signature, .. })
            | OpType::FuncDecl(ops::FuncDecl { signature, .. }) => signature.clone(),
            _ => {
                return Err(BuildError::UnexpectedType {
                    node: func_node,
                    op_desc: "FuncDecl/FuncDefn",
                })
            }
        };

        let load_n = self.add_dataflow_op(
            ops::LoadFunction::try_new(func_sig, type_args)?,
            // Static wire from the function node
            vec![Wire::new(func_node, func_op.static_output_port().unwrap())],
        )?;

        Ok(load_n.out_wire(0))
    }

    /// Return a builder for a [`crate::ops::TailLoop`] node.
    /// The `inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    /// The `output_types` are the types of the outputs.
    /// The extension delta will be inferred.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the [`ops::TailLoop`] node.
    ///
    fn tail_loop_builder(
        &mut self,
        just_inputs: impl IntoIterator<Item = (Type, Wire)>,
        inputs_outputs: impl IntoIterator<Item = (Type, Wire)>,
        just_out_types: TypeRow,
    ) -> Result<TailLoopBuilder<&mut Hugr>, BuildError> {
        self.tail_loop_builder_exts(just_inputs, inputs_outputs, just_out_types, TO_BE_INFERRED)
    }

    /// Return a builder for a [`crate::ops::TailLoop`] node.
    /// The `inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    /// The `output_types` are the types of the outputs.
    /// `extension_delta` explicitly specified. Alternatively
    /// [tail_loop_builder](Self::tail_loop_builder) may be used to infer it.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the [`ops::TailLoop`] node.
    fn tail_loop_builder_exts(
        &mut self,
        just_inputs: impl IntoIterator<Item = (Type, Wire)>,
        inputs_outputs: impl IntoIterator<Item = (Type, Wire)>,
        just_out_types: TypeRow,
        extension_delta: impl Into<ExtensionSet>,
    ) -> Result<TailLoopBuilder<&mut Hugr>, BuildError> {
        let (input_types, mut input_wires): (Vec<Type>, Vec<Wire>) =
            just_inputs.into_iter().unzip();
        let (rest_types, rest_input_wires): (Vec<Type>, Vec<Wire>) =
            inputs_outputs.into_iter().unzip();
        input_wires.extend(rest_input_wires);

        let tail_loop = ops::TailLoop {
            just_inputs: input_types.into(),
            just_outputs: just_out_types,
            rest: rest_types.into(),
            extension_delta: extension_delta.into(),
        };
        // TODO: Make input extensions a parameter
        let (loop_node, _) = add_node_with_wires(self, tail_loop.clone(), input_wires)?;

        TailLoopBuilder::create_with_io(self.hugr_mut(), loop_node, &tail_loop)
    }

    /// Return a builder for a [`crate::ops::Conditional`] node.
    /// `sum_input` is a tuple of the type of the Sum
    /// variants and the corresponding wire.
    ///
    /// The `other_inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    /// The `output_types` are the types of the outputs. Extension delta will be inferred.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the Conditional node.
    fn conditional_builder(
        &mut self,
        sum_input: (impl IntoIterator<Item = TypeRow>, Wire),
        other_inputs: impl IntoIterator<Item = (Type, Wire)>,
        output_types: TypeRow,
    ) -> Result<ConditionalBuilder<&mut Hugr>, BuildError> {
        self.conditional_builder_exts(sum_input, other_inputs, output_types, TO_BE_INFERRED)
    }

