use std::collections::{HashMap, HashSet, VecDeque};
use itertools::Itertools;
use thiserror::Error;
use crate::hugr::hugrmut::InsertionResult;
use crate::hugr::HugrMut;
use crate::ops::{OpTag, OpTrait};
use crate::types::EdgeKind;
use crate::{Direction, Hugr, HugrView, IncomingPort, Node, OutgoingPort};
use super::Rewrite;
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct NewEdgeSpec {
pub src: Node,
pub tgt: Node,
pub kind: NewEdgeKind,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum NewEdgeKind {
Order,
Value {
src_pos: OutgoingPort,
tgt_pos: IncomingPort,
},
Static {
src_pos: OutgoingPort,
tgt_pos: IncomingPort,
},
ControlFlow {
src_pos: OutgoingPort,
},
}
#[derive(Debug, Clone, PartialEq)]
pub struct Replacement {
pub removal: Vec<Node>,
pub replacement: Hugr,
pub adoptions: HashMap<Node, Node>,
pub mu_inp: Vec<NewEdgeSpec>,
pub mu_out: Vec<NewEdgeSpec>,
pub mu_new: Vec<NewEdgeSpec>,
}
impl NewEdgeSpec {
fn check_src(&self, h: &impl HugrView, err_spec: &NewEdgeSpec) -> Result<(), ReplaceError> {
let optype = h.get_optype(self.src);
let ok = match self.kind {
NewEdgeKind::Order => optype.other_output() == Some(EdgeKind::StateOrder),
NewEdgeKind::Value { src_pos, .. } => {
matches!(optype.port_kind(src_pos), Some(EdgeKind::Value(_)))
}
NewEdgeKind::Static { src_pos, .. } => optype
.port_kind(src_pos)
.as_ref()
.is_some_and(EdgeKind::is_static),
NewEdgeKind::ControlFlow { src_pos } => {
matches!(optype.port_kind(src_pos), Some(EdgeKind::ControlFlow))
}
};
ok.then_some(())
.ok_or_else(|| ReplaceError::BadEdgeKind(Direction::Outgoing, err_spec.clone()))
}
fn check_tgt(&self, h: &impl HugrView, err_spec: &NewEdgeSpec) -> Result<(), ReplaceError> {
let optype = h.get_optype(self.tgt);
let ok = match self.kind {
NewEdgeKind::Order => optype.other_input() == Some(EdgeKind::StateOrder),
NewEdgeKind::Value { tgt_pos, .. } => {
matches!(optype.port_kind(tgt_pos), Some(EdgeKind::Value(_)))
}
NewEdgeKind::Static { tgt_pos, .. } => optype
.port_kind(tgt_pos)
.as_ref()
.is_some_and(EdgeKind::is_static),
NewEdgeKind::ControlFlow { .. } => matches!(
optype.port_kind(IncomingPort::from(0)),
Some(EdgeKind::ControlFlow)
),
};
ok.then_some(())
.ok_or_else(|| ReplaceError::BadEdgeKind(Direction::Incoming, err_spec.clone()))
}
fn check_existing_edge(
&self,
h: &impl HugrView,
legal_src_ancestors: &HashSet<Node>,
err_edge: impl Fn() -> NewEdgeSpec,
) -> Result<(), ReplaceError> {
if let NewEdgeKind::Static { tgt_pos, .. } | NewEdgeKind::Value { tgt_pos, .. } = self.kind
{
let descends_from_legal = |mut descendant: Node| -> bool {
while !legal_src_ancestors.contains(&descendant) {
let Some(p) = h.get_parent(descendant) else {
return false;
};
descendant = p;
}
true
};
let found_incoming = h
.single_linked_output(self.tgt, tgt_pos)
.is_some_and(|(src_n, _)| descends_from_legal(src_n));
if !found_incoming {
return Err(ReplaceError::NoRemovedEdge(err_edge()));
};
};
Ok(())
}
}
impl Replacement {
fn check_parent(&self, h: &impl HugrView) -> Result<Node, ReplaceError> {
let parent = self
.removal
.iter()
.map(|n| h.get_parent(*n))
.unique()
.exactly_one()
.map_err(|ex_one| ReplaceError::MultipleParents(ex_one.flatten().collect()))?
