1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
//! Views for HUGR sibling subgraphs.
//!
//! Views into convex subgraphs of HUGRs within a single level of the
//! hierarchy, i.e. within a sibling graph. Convex subgraph are always
//! induced subgraphs, i.e. they are defined by a subset of the sibling nodes.
//!
//! Sibling subgraphs complement [`super::HierarchyView`]s in the sense that the
//! latter provide views for subgraphs defined by hierarchical relationships,
//! while the former provide views for subgraphs within a single level of the
//! hierarchy.
use std::collections::HashSet;
use std::mem;
use itertools::Itertools;
use portgraph::algorithms::ConvexChecker;
use portgraph::{view::Subgraph, Direction, PortView};
use thiserror::Error;
use crate::builder::{Container, FunctionBuilder};
use crate::hugr::{HugrMut, HugrView, RootTagged};
use crate::ops::dataflow::DataflowOpTrait;
use crate::ops::handle::{ContainerHandle, DataflowOpID};
use crate::ops::{OpTag, OpTrait};
use crate::types::{FunctionType, Type};
use crate::{Hugr, IncomingPort, Node, OutgoingPort, Port, SimpleReplacement};
/// A non-empty convex subgraph of a HUGR sibling graph.
///
/// A HUGR region in which all nodes share the same parent. Unlike
/// [`super::SiblingGraph`], not all nodes of the sibling graph must be
/// included. A convex subgraph is always an induced subgraph, i.e. it is defined
/// by a set of nodes and all edges between them.
///
/// The incoming boundary (resp. outgoing boundary) is given by the input (resp.
/// output) ports of the subgraph that are linked to nodes outside of the subgraph.
/// The signature of the subgraph is then given by the types of the incoming
/// and outgoing boundary ports. Given a replacement with the same signature,
/// a [`SimpleReplacement`] can be constructed to rewrite the subgraph with the
/// replacement.
///
/// The ordering of the nodes in the subgraph is irrelevant to define the convex
/// subgraph, but it determines the ordering of the boundary signature.
///
/// No reference to the underlying graph is kept. Thus most of the subgraph
/// methods expect a reference to the Hugr as an argument.
///
/// At the moment we do not support state order edges at the subgraph boundary.
/// The `boundary_port` and `signature` methods will panic if any are found.
/// State order edges are also unsupported in replacements in
/// `create_simple_replacement`.
// TODO: implement a borrowing wrapper that implements a view into the Hugr
// given a reference.
#[derive(Clone, Debug)]
pub struct SiblingSubgraph {
/// The nodes of the induced subgraph.
nodes: Vec<Node>,
/// The input ports of the subgraph.
///
/// Grouped by input parameter. Each port must be unique and belong to a
/// node in `nodes`.
inputs: Vec<Vec<(Node, IncomingPort)>>,
/// The output ports of the subgraph.
///
/// Repeated ports are allowed and correspond to copying the output. Every
/// port must belong to a node in `nodes`.
outputs: Vec<(Node, OutgoingPort)>,
}
/// The type of the incoming boundary of [`SiblingSubgraph`].
///
/// The nested vec represents a partition of the incoming boundary ports by
/// input parameter. A set in the partition that has more than one element
/// corresponds to an input parameter that is copied and useful multiple times
/// in the subgraph.
pub type IncomingPorts = Vec<Vec<(Node, IncomingPort)>>;
/// The type of the outgoing boundary of [`SiblingSubgraph`].
pub type OutgoingPorts = Vec<(Node, OutgoingPort)>;
impl SiblingSubgraph {
/// A sibling subgraph from a [`crate::ops::OpTag::DataflowParent`]-rooted
/// HUGR.
///
/// The subgraph is given by the nodes between the input and output children
/// nodes of the root node. If you wish to create a subgraph from another
/// root, wrap the `region` argument in a [`super::SiblingGraph`].
///
/// Wires connecting the input and output nodes are ignored. Note that due
/// to this the resulting subgraph's signature may not match the signature
/// of the dataflow parent.