    /// Return a builder for a [`crate::ops::Conditional`] node.
    /// `sum_rows` and `sum_wire` define the type of the Sum
    /// variants and the wire carrying the Sum respectively.
    ///
    /// The `other_inputs` must be an iterable over pairs of the type of the input and
    /// the corresponding wire.
    /// The `output_types` are the types of the outputs.
    /// `extension_delta` is explicitly specified. Alternatively
    /// [conditional_builder](Self::conditional_builder) may be used to infer it.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when building
    /// the Conditional node.
    fn conditional_builder_exts(
        &mut self,
        (sum_rows, sum_wire): (impl IntoIterator<Item = TypeRow>, Wire),
        other_inputs: impl IntoIterator<Item = (Type, Wire)>,
        output_types: TypeRow,
        extension_delta: impl Into<ExtensionSet>,
    ) -> Result<ConditionalBuilder<&mut Hugr>, BuildError> {
        let mut input_wires = vec![sum_wire];
        let (input_types, rest_input_wires): (Vec<Type>, Vec<Wire>) =
            other_inputs.into_iter().unzip();

        input_wires.extend(rest_input_wires);
        let inputs: TypeRow = input_types.into();
        let sum_rows: Vec<_> = sum_rows.into_iter().collect();
        let n_cases = sum_rows.len();
        let n_out_wires = output_types.len();

        let conditional_id = self.add_dataflow_op(
            ops::Conditional {
                sum_rows,
                other_inputs: inputs,
                outputs: output_types,
                extension_delta: extension_delta.into(),
            },
            input_wires,
        )?;

        Ok(ConditionalBuilder {
            base: self.hugr_mut(),
            conditional_node: conditional_id.node(),
            n_out_wires,
            case_nodes: vec![None; n_cases],
        })
    }

    /// Add an order edge from `before` to `after`. Assumes any additional edges
    /// to both nodes will be Order kind.
    fn set_order(&mut self, before: &impl NodeHandle, after: &impl NodeHandle) {
        self.add_other_wire(before.node(), after.node());
    }

    /// Get the type of a Value [`Wire`]. If not valid port or of Value kind, returns None.
    fn get_wire_type(&self, wire: Wire) -> Result<Type, BuildError> {
        let kind = self.hugr().get_optype(wire.node()).port_kind(wire.source());

        if let Some(EdgeKind::Value(typ)) = kind {
            Ok(typ)
        } else {
            Err(BuildError::WireNotFound(wire))
        }
    }

    /// Add a [`MakeTuple`] node and wire in the `values` Wires,
    /// returning the Wire corresponding to the tuple.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error adding the
    /// [`MakeTuple`] node.
    fn make_tuple(&mut self, values: impl IntoIterator<Item = Wire>) -> Result<Wire, BuildError> {
        let values = values.into_iter().collect_vec();
        let types: Result<Vec<Type>, _> = values
            .iter()
            .map(|&wire| self.get_wire_type(wire))
            .collect();
        let types = types?.into();
        let make_op = self.add_dataflow_op(MakeTuple(types), values)?;
        Ok(make_op.out_wire(0))
    }

    /// Add a [`Tag`] node and wire in the `value` Wire,
    /// to make a value with Sum type, with `tag` and possible types described
    /// by `variants`.
    /// Returns the Wire corresponding to the Sum value.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error adding the
    /// Tag node.
    fn make_sum(
        &mut self,
        tag: usize,
        variants: impl IntoIterator<Item = TypeRow>,
        values: impl IntoIterator<Item = Wire>,
    ) -> Result<Wire, BuildError> {
        let make_op = self.add_dataflow_op(
            Tag {
                tag,
                variants: variants.into_iter().map(Into::into).collect_vec(),
            },
            values.into_iter().collect_vec(),
        )?;
        Ok(make_op.out_wire(0))
    }

    /// Use the wires in `values` to return a wire corresponding to the
    /// "Continue" variant of a [`ops::TailLoop`] with `loop_signature`.
    ///
    /// Packs the values in to a tuple and tags appropriately to generate a
    /// value of Sum type.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error in adding the nodes.
    fn make_continue(
        &mut self,
        tail_loop: ops::TailLoop,
        values: impl IntoIterator<Item = Wire>,
    ) -> Result<Wire, BuildError> {
        self.make_sum(
            TailLoop::CONTINUE_TAG,
            [tail_loop.just_inputs, tail_loop.just_outputs],
            values,
        )
    }

