hugr_core/builder/circuit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
use std::collections::HashMap;
use std::mem;
use thiserror::Error;
use crate::ops::{NamedOp, OpType, Value};
use crate::utils::collect_array;
use super::{BuildError, Dataflow};
use crate::{CircuitUnit, Wire};
/// Builder to build regions of dataflow graphs that look like Circuits,
/// where some inputs of operations directly correspond to some outputs.
/// Allows appending operations by indexing a vector of input wires.
#[derive(Debug, PartialEq)]
pub struct CircuitBuilder<'a, T: ?Sized> {
/// List of wires that are being tracked, identified by their index in the vector.
///
/// Terminating wires may create holes in the vector, but the indices are stable.
wires: Vec<Option<Wire>>,
builder: &'a mut T,
}
#[derive(Debug, Clone, PartialEq, Error)]
/// Error in [`CircuitBuilder`]
#[non_exhaustive]
pub enum CircuitBuildError {
/// Invalid index for stored wires.
#[error("Invalid wire index {invalid_index} while attempting to add operation {}.", .op.as_ref().map(|o| o.name()).unwrap_or_default())]
InvalidWireIndex {
/// The operation.
op: Option<OpType>,
/// The invalid indices.
invalid_index: usize,
},
/// Some linear inputs had no corresponding output wire.
#[error("The linear inputs {:?} had no corresponding output wire in operation {}.", .index.as_slice(), .op.name())]
MismatchedLinearInputs {
/// The operation.
op: OpType,
/// The index of the input that had no corresponding output wire.
index: Vec<usize>,
},
}
impl<'a, T: Dataflow + ?Sized> CircuitBuilder<'a, T> {
/// Construct a new [`CircuitBuilder`] from a vector of incoming wires and the
/// builder for the graph.
pub fn new(wires: impl IntoIterator<Item = Wire>, builder: &'a mut T) -> Self {
Self {
wires: wires.into_iter().map(Some).collect(),
builder,
}
}
/// Returns the number of wires tracked.
#[must_use]
pub fn n_wires(&self) -> usize {
self.wires.iter().flatten().count()
}
/// Returns the wire associated with the given index.
#[must_use]
pub fn tracked_wire(&self, index: usize) -> Option<Wire> {
self.wires.get(index).copied().flatten()
}
/// Returns an iterator over the tracked linear units.
pub fn tracked_units(&self) -> impl Iterator<Item = usize> + '_ {
self.wires
.iter()
.enumerate()
.filter_map(|(i, w)| w.map(|_| i))
}
/// Returns an array with the tracked linear units.
///
/// # Panics
///
/// If the number of outputs does not match `N`.
#[must_use]
pub fn tracked_units_arr<const N: usize>(&self) -> [usize; N] {
collect_array(self.tracked_units())
}
#[inline]
/// Append an op to the wires in the inner vector with given `indices`.
/// The outputs of the operation become the new wires at those indices.
/// Only valid for operations that have the same input type row as output
/// type row.
/// Returns a handle to self to allow chaining.
pub fn append(
&mut self,
op: impl Into<OpType>,
indices: impl IntoIterator<Item = usize> + Clone,
) -> Result<&mut Self, BuildError> {
self.append_and_consume(op, indices)
}
#[inline]
/// The same as [`CircuitBuilder::append_with_outputs`] except it assumes no outputs and
/// instead returns a reference to self to allow chaining.
pub fn append_and_consume<A: Into<CircuitUnit>>(
&mut self,
op: impl Into<OpType>,
inputs: impl IntoIterator<Item = A>,
) -> Result<&mut Self, BuildError> {
self.append_with_outputs(op, inputs)?;
Ok(self)
}
/// Append an `op` with some inputs being the stored wires.
/// Any inputs of the form [`CircuitUnit::Linear`] are used to index the
/// stored wires.
/// The outputs at those indices are used to replace the stored wire.
/// The remaining outputs are returned.