///
/// This will return an [`InvalidSubgraph::EmptySubgraph`] error if the
/// subgraph is empty.
pub fn try_new_dataflow_subgraph<H, Root>(dfg_graph: &H) -> Result<Self, InvalidSubgraph>
where
H: Clone + RootTagged<RootHandle = Root>,
Root: ContainerHandle<ChildrenHandle = DataflowOpID>,
{
let parent = dfg_graph.root();
let nodes = dfg_graph.children(parent).skip(2).collect_vec();
let (inputs, outputs) = get_input_output_ports(dfg_graph);
validate_subgraph(dfg_graph, &nodes, &inputs, &outputs)?;
if nodes.is_empty() {
Err(InvalidSubgraph::EmptySubgraph)
} else {
Ok(Self {
nodes,
inputs,
outputs,
})
}
}
/// Create a new convex sibling subgraph from input and output boundaries.
///
/// Any sibling subgraph can be defined using two sets of boundary edges
/// $B_I$ and $B_O$, the incoming and outgoing boundary edges respectively.
/// Intuitively, the sibling subgraph is all the edges and nodes "between"
/// an edge of $B_I$ and an edge of $B_O$.
///
/// ## Definition
///
/// More formally, the sibling subgraph of a graph $G = (V, E)$ given
/// by sets of incoming and outgoing boundary edges $B_I, B_O \subseteq E$
/// is the graph given by the connected components of the graph
/// $G' = (V, E \ B_I \ B_O)$ that contain at least one node that is either
/// - the target of an incoming boundary edge, or
/// - the source of an outgoing boundary edge.
///
/// A subgraph is well-formed if for every edge in the HUGR
/// - it is in $B_I$ if and only if it has a source outside of the subgraph
/// and a target inside of it, and
/// - it is in $B_O$ if and only if it has a source inside of the subgraph
/// and a target outside of it.
///
/// ## Arguments
///
/// The `incoming` and `outgoing` arguments give $B_I$ and $B_O$ respectively.
/// Incoming edges must be given by incoming ports and outgoing edges by
/// outgoing ports. The ordering of the incoming and outgoing ports defines
/// the signature of the subgraph.
///
/// Incoming boundary ports must be unique and partitioned by input
/// parameter: two ports within the same set of the partition must be
/// copyable and will result in the input being copied. Outgoing
/// boundary ports are given in a list and can appear multiple times if
/// they are copyable, in which case the output will be copied.
///
/// ## Errors
///
/// This function fails if the subgraph is not convex, if the nodes
/// do not share a common parent or if the subgraph is empty.
pub fn try_new(
incoming: IncomingPorts,
outgoing: OutgoingPorts,
hugr: &impl HugrView,
) -> Result<Self, InvalidSubgraph> {
let checker = TopoConvexChecker::new(hugr);
Self::try_new_with_checker(incoming, outgoing, hugr, &checker)
}
/// Create a new convex sibling subgraph from input and output boundaries.
///
/// Provide a [`ConvexChecker`] instance to avoid constructing one for
/// faster convexity check. If you do not have one, use
/// [`SiblingSubgraph::try_new`].
///
/// Refer to [`SiblingSubgraph::try_new`] for the full
/// documentation.
pub fn try_new_with_checker(
inputs: IncomingPorts,
outputs: OutgoingPorts,
hugr: &impl HugrView,
checker: &impl ConvexChecker,
) -> Result<Self, InvalidSubgraph> {
let pg = hugr.portgraph();
let to_pg = |(n, p): (Node, Port)| {
pg.port_index(n.pg_index(), p.pg_offset())
.expect("invalid port")
};
// Ordering of the edges here is preserved and becomes ordering of the signature.
let subpg =
Subgraph::new_subgraph(pg.clone(), combine_in_out(&inputs, &outputs).map(to_pg));
let nodes = subpg.nodes_iter().map_into().collect_vec();
validate_subgraph(hugr, &nodes, &inputs, &outputs)?;
if !subpg.is_convex_with_checker(checker) {
return Err(InvalidSubgraph::NotConvex);
}
Ok(Self {
nodes,
inputs,
outputs,
})
}
/// Create a subgraph from a set of nodes.
