1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//! The Hugr data structure, and its basic component handles.

pub mod hugrmut;

pub(crate) mod ident;
pub mod internal;
pub mod rewrite;
pub mod serialize;
pub mod validate;
pub mod views;

#[cfg(feature = "extension_inference")]
use std::collections::HashMap;
use std::collections::VecDeque;
use std::iter;

pub(crate) use self::hugrmut::HugrMut;
pub use self::validate::ValidationError;

pub use ident::{IdentList, InvalidIdentifier};
pub use rewrite::{Rewrite, SimpleReplacement, SimpleReplacementError};

use portgraph::multiportgraph::MultiPortGraph;
use portgraph::{Hierarchy, PortMut, UnmanagedDenseMap};
use thiserror::Error;

pub use self::views::{HugrView, RootTagged};
use crate::core::NodeIndex;
#[cfg(feature = "extension_inference")]
use crate::extension::infer_extensions;
use crate::extension::{ExtensionRegistry, ExtensionSet, ExtensionSolution, InferExtensionError};
use crate::ops::custom::resolve_extension_ops;
use crate::ops::{OpTag, OpTrait, OpType, DEFAULT_OPTYPE};
use crate::types::FunctionType;
use crate::{Direction, Node};

use delegate::delegate;

/// The Hugr data structure.
#[derive(Clone, Debug, PartialEq)]
pub struct Hugr {
    /// The graph encoding the adjacency structure of the HUGR.
    graph: MultiPortGraph,

    /// The node hierarchy.
    hierarchy: Hierarchy,

    /// The single root node in the hierarchy.
    root: portgraph::NodeIndex,

    /// Operation types for each node.
    op_types: UnmanagedDenseMap<portgraph::NodeIndex, NodeType>,

    /// Node metadata
    metadata: UnmanagedDenseMap<portgraph::NodeIndex, Option<NodeMetadataMap>>,
}

#[derive(Clone, Debug, Default, PartialEq, serde::Serialize, serde::Deserialize)]
/// The type of a node on a graph. In addition to the [`OpType`], it also
/// describes the extensions inferred to be used by the node.
pub struct NodeType {
    /// The underlying OpType
    op: OpType,
    /// The extensions that the signature has been specialised to
    input_extensions: Option<ExtensionSet>,
}

/// The default NodeType, with open extensions
pub const DEFAULT_NODETYPE: NodeType = NodeType {
    op: DEFAULT_OPTYPE,
    input_extensions: None, // Default for any Option
};

impl NodeType {
    /// Create a new optype with some ExtensionSet
    pub fn new(op: impl Into<OpType>, input_extensions: impl Into<Option<ExtensionSet>>) -> Self {
        NodeType {
            op: op.into(),
            input_extensions: input_extensions.into(),
        }
    }

    /// Instantiate an OpType with no input extensions
    pub fn new_pure(op: impl Into<OpType>) -> Self {
        NodeType {
            op: op.into(),
            input_extensions: Some(ExtensionSet::new()),
        }
    }

    /// Instantiate an OpType with an unknown set of input extensions
    /// (to be inferred later)
    pub fn new_open(op: impl Into<OpType>) -> Self {
        NodeType {
            op: op.into(),
            input_extensions: None,
        }
    }

    /// Instantiate an [OpType] with the default set of input extensions
    /// for that OpType.
    pub fn new_auto(op: impl Into<OpType>) -> Self {
        let op = op.into();
        if OpTag::ModuleOp.is_superset(op.tag()) {
            Self::new_pure(op)
        } else {
            Self::new_open(op)
        }
    }

    /// Get the function type from the embedded op
    pub fn op_signature(&self) -> Option<FunctionType> {
        self.op.dataflow_signature()
    }

    /// The input extensions defined for this node.
    ///
    /// The output extensions will correspond to the input extensions plus any
    /// extension delta defined by the operation type.
    ///
    /// If the input extensions are not known, this will return None.
    pub fn input_extensions(&self) -> Option<&ExtensionSet> {
        self.input_extensions.as_ref()
    }

    /// The input and output extensions for this node, if set.
    ///
    /// `None`` if the [Self::input_extensions] is `None`.
    /// Otherwise, will return Some, with the output extensions computed from the node's delta
    pub fn io_extensions(&self) -> Option<(ExtensionSet, ExtensionSet)> {
        self.input_extensions
            .clone()
            .map(|e| (e.clone(), self.op.extension_delta().union(e)))
    }

    /// Gets the underlying [OpType] i.e. without any [input_extensions]
    ///
    /// [input_extensions]: NodeType::input_extensions
    pub fn op(&self) -> &OpType {
        &self.op
    }