.ok_or(ReplaceError::CantReplaceRoot)?; let removed = h.get_optype(parent).tag();
let replacement = self.replacement.root_type().tag();
if removed != replacement {
return Err(ReplaceError::WrongRootNodeTag {
removed,
replacement,
});
};
Ok(parent)
}
fn get_removed_nodes(&self, h: &impl HugrView) -> Result<HashSet<Node>, ReplaceError> {
self.adoptions.keys().try_for_each(|&n| {
(self.replacement.contains_node(n)
&& self.replacement.get_optype(n).is_container()
&& self.replacement.children(n).next().is_none())
.then_some(())
.ok_or(ReplaceError::InvalidAdoptingParent(n))
})?;
let mut transferred: HashSet<Node> = self.adoptions.values().copied().collect();
if transferred.len() != self.adoptions.values().len() {
return Err(ReplaceError::AdopteesNotSeparateDescendants(
self.adoptions
.values()
.filter(|v| !transferred.remove(v))
.copied()
.collect(),
));
}
let mut removed = HashSet::new();
let mut queue = VecDeque::from_iter(self.removal.iter().copied());
while let Some(n) = queue.pop_front() {
let new = removed.insert(n);
debug_assert!(new); if !transferred.remove(&n) {
h.children(n).for_each(|ch| queue.push_back(ch))
}
}
if !transferred.is_empty() {
return Err(ReplaceError::AdopteesNotSeparateDescendants(
transferred.into_iter().collect(),
));
}
Ok(removed)
}
}
impl Rewrite for Replacement {
type Error = ReplaceError;
type ApplyResult = HashMap<Node, Node>;
const UNCHANGED_ON_FAILURE: bool = false;
fn verify(&self, h: &impl crate::HugrView) -> Result<(), Self::Error> {
self.check_parent(h)?;
let removed = self.get_removed_nodes(h)?;
for e in self.mu_inp.iter().chain(self.mu_new.iter()) {
if !h.contains_node(e.src) || removed.contains(&e.src) {
return Err(ReplaceError::BadEdgeSpec(
Direction::Outgoing,
WhichHugr::Retained,
e.clone(),
));
}
e.check_src(h, e)?;
}
self.mu_out
.iter()
.try_for_each(|e| match self.replacement.valid_non_root(e.src) {
true => e.check_src(&self.replacement, e),
false => Err(ReplaceError::BadEdgeSpec(
Direction::Outgoing,
WhichHugr::Replacement,
e.clone(),
)),
})?;
self.mu_inp
.iter()
.try_for_each(|e| match self.replacement.valid_non_root(e.tgt) {
true => e.check_tgt(&self.replacement, e),
false => Err(ReplaceError::BadEdgeSpec(
Direction::Incoming,
WhichHugr::Replacement,
e.clone(),
)),
})?;
for e in self.mu_out.iter().chain(self.mu_new.iter()) {
if !h.contains_node(e.tgt) || removed.contains(&e.tgt) {
return Err(ReplaceError::BadEdgeSpec(
Direction::Incoming,
WhichHugr::Retained,
e.clone(),
));
}
e.check_tgt(h, e)?;
e.check_existing_edge(h, &removed, || e.clone())?;
}
Ok(())
}
fn apply(self, h: &mut impl HugrMut) -> Result<Self::ApplyResult, Self::Error> {
let parent = self.check_parent(h)?;
let to_remove = self.get_removed_nodes(h)?;
let InsertionResult { new_root, node_map } = h.insert_hugr(parent, self.replacement);
let translate_idx = |n| node_map.get(&n).copied().ok_or(WhichHugr::Replacement);
let kept = |n| {
let keep = !to_remove.contains(&n);
keep.then_some(n).ok_or(WhichHugr::Retained)
};
transfer_edges(h, self.mu_inp.iter(), kept, translate_idx, None)?;
transfer_edges(h, self.mu_out.iter(), translate_idx, kept, Some(&to_remove))?;
transfer_edges(h, self.mu_new.iter(), kept, kept, Some(&to_remove))?;
let mut remove_top_sibs = self.removal.iter();