///
/// The incoming boundary is given by the set of edges with a source
/// not in nodes and a target in nodes. Conversely, the outgoing boundary
/// is given by the set of edges with a source in nodes and a target not
/// in nodes.
///
/// The subgraph signature will be given by the types of the incoming and
/// outgoing edges ordered by the node order in `nodes` and within each node
/// by the port order.
/// The in- and out-arity of the signature will match the
/// number of incoming and outgoing edges respectively. In particular, the
/// assumption is made that no two incoming edges have the same source
/// (no copy nodes at the input bounary).
pub fn try_from_nodes(
nodes: impl Into<Vec<Node>>,
hugr: &impl HugrView,
) -> Result<Self, InvalidSubgraph> {
let checker = TopoConvexChecker::new(hugr);
Self::try_from_nodes_with_checker(nodes, hugr, &checker)
}
/// Create a subgraph from a set of nodes.
///
/// Provide a [`ConvexChecker`] instance to avoid constructing one for
/// faster convexity check. If you do not have one, use
/// [`SiblingSubgraph::try_from_nodes`].
///
/// Refer to [`SiblingSubgraph::try_from_nodes`] for the full
/// documentation.
pub fn try_from_nodes_with_checker<'c, 'h: 'c, H: HugrView>(
nodes: impl Into<Vec<Node>>,
hugr: &'h H,
checker: &impl ConvexChecker,
) -> Result<Self, InvalidSubgraph> {
let nodes = nodes.into();
let nodes_set = nodes.iter().copied().collect::<HashSet<_>>();
let incoming_edges = nodes
.iter()
.flat_map(|&n| hugr.node_inputs(n).map(move |p| (n, p)));
let outgoing_edges = nodes
.iter()
.flat_map(|&n| hugr.node_outputs(n).map(move |p| (n, p)));
let inputs = incoming_edges
.filter(|&(n, p)| {
if !hugr.is_linked(n, p) {
return false;
}
let (out_n, _) = hugr.single_linked_output(n, p).unwrap();
!nodes_set.contains(&out_n)
})
// Every incoming edge is its own input.
.map(|p| vec![p])
.collect_vec();
let outputs = outgoing_edges
.filter(|&(n, p)| {
if !hugr.is_linked(n, p) {
return false;
}
// TODO: what if there are multiple outgoing edges?
// See https://github.com/CQCL/hugr/issues/518
let (in_n, _) = hugr.linked_ports(n, p).next().unwrap();
!nodes_set.contains(&in_n)
})
.collect_vec();
Self::try_new_with_checker(inputs, outputs, hugr, checker)
}
/// An iterator over the nodes in the subgraph.
pub fn nodes(&self) -> &[Node] {
&self.nodes
}
/// The number of nodes in the subgraph.
pub fn node_count(&self) -> usize {
self.nodes.len()
}
/// Returns the computed [`IncomingPorts`] of the subgraph.
pub fn incoming_ports(&self) -> &IncomingPorts {
&self.inputs
}
/// Returns the computed [`OutgoingPorts`] of the subgraph.
pub fn outgoing_ports(&self) -> &OutgoingPorts {
&self.outputs
}
/// The signature of the subgraph.
pub fn signature(&self, hugr: &impl HugrView) -> FunctionType {
let input = self
.inputs
.iter()
.map(|part| {
let &(n, p) = part.iter().next().expect("is non-empty");
let sig = hugr.signature(n).expect("must have dataflow signature");
sig.port_type(p).cloned().expect("must be dataflow edge")
})
.collect_vec();
let output = self
.outputs
.iter()
.map(|&(n, p)| {
let sig = hugr.signature(n).expect("must have dataflow signature");
sig.port_type(p).cloned().expect("must be dataflow edge")
})
.collect_vec();
FunctionType::new(input, output)
}
/// The parent of the sibling subgraph.
pub fn get_parent(&self, hugr: &impl HugrView) -> Node {
hugr.get_parent(self.nodes[0]).expect("invalid subgraph")
}
/// Construct a [`SimpleReplacement`] to replace `self` with `replacement`.