    /// Returns the underlying [OpType] i.e. without any [input_extensions]
    ///
    /// [input_extensions]: NodeType::input_extensions
    pub fn into_op(self) -> OpType {
        self.op
    }

    delegate! {
        to self.op {
            /// Tag identifying the operation.
            pub fn tag(&self) -> OpTag;
            /// Returns the number of inputs ports for the operation.
            pub fn input_count(&self) -> usize;
            /// Returns the number of outputs ports for the operation.
            pub fn output_count(&self) -> usize;
        }
    }
}

impl<T: Into<OpType>> From<T> for NodeType {
    fn from(value: T) -> Self {
        NodeType::new_auto(value.into())
    }
}

impl Default for Hugr {
    fn default() -> Self {
        Self::new(NodeType::new_pure(crate::ops::Module))
    }
}

impl AsRef<Hugr> for Hugr {
    fn as_ref(&self) -> &Hugr {
        self
    }
}

impl AsMut<Hugr> for Hugr {
    fn as_mut(&mut self) -> &mut Hugr {
        self
    }
}

/// Arbitrary metadata entry for a node.
///
/// Each entry is associated to a string key.
pub type NodeMetadata = serde_json::Value;

/// The container of all the metadata entries for a node.
pub type NodeMetadataMap = serde_json::Map<String, NodeMetadata>;

/// Public API for HUGRs.
impl Hugr {
    /// Create a new Hugr, with a single root node.
    pub fn new(root_node: NodeType) -> Self {
        Self::with_capacity(root_node, 0, 0)
    }

    /// Resolve extension ops, infer extensions used, and pass the closure into validation
    pub fn update_validate(
        &mut self,
        extension_registry: &ExtensionRegistry,
    ) -> Result<(), ValidationError> {
        resolve_extension_ops(self, extension_registry)?;
        self.validate_no_extensions(extension_registry)?;
        #[cfg(feature = "extension_inference")]
        {
            self.infer_extensions()?;
            self.validate_extensions(HashMap::new())?;
        }
        Ok(())
    }

    /// Infer extension requirements and add new information to `op_types` field
    /// (if the "extension_inference" feature is on; otherwise, do nothing)
    pub fn infer_extensions(&mut self) -> Result<(), InferExtensionError> {
        #[cfg(feature = "extension_inference")]
        {
            let solution = infer_extensions(self)?;
            self.instantiate_extensions(&solution);
        }
        Ok(())
    }

    #[allow(dead_code)]
    /// Add extension requirement information to the hugr in place.
    fn instantiate_extensions(&mut self, solution: &ExtensionSolution) {
        // We only care about inferred _input_ extensions, because `NodeType`
        // uses those to infer the output extensions
        for (node, input_extensions) in solution.iter() {
            let nodetype = self.op_types.try_get_mut(node.pg_index()).unwrap();
            match &nodetype.input_extensions {
                None => nodetype.input_extensions = Some(input_extensions.clone()),
                Some(existing_ext_reqs) => {
                    debug_assert_eq!(existing_ext_reqs, input_extensions)
                }
            }
        }
    }
}

/// Internal API for HUGRs, not intended for use by users.
impl Hugr {
    /// Create a new Hugr, with a single root node and preallocated capacity.
    // TODO: Make this take a NodeType
    pub(crate) fn with_capacity(root_node: NodeType, nodes: usize, ports: usize) -> Self {
        let mut graph = MultiPortGraph::with_capacity(nodes, ports);
        let hierarchy = Hierarchy::new();
        let mut op_types = UnmanagedDenseMap::with_capacity(nodes);
        let root = graph.add_node(0, 0);
        // TODO: These extensions should be open in principle, but lets wait
        // until extensions can be inferred for open sets until changing this
        op_types[root] = root_node;

        Self {
            graph,
            hierarchy,
            root,
            op_types,
            metadata: UnmanagedDenseMap::with_capacity(nodes),
        }
    }

    /// Add a node to the graph.
    pub(crate) fn add_node(&mut self, nodetype: NodeType) -> Node {
        let node = self
            .graph
            .add_node(nodetype.input_count(), nodetype.output_count());
        self.op_types[node] = nodetype;
        node.into()
    }