for new_node in h.children(new_root).collect::<Vec<Node>>().into_iter() {
if let Some(top_sib) = remove_top_sibs.next() {
h.move_before_sibling(new_node, *top_sib);
} else {
h.set_parent(new_node, parent);
}
}
debug_assert!(h.children(new_root).next().is_none());
h.remove_node(new_root);
for (new_parent, &old_parent) in self.adoptions.iter() {
let new_parent = node_map.get(new_parent).unwrap();
debug_assert!(h.children(old_parent).next().is_some());
loop {
let ch = match h.children(old_parent).next() {
None => break,
Some(c) => c,
};
h.set_parent(ch, *new_parent);
}
}
to_remove.into_iter().for_each(|n| {
h.remove_node(n);
});
Ok(node_map)
}
fn invalidation_set(&self) -> impl Iterator<Item = Node> {
self.removal.iter().copied()
}
}
fn transfer_edges<'a>(
h: &mut impl HugrMut,
edges: impl Iterator<Item = &'a NewEdgeSpec>,
trans_src: impl Fn(Node) -> Result<Node, WhichHugr>,
trans_tgt: impl Fn(Node) -> Result<Node, WhichHugr>,
legal_src_ancestors: Option<&HashSet<Node>>,
) -> Result<(), ReplaceError> {
for oe in edges {
let e = NewEdgeSpec {
src: trans_src(oe.src)
.map_err(|h| ReplaceError::BadEdgeSpec(Direction::Outgoing, h, oe.clone()))?,
tgt: trans_tgt(oe.tgt)
.map_err(|h| ReplaceError::BadEdgeSpec(Direction::Incoming, h, oe.clone()))?,
..oe.clone()
};
if !h.valid_node(e.src) {
return Err(ReplaceError::BadEdgeSpec(
Direction::Outgoing,
WhichHugr::Retained,
oe.clone(),
));
}
if !h.valid_node(e.tgt) {
return Err(ReplaceError::BadEdgeSpec(
Direction::Incoming,
WhichHugr::Retained,
oe.clone(),
));
};
e.check_src(h, oe)?;
e.check_tgt(h, oe)?;
match e.kind {
NewEdgeKind::Order => {
h.add_other_edge(e.src, e.tgt);
}
NewEdgeKind::Value { src_pos, tgt_pos } | NewEdgeKind::Static { src_pos, tgt_pos } => {
if let Some(legal_src_ancestors) = legal_src_ancestors {
e.check_existing_edge(h, legal_src_ancestors, || oe.clone())?;
h.disconnect(e.tgt, tgt_pos);
}
h.connect(e.src, src_pos, e.tgt, tgt_pos);
}
NewEdgeKind::ControlFlow { src_pos } => h.connect(e.src, src_pos, e.tgt, 0),
}
}
Ok(())
}
#[derive(Clone, Debug, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum ReplaceError {
#[error("Cannot replace the root node of the Hugr")]
CantReplaceRoot,
#[error("Removed nodes had different parents {0:?}")]
MultipleParents(Vec<Node>),
#[error("Expected replacement root with tag {removed} but found {replacement}")]
WrongRootNodeTag {
removed: OpTag,
replacement: OpTag,
},
#[error("Node {0:?} was not an empty container node in the replacement")]
InvalidAdoptingParent(Node),
#[error("Nodes not free to be moved into new locations: {0:?}")]
AdopteesNotSeparateDescendants(Vec<Node>),
#[error("{0:?} end of edge {2:?} not found in {1}")]
BadEdgeSpec(Direction, WhichHugr, NewEdgeSpec),
#[error("Target of edge {0:?} did not have a corresponding incoming edge being removed")]
NoRemovedEdge(NewEdgeSpec),
#[error("The edge kind was not applicable to the {0:?} node: {1:?}")]
BadEdgeKind(Direction, NewEdgeSpec),
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum WhichHugr {
Replacement,
Retained,
}
impl std::fmt::Display for WhichHugr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str(match self {
Self::Replacement => "replacement Hugr",
Self::Retained => "retained portion of Hugr",
})
}
}
#[cfg(test)]
mod test {
use std::collections::HashMap;