///
/// `replacement` must be a hugr with DFG root and its signature must
/// match the signature of the subgraph.
///
/// May return one of the following five errors
/// - [`InvalidReplacement::InvalidDataflowGraph`]: the replacement
/// graph is not a [`crate::ops::OpTag::DataflowParent`]-rooted graph,
/// - [`InvalidReplacement::InvalidDataflowParent`]: the replacement does
/// not have an input and output node,
/// - [`InvalidReplacement::InvalidSignature`]: the signature of the
/// replacement DFG does not match the subgraph signature, or
/// - [`InvalidReplacement::NonConvexSubgraph`]: the sibling subgraph is not
/// convex.
///
/// At the moment we do not support state order edges. If any are found in
/// the replacement graph, this will panic.
pub fn create_simple_replacement(
&self,
hugr: &impl HugrView,
replacement: Hugr,
) -> Result<SimpleReplacement, InvalidReplacement> {
let rep_root = replacement.root();
let dfg_optype = replacement.get_optype(rep_root);
if !OpTag::Dfg.is_superset(dfg_optype.tag()) {
return Err(InvalidReplacement::InvalidDataflowGraph);
}
let Some([rep_input, rep_output]) = replacement.get_io(rep_root) else {
return Err(InvalidReplacement::InvalidDataflowParent);
};
if dfg_optype.dataflow_signature() != Some(self.signature(hugr)) {
return Err(InvalidReplacement::InvalidSignature);
}
// TODO: handle state order edges. For now panic if any are present.
// See https://github.com/CQCL/hugr/discussions/432
let rep_inputs = replacement.node_outputs(rep_input).map(|p| (rep_input, p));
let rep_outputs = replacement.node_inputs(rep_output).map(|p| (rep_output, p));
let (rep_inputs, in_order_ports): (Vec<_>, Vec<_>) = rep_inputs.partition(|&(n, p)| {
replacement
.signature(n)
.is_some_and(|s| s.port_type(p).is_some())
});
let (rep_outputs, out_order_ports): (Vec<_>, Vec<_>) = rep_outputs.partition(|&(n, p)| {
replacement
.signature(n)
.is_some_and(|s| s.port_type(p).is_some())
});
if combine_in_out(&vec![out_order_ports], &in_order_ports)
.any(|(n, p)| is_order_edge(&replacement, n, p))
{
unimplemented!("Found state order edges in replacement graph");
}
let nu_inp = rep_inputs
.into_iter()
.zip_eq(&self.inputs)
.flat_map(|((rep_source_n, rep_source_p), self_targets)| {
replacement
.linked_inputs(rep_source_n, rep_source_p)
.flat_map(move |rep_target| {
self_targets
.iter()
.map(move |&self_target| (rep_target, self_target))
})
})
.collect();
let nu_out = self
.outputs
.iter()
.zip_eq(rep_outputs)
.flat_map(|(&(self_source_n, self_source_p), (_, rep_target_p))| {
hugr.linked_inputs(self_source_n, self_source_p)
.map(move |self_target| (self_target, rep_target_p))
})
.collect();
Ok(SimpleReplacement::new(
self.clone(),
replacement,
nu_inp,
nu_out,
))
}
/// Create a new Hugr containing only the subgraph.
///
/// The new Hugr will contain a [FuncDefn][crate::ops::FuncDefn] root
/// with the same signature as the subgraph and the specified `name`
pub fn extract_subgraph(&self, hugr: &impl HugrView, name: impl Into<String>) -> Hugr {
let mut builder = FunctionBuilder::new(name, self.signature(hugr).into()).unwrap();
// Take the unfinished Hugr from the builder, to avoid unnecessary
// validation checks that require connecting the inputs and outputs.
let mut extracted = mem::take(builder.hugr_mut());
let node_map = extracted.insert_subgraph(extracted.root(), hugr, self);
// Connect the inserted nodes in-between the input and output nodes.