///
/// # Errors
///
/// Returns an error on an invalid input unit.
pub fn append_with_outputs<A: Into<CircuitUnit>>(
&mut self,
op: impl Into<OpType>,
inputs: impl IntoIterator<Item = A>,
) -> Result<Vec<Wire>, BuildError> {
// map of linear port offset to wire vector index
let mut linear_inputs = HashMap::new();
let op = op.into();
let input_wires: Result<Vec<Wire>, usize> = inputs
.into_iter()
.map(Into::into)
.enumerate()
.map(|(input_port, a_w): (usize, CircuitUnit)| match a_w {
CircuitUnit::Wire(wire) => Ok(wire),
CircuitUnit::Linear(wire_index) => {
linear_inputs.insert(input_port, wire_index);
self.tracked_wire(wire_index).ok_or(wire_index)
}
})
.collect();
let input_wires =
input_wires.map_err(|invalid_index| CircuitBuildError::InvalidWireIndex {
op: Some(op.clone()),
invalid_index,
})?;
let output_wires = self
.builder
.add_dataflow_op(
op.clone(), // TODO: Add extension param
input_wires,
)?
.outputs();
let nonlinear_outputs: Vec<Wire> = output_wires
.enumerate()
.filter_map(|(output_port, wire)| {
if let Some(wire_index) = linear_inputs.remove(&output_port) {
// output at output_port replaces input wire from same port
self.wires[wire_index] = Some(wire);
None
} else {
Some(wire)
}
})
.collect();
if !linear_inputs.is_empty() {
return Err(CircuitBuildError::MismatchedLinearInputs {
op,
index: linear_inputs.values().copied().collect(),
}
.into());
}
Ok(nonlinear_outputs)
}
/// Append an `op` with some inputs being the stored wires.
/// Any inputs of the form [`CircuitUnit::Linear`] are used to index the
/// stored wires.
/// The outputs at those indices are used to replace the stored wire.
/// The remaining outputs are returned as an array.
///
/// # Errors
///
/// Returns an error on an invalid input unit.
///
/// # Panics
///
/// If the number of outputs does not match `N`.
pub fn append_with_outputs_arr<const N: usize, A: Into<CircuitUnit>>(
&mut self,
op: impl Into<OpType>,
inputs: impl IntoIterator<Item = A>,
) -> Result<[Wire; N], BuildError> {
let outputs = self.append_with_outputs(op, inputs)?;
Ok(collect_array(outputs))
}
/// Adds a constant value to the circuit and loads it into a wire.
pub fn add_constant(&mut self, value: impl Into<Value>) -> Wire {
self.builder.add_load_value(value)
}
/// Add a wire to the list of tracked wires.
///
/// Returns the new unit index.
pub fn track_wire(&mut self, wire: Wire) -> usize {
self.wires.push(Some(wire));
self.wires.len() - 1
}
/// Stops tracking a linear unit, and returns the last wire corresponding to it.
///
/// Returns the new unit index.
///
/// # Errors
///
/// Returns a [`CircuitBuildError::InvalidWireIndex`] if the index is invalid.
pub fn untrack_wire(&mut self, index: usize) -> Result<Wire, CircuitBuildError> {
self.wires
.get_mut(index)
.and_then(mem::take)
.ok_or(CircuitBuildError::InvalidWireIndex {
op: None,
invalid_index: index,
})
}
#[inline]
/// Finish building the circuit region and return the dangling wires
/// that correspond to the initially provided wires.
pub fn finish(self) -> Vec<Wire> {
self.wires.into_iter().flatten().collect()
}
}
#[cfg(test)]
mod test {
use super::*;
use cool_asserts::assert_matches;
use crate::extension::{ExtensionId, ExtensionSet};
use crate::std_extensions::arithmetic::float_types::{self, ConstF64};
use crate::utils::test_quantum_extension::{
self, cx_gate, h_gate, measure, q_alloc, q_discard, rz_f64,
};
use crate::Extension;
use crate::{
builder::{
test::{build_main, NAT, QB},
DataflowSubContainer,
},
extension::prelude::BOOL_T,
type_row,
types::Signature,
};
#[test]
fn simple_linear() {
let build_res = build_main(
Signature::new(type_row![QB, QB], type_row![QB, QB])
.with_extension_delta(test_quantum_extension::EXTENSION_ID)
.with_extension_delta(float_types::EXTENSION_ID)
.into(),
|mut f_build| {
let wires = f_build.input_wires().map(Some).collect();
let mut linear = CircuitBuilder {
wires,
builder: &mut f_build,
};
assert_eq!(linear.n_wires(), 2);
linear
.append(h_gate(), [0])?