use cool_asserts::assert_matches;
use itertools::Itertools;
use crate::builder::{
endo_sig, BuildError, CFGBuilder, Container, DFGBuilder, Dataflow, DataflowHugr,
DataflowSubContainer, HugrBuilder, SubContainer,
};
use crate::extension::prelude::{BOOL_T, USIZE_T};
use crate::extension::{ExtensionRegistry, PRELUDE, PRELUDE_REGISTRY};
use crate::hugr::internal::HugrMutInternals;
use crate::hugr::rewrite::replace::WhichHugr;
use crate::hugr::{HugrMut, Rewrite};
use crate::ops::custom::ExtensionOp;
use crate::ops::dataflow::DataflowOpTrait;
use crate::ops::handle::{BasicBlockID, ConstID, NodeHandle};
use crate::ops::{self, Case, DataflowBlock, OpTag, OpType, DFG};
use crate::std_extensions::collections::{self, list_type, ListOp};
use crate::types::{Signature, Type, TypeRow};
use crate::utils::depth;
use crate::{type_row, Direction, Hugr, HugrView, OutgoingPort};
use super::{NewEdgeKind, NewEdgeSpec, ReplaceError, Replacement};
#[test]
#[ignore] fn cfg() -> Result<(), Box<dyn std::error::Error>> {
let reg =
ExtensionRegistry::try_new([PRELUDE.to_owned(), collections::EXTENSION.to_owned()])
.unwrap();
let listy = list_type(USIZE_T);
let pop: ExtensionOp = ListOp::pop
.with_type(USIZE_T)
.to_extension_op(®)
.unwrap();
let push: ExtensionOp = ListOp::push
.with_type(USIZE_T)
.to_extension_op(®)
.unwrap();
let just_list = TypeRow::from(vec![listy.clone()]);
let intermed = TypeRow::from(vec![listy.clone(), USIZE_T]);
let mut cfg = CFGBuilder::new(endo_sig(just_list.clone()))?;
let pred_const = cfg.add_constant(ops::Value::unary_unit_sum());
let entry = single_node_block(&mut cfg, pop, &pred_const, true)?;
let bb2 = single_node_block(&mut cfg, push, &pred_const, false)?;
let exit = cfg.exit_block();
cfg.branch(&entry, 0, &bb2)?;
cfg.branch(&bb2, 0, &exit)?;
let mut h = cfg.finish_hugr(®).unwrap();
{
let pop = find_node(&h, "pop");
let push = find_node(&h, "push");
assert_eq!(depth(&h, pop), 2); assert_eq!(depth(&h, push), 2);
let popp = h.get_parent(pop).unwrap();
let pushp = h.get_parent(push).unwrap();
assert_ne!(popp, pushp); assert!(h.get_optype(popp).is_dataflow_block());
assert!(h.get_optype(pushp).is_dataflow_block());
assert_eq!(h.get_parent(popp).unwrap(), h.get_parent(pushp).unwrap());
}
let mut replacement = Hugr::new(ops::CFG {
signature: Signature::new_endo(just_list.clone()),
});
let r_bb = replacement.add_node_with_parent(
replacement.root(),
DataflowBlock {
inputs: vec![listy.clone()].into(),
sum_rows: vec![type_row![]],
other_outputs: vec![listy.clone()].into(),
extension_delta: collections::EXTENSION_ID.into(),
},
);
let r_df1 = replacement.add_node_with_parent(
r_bb,
DFG {
signature: Signature::new(vec![listy.clone()], simple_unary_plus(intermed.clone()))
.with_extension_delta(collections::EXTENSION_ID),
},
);
let r_df2 = replacement.add_node_with_parent(
r_bb,
DFG {
signature: Signature::new(intermed, simple_unary_plus(just_list.clone()))
.with_extension_delta(collections::EXTENSION_ID),
},
);
[0, 1]
.iter()
.for_each(|p| replacement.connect(r_df1, *p + 1, r_df2, *p));
{
let inp = replacement.add_node_before(
r_df1,
ops::Input {
types: just_list.clone(),
},
);
let out = replacement.add_node_before(
r_df1,
ops::Output {
types: simple_unary_plus(just_list),
},
);
replacement.connect(inp, 0, r_df1, 0);