    /// Use the wires in `values` to return a wire corresponding to the
    /// "Break" variant of a [`ops::TailLoop`] with `loop_signature`.
    ///
    /// Packs the values in to a tuple and tags appropriately to generate a
    /// value of Sum type.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error in adding the nodes.
    fn make_break(
        &mut self,
        loop_op: ops::TailLoop,
        values: impl IntoIterator<Item = Wire>,
    ) -> Result<Wire, BuildError> {
        self.make_sum(
            TailLoop::BREAK_TAG,
            [loop_op.just_inputs, loop_op.just_outputs],
            values,
        )
    }

    /// Add a [`ops::Call`] node, calling `function`, with inputs
    /// specified by `input_wires`. Returns a handle to the corresponding Call node.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error adding the Call
    /// node, or if `function` does not refer to a [`ops::FuncDecl`] or
    /// [`ops::FuncDefn`] node.
    fn call<const DEFINED: bool>(
        &mut self,
        function: &FuncID<DEFINED>,
        type_args: &[TypeArg],
        input_wires: impl IntoIterator<Item = Wire>,
    ) -> Result<BuildHandle<DataflowOpID>, BuildError> {
        let hugr = self.hugr();
        let def_op = hugr.get_optype(function.node());
        let type_scheme = match def_op {
            OpType::FuncDefn(ops::FuncDefn { signature, .. })
            | OpType::FuncDecl(ops::FuncDecl { signature, .. }) => signature.clone(),
            _ => {
                return Err(BuildError::UnexpectedType {
                    node: function.node(),
                    op_desc: "FuncDecl/FuncDefn",
                })
            }
        };
        let op: OpType = ops::Call::try_new(type_scheme, type_args)?.into();
        let const_in_port = op.static_input_port().unwrap();
        let op_id = self.add_dataflow_op(op, input_wires)?;
        let src_port = self.hugr_mut().num_outputs(function.node()) - 1;

        self.hugr_mut()
            .connect(function.node(), src_port, op_id.node(), const_in_port);
        Ok(op_id)
    }

    /// For the vector of `wires`, produce a `CircuitBuilder` where ops can be
    /// added using indices in to the vector.
    fn as_circuit(&mut self, wires: impl IntoIterator<Item = Wire>) -> CircuitBuilder<Self> {
        CircuitBuilder::new(wires, self)
    }
}

/// Add a node to the graph, wiring up the `inputs` to the input ports of the resulting node.
///
/// Adds the extensions required by the op to the HUGR, if they are not already present.
///
/// # Errors
///
/// Returns a [`BuildError::OperationWiring`] if any of the connections produces an
/// invalid edge.
fn add_node_with_wires<T: Dataflow + ?Sized>(
    data_builder: &mut T,
    nodetype: impl Into<OpType>,
    inputs: impl IntoIterator<Item = Wire>,
) -> Result<(Node, usize), BuildError> {
    let op = nodetype.into();
    let num_outputs = op.value_output_count();
    let op_node = data_builder.add_child_node(op.clone());

    wire_up_inputs(inputs, op_node, data_builder)
        .map_err(|error| BuildError::OperationWiring { op, error })?;

    Ok((op_node, num_outputs))
}

/// Connect each of the `inputs` wires sequentially to the input ports of
/// `op_node`.
///
/// # Errors
///
/// Returns a [`BuilderWiringError`] if any of the connections produces an
/// invalid edge.
fn wire_up_inputs<T: Dataflow + ?Sized>(
    inputs: impl IntoIterator<Item = Wire>,
    op_node: Node,
    data_builder: &mut T,
) -> Result<(), BuilderWiringError> {
    for (dst_port, wire) in inputs.into_iter().enumerate() {
        wire_up(data_builder, wire.node(), wire.source(), op_node, dst_port)?;
    }
    Ok(())
}