.append(cx_gate(), [0, 1])?
.append(cx_gate(), [1, 0])?;
let angle = linear.add_constant(ConstF64::new(0.5));
linear.append_and_consume(
rz_f64(),
[CircuitUnit::Linear(0), CircuitUnit::Wire(angle)],
)?;
let outs = linear.finish();
f_build.finish_with_outputs(outs)
},
);
assert_matches!(build_res, Ok(_));
}
#[test]
fn with_nonlinear_and_outputs() {
let my_ext_name: ExtensionId = "MyExt".try_into().unwrap();
let mut my_ext = Extension::new_test(my_ext_name.clone());
let my_custom_op = my_ext.simple_ext_op("MyOp", Signature::new(vec![QB, NAT], vec![QB]));
let build_res = build_main(
Signature::new(type_row![QB, QB, NAT], type_row![QB, QB, BOOL_T])
.with_extension_delta(ExtensionSet::from_iter([
test_quantum_extension::EXTENSION_ID,
my_ext_name,
]))
.into(),
|mut f_build| {
let [q0, q1, angle]: [Wire; 3] = f_build.input_wires_arr();
let mut linear = f_build.as_circuit([q0, q1]);
let measure_out = linear
.append(cx_gate(), [0, 1])?
.append_and_consume(
my_custom_op,
[CircuitUnit::Linear(0), CircuitUnit::Wire(angle)],
)?
.append_with_outputs(measure(), [0])?;
let out_qbs = linear.finish();
f_build.finish_with_outputs(out_qbs.into_iter().chain(measure_out))
},
);
assert_matches!(build_res, Ok(_));
}
#[test]
fn ancillae() {
let build_res = build_main(
Signature::new_endo(QB)
.with_extension_delta(test_quantum_extension::EXTENSION_ID)
.into(),
|mut f_build| {
let mut circ = f_build.as_circuit(f_build.input_wires());
assert_eq!(circ.n_wires(), 1);
let [q0] = circ.tracked_units_arr();
let [ancilla] = circ.append_with_outputs_arr(q_alloc(), [] as [CircuitUnit; 0])?;
let ancilla = circ.track_wire(ancilla);
assert_ne!(ancilla, 0);
assert_eq!(circ.n_wires(), 2);
assert_eq!(circ.tracked_units_arr(), [q0, ancilla]);
circ.append(cx_gate(), [q0, ancilla])?;
let [_bit] = circ.append_with_outputs_arr(measure(), [q0])?;
let q0 = circ.untrack_wire(q0)?;
assert_eq!(circ.tracked_units_arr(), [ancilla]);
circ.append_and_consume(q_discard(), [q0])?;
let outs = circ.finish();
assert_eq!(outs.len(), 1);
f_build.finish_with_outputs(outs)
},
);
assert_matches!(build_res, Ok(_));
}
#[test]
fn circuit_builder_errors() {
let _build_res = build_main(
Signature::new_endo(type_row![QB, QB]).into(),
|mut f_build| {
let mut circ = f_build.as_circuit(f_build.input_wires());
let [q0, q1] = circ.tracked_units_arr();
let invalid_index = 0xff;
// Passing an invalid linear index returns an error
assert_matches!(
circ.append(cx_gate(), [q0, invalid_index]),
Err(BuildError::CircuitError(CircuitBuildError::InvalidWireIndex { op, invalid_index: idx }))
if op == Some(cx_gate().into()) && idx == invalid_index,
);
// Untracking an invalid index returns an error
assert_matches!(
circ.untrack_wire(invalid_index),
Err(CircuitBuildError::InvalidWireIndex { op: None, invalid_index: idx })
if idx == invalid_index,
);
// Passing a linear index to an operation without a corresponding output returns an error
assert_matches!(
circ.append(q_discard(), [q1]),
Err(BuildError::CircuitError(CircuitBuildError::MismatchedLinearInputs { op, index }))
if op == q_discard().into() && index == [q1],
);
let outs = circ.finish();
assert_eq!(outs.len(), 2);
f_build.finish_with_outputs(outs)
},
);
// We do not test the build output, as the internal errors may have left
// the hugr in an invalid state.
}
}