replacement.connect(r_df2, 0, out, 0);
replacement.connect(r_df2, 1, out, 1);
}
h.apply_rewrite(Replacement {
removal: vec![entry.node(), bb2.node()],
replacement,
adoptions: HashMap::from([(r_df1.node(), entry.node()), (r_df2.node(), bb2.node())]),
mu_inp: vec![],
mu_out: vec![NewEdgeSpec {
src: r_bb,
tgt: exit.node(),
kind: NewEdgeKind::ControlFlow {
src_pos: OutgoingPort::from(0),
},
}],
mu_new: vec![],
})?;
h.update_validate(®)?;
{
let pop = find_node(&h, "pop");
let push = find_node(&h, "push");
assert_eq!(depth(&h, pop), 3); assert_eq!(depth(&h, push), 3);
let popp = h.get_parent(pop).unwrap();
let pushp = h.get_parent(push).unwrap();
assert_ne!(popp, pushp); assert!(h.get_optype(popp).is_dfg());
assert!(h.get_optype(pushp).is_dfg());
let grandp = h.get_parent(popp).unwrap();
assert_eq!(grandp, h.get_parent(pushp).unwrap());
assert!(h.get_optype(grandp).is_dataflow_block());
}
Ok(())
}
fn find_node(h: &Hugr, s: &str) -> crate::Node {
h.nodes()
.filter(|n| format!("{:?}", h.get_optype(*n)).contains(s))
.exactly_one()
.ok()
.unwrap()
}
fn single_node_block<T: AsRef<Hugr> + AsMut<Hugr>, O: DataflowOpTrait + Into<OpType>>(
h: &mut CFGBuilder<T>,
op: O,
pred_const: &ConstID,
entry: bool,
) -> Result<BasicBlockID, BuildError> {
let op_sig = op.signature();
let mut bb = if entry {
assert_eq!(
match h.hugr().get_optype(h.container_node()) {
OpType::CFG(c) => &c.signature.input,
_ => panic!(),
},
op_sig.input()
);
h.simple_entry_builder_exts(op_sig.output, 1, op_sig.extension_reqs.clone())?
} else {
h.simple_block_builder(op_sig, 1)?
};
let op: OpType = op.into();
let op = bb.add_dataflow_op(op, bb.input_wires())?;
let load_pred = bb.load_const(pred_const);
bb.finish_with_outputs(load_pred, op.outputs())
}
fn simple_unary_plus(t: TypeRow) -> TypeRow {
let mut v = t.into_owned();
v.insert(0, Type::new_unit_sum(1));
v.into()
}
#[test]
fn test_invalid() {
let mut new_ext = crate::Extension::new_test("new_ext".try_into().unwrap());
let ext_name = new_ext.name().clone();
let utou = Signature::new_endo(vec![USIZE_T]);
let mut mk_op = |s| new_ext.simple_ext_op(s, utou.clone());
let mut h = DFGBuilder::new(
Signature::new(type_row![USIZE_T, BOOL_T], type_row![USIZE_T])
.with_extension_delta(ext_name.clone()),
)
.unwrap();
let [i, b] = h.input_wires_arr();
let mut cond = h
.conditional_builder_exts(
(vec![type_row![]; 2], b),
[(USIZE_T, i)],
type_row![USIZE_T],
ext_name.clone(),
)
.unwrap();
let mut case1 = cond.case_builder(0).unwrap();
let foo = case1
.add_dataflow_op(mk_op("foo"), case1.input_wires())
.unwrap();
let case1 = case1.finish_with_outputs(foo.outputs()).unwrap().node();
let mut case2 = cond.case_builder(1).unwrap();
let bar = case2
.add_dataflow_op(mk_op("bar"), case2.input_wires())
.unwrap();
let mut baz_dfg = case2
.dfg_builder(
utou.clone().with_extension_delta(ext_name.clone()),
bar.outputs(),
)
.unwrap();
let baz = baz_dfg
.add_dataflow_op(mk_op("baz"), baz_dfg.input_wires())
.unwrap();
let baz_dfg = baz_dfg.finish_with_outputs(baz.outputs()).unwrap();
let case2 = case2.finish_with_outputs(baz_dfg.outputs()).unwrap().node();
let cond = cond.finish_sub_container().unwrap();
let h = h
.finish_hugr_with_outputs(cond.outputs(), &PRELUDE_REGISTRY)
.unwrap();
let mut r_hugr = Hugr::new(h.get_optype(cond.node()).clone());