/// Add edge from src to dst.
///
/// # Errors
///
/// Returns a [`BuilderWiringError`] if the edge is invalid.
fn wire_up<T: Dataflow + ?Sized>(
    data_builder: &mut T,
    src: Node,
    src_port: impl Into<OutgoingPort>,
    dst: Node,
    dst_port: impl Into<IncomingPort>,
) -> Result<bool, BuilderWiringError> {
    let src_port = src_port.into();
    let dst_port = dst_port.into();
    let base = data_builder.hugr_mut();

    let src_parent = base.get_parent(src);
    let src_parent_parent = src_parent.and_then(|src| base.get_parent(src));
    let dst_parent = base.get_parent(dst);
    let local_source = src_parent == dst_parent;
    if let EdgeKind::Value(typ) = base.get_optype(src).port_kind(src_port).unwrap() {
        if !local_source {
            // Non-local value sources require a state edge to an ancestor of dst
            if !typ.copyable() {
                return Err(BuilderWiringError::NonCopyableIntergraph {
                    src,
                    src_offset: src_port.into(),
                    dst,
                    dst_offset: dst_port.into(),
                    typ,
                });
            }

            let src_parent = src_parent.expect("Node has no parent");
            let Some(src_sibling) = iter::successors(dst_parent, |&p| base.get_parent(p))
                .tuple_windows()
                .find_map(|(ancestor, ancestor_parent)| {
                    (ancestor_parent == src_parent ||
                        // Dom edge - in CFGs
                        Some(ancestor_parent) == src_parent_parent)
                        .then_some(ancestor)
                })
            else {
                return Err(BuilderWiringError::NoRelationIntergraph {
                    src,
                    src_offset: src_port.into(),
                    dst,
                    dst_offset: dst_port.into(),
                });
            };

            if !OpTag::ControlFlowChild.is_superset(base.get_optype(src).tag())
                && !OpTag::ControlFlowChild.is_superset(base.get_optype(src_sibling).tag())
            {
                // Add a state order constraint unless one of the nodes is a CFG BasicBlock
                base.add_other_edge(src, src_sibling);
            }
        } else if !typ.copyable() & base.linked_ports(src, src_port).next().is_some() {
            // Don't copy linear edges.
            return Err(BuilderWiringError::NoCopyLinear {
                typ,
                src,
                src_offset: src_port.into(),
            });
        }
    }

    data_builder
        .hugr_mut()
        .connect(src, src_port, dst, dst_port);
    Ok(local_source
        && matches!(
            data_builder
                .hugr_mut()
                .get_optype(dst)
                .port_kind(dst_port)
                .unwrap(),
            EdgeKind::Value(_)
        ))
}

/// Trait implemented by builders of Dataflow Hugrs
pub trait DataflowHugr: HugrBuilder + Dataflow {
    /// Set outputs of dataflow HUGR and return validated HUGR
    /// # Errors
    ///
    /// * if there is an error when setting outputs
    /// * if the Hugr does not validate
    fn finish_hugr_with_outputs(
        mut self,
        outputs: impl IntoIterator<Item = Wire>,
    ) -> Result<Hugr, BuildError>
    where
        Self: Sized,
    {
        self.set_outputs(outputs)?;
        Ok(self.finish_hugr()?)
    }
}

/// Trait implemented by builders of Dataflow container regions of a HUGR
pub trait DataflowSubContainer: SubContainer + Dataflow {
    /// Set the outputs of the graph and consume the builder, while returning a
    /// handle to the parent.
    ///
    /// # Errors
    ///
    /// This function will return an error if there is an error when setting outputs.
    fn finish_with_outputs(
        mut self,
        outputs: impl IntoIterator<Item = Wire>,
    ) -> Result<Self::ContainerHandle, BuildError>
    where
        Self: Sized,
    {
        self.set_outputs(outputs)?;
        self.finish_sub_container()
    }
}

impl<T: HugrBuilder + Dataflow> DataflowHugr for T {}
impl<T: SubContainer + Dataflow> DataflowSubContainer for T {}