let [inp, out] = extracted.get_io(extracted.root()).unwrap();
for (inp_port, repl_ports) in extracted.node_outputs(inp).zip(self.inputs.iter()) {
for (repl_node, repl_port) in repl_ports {
extracted.connect(inp, inp_port, node_map[repl_node], *repl_port);
}
}
for (out_port, (repl_node, repl_port)) in
extracted.node_inputs(out).zip(self.outputs.iter())
{
extracted.connect(node_map[repl_node], *repl_port, out, out_port);
}
extracted
}
}
fn combine_in_out<'a>(
inputs: &'a IncomingPorts,
outputs: &'a OutgoingPorts,
) -> impl Iterator<Item = (Node, Port)> + 'a {
inputs
.iter()
.flatten()
.map(|(n, p)| (*n, (*p).into()))
.chain(outputs.iter().map(|(n, p)| (*n, (*p).into())))
}
/// Precompute convexity information for a HUGR.
///
/// This can be used when constructing multiple sibling subgraphs to speed up
/// convexity checking.
pub struct TopoConvexChecker<'g, Base: 'g + HugrView>(
portgraph::algorithms::TopoConvexChecker<Base::Portgraph<'g>>,
);
impl<'g, Base: HugrView> TopoConvexChecker<'g, Base> {
/// Create a new convexity checker.
pub fn new(base: &'g Base) -> Self {
let pg = base.portgraph();
Self(portgraph::algorithms::TopoConvexChecker::new(pg))
}
}
impl<'g, Base: HugrView> ConvexChecker for TopoConvexChecker<'g, Base> {
fn is_convex(
&self,
nodes: impl IntoIterator<Item = portgraph::NodeIndex>,
inputs: impl IntoIterator<Item = portgraph::PortIndex>,
outputs: impl IntoIterator<Item = portgraph::PortIndex>,
) -> bool {
self.0.is_convex(nodes, inputs, outputs)
}
}
/// The type of all ports in the iterator.
///
/// If the array is empty or a port does not exist, returns `None`.
fn get_edge_type<H: HugrView, P: Into<Port> + Copy>(hugr: &H, ports: &[(Node, P)]) -> Option<Type> {
let &(n, p) = ports.first()?;
let edge_t = hugr.signature(n)?.port_type(p)?.clone();
ports
.iter()
.all(|&(n, p)| {
hugr.signature(n)
.is_some_and(|s| s.port_type(p) == Some(&edge_t))
})
.then_some(edge_t)
}
/// Whether a subgraph is valid.
///
/// Verifies that input and output ports are valid subgraph boundaries, i.e. they belong
/// to nodes within the subgraph and are linked to at least one node outside of the subgraph.
/// This does NOT check convexity proper, i.e. whether the set of nodes form a convex
/// induced graph.
fn validate_subgraph<H: HugrView>(
hugr: &H,
nodes: &[Node],
inputs: &IncomingPorts,
outputs: &OutgoingPorts,
) -> Result<(), InvalidSubgraph> {
// Copy of the nodes for fast lookup.
let node_set = nodes.iter().copied().collect::<HashSet<_>>();
// Check nodes is not empty
if nodes.is_empty() {
return Err(InvalidSubgraph::EmptySubgraph);
}
// Check all nodes share parent
if !nodes.iter().map(|&n| hugr.get_parent(n)).all_equal() {
return Err(InvalidSubgraph::NoSharedParent);
}
// Check there are no linked "other" ports
if combine_in_out(inputs, outputs).any(|(n, p)| is_order_edge(hugr, n, p)) {
unimplemented!("Connected order edges not supported at the boundary")
}
let boundary_ports = combine_in_out(inputs, outputs).collect_vec();
// Check that the boundary ports are all in the subgraph.
if let Some(&(n, p)) = boundary_ports.iter().find(|(n, _)| !node_set.contains(n)) {
Err(InvalidSubgraphBoundary::PortNodeNotInSet(n, p))?;
};
// Check that every inside port has at least one linked port outside.
if let Some(&(n, p)) = boundary_ports.iter().find(|&&(n, p)| {
hugr.linked_ports(n, p)
.all(|(n1, _)| node_set.contains(&n1))
}) {
Err(InvalidSubgraphBoundary::DisconnectedBoundaryPort(n, p))?;
};
// Check that every incoming port of a node in the subgraph whose source is not in the subgraph
// belongs to inputs.