let r1 = r_hugr.add_node_with_parent(
r_hugr.root(),
Case {
signature: utou.clone(),
},
);
let r2 = r_hugr.add_node_with_parent(
r_hugr.root(),
Case {
signature: utou.clone(),
},
);
let rep: Replacement = Replacement {
removal: vec![case1, case2],
replacement: r_hugr,
adoptions: HashMap::from_iter([(r1, case1), (r2, baz_dfg.node())]),
mu_inp: vec![],
mu_out: vec![],
mu_new: vec![],
};
assert_eq!(h.get_parent(baz.node()), Some(baz_dfg.node()));
rep.verify(&h).unwrap();
{
let mut target = h.clone();
let node_map = rep.clone().apply(&mut target).unwrap();
let new_case2 = *node_map.get(&r2).unwrap();
assert_eq!(target.get_parent(baz.node()), Some(new_case2));
}
let check_same_errors = |r: Replacement| {
let verify_res = r.verify(&h).unwrap_err();
let apply_res = r.apply(&mut h.clone()).unwrap_err();
assert_eq!(verify_res, apply_res);
apply_res
};
let mut rep2 = rep.clone();
rep2.replacement
.replace_op(rep2.replacement.root(), h.root_type().clone())
.unwrap();
assert_eq!(
check_same_errors(rep2),
ReplaceError::WrongRootNodeTag {
removed: OpTag::Conditional,
replacement: OpTag::Dfg
}
);
assert_eq!(
check_same_errors(Replacement {
removal: vec![h.root()],
..rep.clone()
}),
ReplaceError::CantReplaceRoot
);
assert_eq!(
check_same_errors(Replacement {
removal: vec![case1, baz_dfg.node()],
..rep.clone()
}),
ReplaceError::MultipleParents(vec![cond.node(), case2])
);
assert_eq!(
check_same_errors(Replacement {
adoptions: HashMap::from([(r1, case1), (rep.replacement.root(), case2)]),
..rep.clone()
}),
ReplaceError::InvalidAdoptingParent(rep.replacement.root())
);
assert_eq!(
check_same_errors(Replacement {
adoptions: HashMap::from_iter([(r1, case1), (r2, case1)]),
..rep.clone()
}),
ReplaceError::AdopteesNotSeparateDescendants(vec![case1])
);
assert_eq!(
check_same_errors(Replacement {
adoptions: HashMap::from_iter([(r1, case2), (r2, baz_dfg.node())]),
..rep.clone()
}),
ReplaceError::AdopteesNotSeparateDescendants(vec![baz_dfg.node()])
);
let edge_from_removed = NewEdgeSpec {
src: case1,
tgt: r2,
kind: NewEdgeKind::Order,
};
assert_eq!(
check_same_errors(Replacement {
mu_inp: vec![edge_from_removed.clone()],
..rep.clone()
}),
ReplaceError::BadEdgeSpec(Direction::Outgoing, WhichHugr::Retained, edge_from_removed)
);
let bad_out_edge = NewEdgeSpec {
src: h.nodes().max().unwrap(), tgt: cond.node(),
kind: NewEdgeKind::Order,
};
assert_eq!(
check_same_errors(Replacement {
mu_out: vec![bad_out_edge.clone()],
..rep.clone()
}),
ReplaceError::BadEdgeSpec(Direction::Outgoing, WhichHugr::Replacement, bad_out_edge)
);
let bad_order_edge = NewEdgeSpec {
src: cond.node(),
tgt: h.get_io(h.root()).unwrap()[1],
kind: NewEdgeKind::ControlFlow { src_pos: 0.into() },
};
assert_matches!(
check_same_errors(Replacement {
mu_new: vec![bad_order_edge.clone()],
..rep.clone()
}),
ReplaceError::BadEdgeKind(_, e) => assert_eq!(e, bad_order_edge)
);
let op = OutgoingPort::from(0);
let (tgt, ip) = h.linked_inputs(cond.node(), op).next().unwrap();
let new_out_edge = NewEdgeSpec {
src: r1.node(),
tgt,
kind: NewEdgeKind::Value {
src_pos: op,
tgt_pos: ip,
},
};
assert_eq!(
check_same_errors(Replacement {
mu_out: vec![new_out_edge.clone()],
..rep.clone()
}),
ReplaceError::BadEdgeKind(Direction::Outgoing, new_out_edge)
);
}
}