    /// Produce a canonical ordering of the descendant nodes of a root,
    /// following the graph hierarchy.
    ///
    /// This starts with the root, and then proceeds in BFS order through the
    /// contained regions.
    ///
    /// Used by [`HugrMut::canonicalize_nodes`] and the serialization code.
    fn canonical_order(&self, root: Node) -> impl Iterator<Item = Node> + '_ {
        // Generate a BFS-ordered list of nodes based on the hierarchy
        let mut queue = VecDeque::from([root]);
        iter::from_fn(move || {
            let node = queue.pop_front()?;
            for child in self.children(node) {
                queue.push_back(child);
            }
            Some(node)
        })
    }

    /// Compact the nodes indices of the hugr to be contiguous, and order them as a breadth-first
    /// traversal of the hierarchy.
    ///
    /// The rekey function is called for each moved node with the old and new indices.
    ///
    /// After this operation, a serialization and deserialization of the Hugr is guaranteed to
    /// preserve the indices.
    pub fn canonicalize_nodes(&mut self, mut rekey: impl FnMut(Node, Node)) {
        // Generate the ordered list of nodes
        let mut ordered = Vec::with_capacity(self.node_count());
        let root = self.root();
        ordered.extend(self.as_mut().canonical_order(root));

        // Permute the nodes in the graph to match the order.
        //
        // Invariant: All the elements before `position` are in the correct place.
        for position in 0..ordered.len() {
            // Find the element's location. If it originally came from a previous position
            // then it has been swapped somewhere else, so we follow the permutation chain.
            let mut source: Node = ordered[position];
            while position > source.index() {
                source = ordered[source.index()];
            }

            let target: Node = portgraph::NodeIndex::new(position).into();
            if target != source {
                let pg_target = target.pg_index();
                let pg_source = source.pg_index();
                self.graph.swap_nodes(pg_target, pg_source);
                self.op_types.swap(pg_target, pg_source);
                self.hierarchy.swap_nodes(pg_target, pg_source);
                rekey(source, target);
            }
        }
        self.root = portgraph::NodeIndex::new(0);

        // Finish by compacting the copy nodes.
        // The operation nodes will be left in place.
        // This step is not strictly necessary.
        self.graph.compact_nodes(|_, _| {});
    }
}

/// Errors that can occur while manipulating a Hugr.
///
/// TODO: Better descriptions, not just re-exporting portgraph errors.
#[derive(Debug, Clone, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum HugrError {
    /// The node was not of the required [OpTag]
    /// (e.g. to conform to the [RootTagged::RootHandle] of a [HugrView])
    #[error("Invalid tag: required a tag in {required} but found {actual}")]
    #[allow(missing_docs)]
    InvalidTag { required: OpTag, actual: OpTag },
    /// An invalid port was specified.
    #[error("Invalid port direction {0:?}.")]
    InvalidPortDirection(Direction),
}

#[cfg(test)]
mod test {
    use super::{Hugr, HugrView};
    #[cfg(feature = "extension_inference")]
    use std::error::Error;

    #[test]
    fn impls_send_and_sync() {
        // Send and Sync are automatically impl'd by the compiler, if possible.
        // This test will fail to compile if that wasn't possible.
        #[allow(dead_code)]
        trait Test: Send + Sync {}
        impl Test for Hugr {}
    }

    #[test]
    fn io_node() {
        use crate::builder::test::simple_dfg_hugr;
        use cool_asserts::assert_matches;

        let hugr = simple_dfg_hugr();
        assert_matches!(hugr.get_io(hugr.root()), Some(_));
    }

    #[cfg(feature = "extension_inference")]
    #[test]
    fn extension_instantiation() -> Result<(), Box<dyn Error>> {
        use crate::builder::test::closed_dfg_root_hugr;
        use crate::extension::ExtensionSet;
        use crate::hugr::HugrMut;
        use crate::ops::Lift;
        use crate::type_row;
        use crate::types::{FunctionType, Type};

        const BIT: Type = crate::extension::prelude::USIZE_T;
        let r = ExtensionSet::singleton(&"R".try_into().unwrap());

        let mut hugr = closed_dfg_root_hugr(
            FunctionType::new(type_row![BIT], type_row![BIT]).with_extension_delta(r.clone()),
        );
        let [input, output] = hugr.get_io(hugr.root()).unwrap();
        let lift = hugr.add_node_with_parent(
            hugr.root(),
            Lift {
                type_row: type_row![BIT],
                new_extension: "R".try_into().unwrap(),
            },
        );
        hugr.connect(input, 0, lift, 0);
        hugr.connect(lift, 0, output, 0);
        hugr.infer_extensions()?;

        assert_eq!(
            hugr.get_nodetype(lift).input_extensions().unwrap(),
            &ExtensionSet::new()
        );
        assert_eq!(hugr.get_nodetype(output).input_extensions().unwrap(), &r);
        Ok(())
    }
}