if nodes.iter().any(|&n| {
hugr.node_inputs(n).any(|p| {
hugr.linked_ports(n, p).any(|(n1, _)| {
!node_set.contains(&n1) && !inputs.iter().any(|nps| nps.contains(&(n, p)))
})
})
}) {
return Err(InvalidSubgraph::NotConvex);
}
// Check that every outgoing port of a node in the subgraph whose target is not in the subgraph
// belongs to outputs.
if nodes.iter().any(|&n| {
hugr.node_outputs(n).any(|p| {
hugr.linked_ports(n, p)
.any(|(n1, _)| !node_set.contains(&n1) && !outputs.contains(&(n, p)))
})
}) {
return Err(InvalidSubgraph::NotConvex);
}
// Check inputs are unique
if !inputs.iter().flatten().all_unique() {
return Err(InvalidSubgraphBoundary::NonUniqueInput.into());
}
// Check no incoming partition is empty
if inputs.iter().any(|p| p.is_empty()) {
return Err(InvalidSubgraphBoundary::EmptyPartition.into());
}
// Check edge types are equal within partition and copyable if partition size > 1
if let Some((i, _)) = inputs.iter().enumerate().find(|(_, ports)| {
let Some(edge_t) = get_edge_type(hugr, ports) else {
return true;
};
let require_copy = ports.len() > 1;
require_copy && !edge_t.copyable()
}) {
Err(InvalidSubgraphBoundary::MismatchedTypes(i))?;
};
Ok(())
}
fn get_input_output_ports<H: HugrView>(hugr: &H) -> (IncomingPorts, OutgoingPorts) {
let [inp, out] = hugr.get_io(hugr.root()).expect("invalid DFG");
if has_other_edge(hugr, inp, Direction::Outgoing) {
unimplemented!("Non-dataflow output not supported at input node")
}
let dfg_inputs = hugr
.get_optype(inp)
.as_input()
.unwrap()
.signature()
.output_ports();
if has_other_edge(hugr, out, Direction::Incoming) {
unimplemented!("Non-dataflow input not supported at output node")
}
let dfg_outputs = hugr
.get_optype(out)
.as_output()
.unwrap()
.signature()
.input_ports();
// Collect for each port in the input the set of target ports, filtering
// direct wires to the output.
let inputs = dfg_inputs
.into_iter()
.map(|p| {
hugr.linked_inputs(inp, p)
.filter(|&(n, _)| n != out)
.collect_vec()
})
.filter(|v| !v.is_empty())
.collect();
// Collect for each port in the output the set of source ports, filtering
// direct wires to the input.
let outputs = dfg_outputs
.into_iter()
.filter_map(|p| hugr.linked_outputs(out, p).find(|&(n, _)| n != inp))
.collect();
(inputs, outputs)
}
/// Whether a port is linked to a state order edge.
fn is_order_edge<H: HugrView>(hugr: &H, node: Node, port: Port) -> bool {
let op = hugr.get_optype(node);
op.other_port(port.direction()) == Some(port) && hugr.is_linked(node, port)
}
/// Whether node has a non-df linked port in the given direction.
fn has_other_edge<H: HugrView>(hugr: &H, node: Node, dir: Direction) -> bool {
let op = hugr.get_optype(node);
op.other_port_kind(dir).is_some() && hugr.is_linked(node, op.other_port(dir).unwrap())
}
/// Errors that can occur while constructing a [`SimpleReplacement`].
#[derive(Debug, Clone, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum InvalidReplacement {
/// No DataflowParent root in replacement graph.
#[error("No DataflowParent root in replacement graph.")]
InvalidDataflowGraph,
/// Malformed DataflowParent in replacement graph.
#[error("Malformed DataflowParent in replacement graph.")]
InvalidDataflowParent,
/// Replacement graph boundary size mismatch.
#[error("Replacement graph boundary size mismatch.")]
InvalidSignature,
/// SiblingSubgraph is not convex.
#[error("SiblingSubgraph is not convex.")]
NonConvexSubgraph,
}
/// Errors that can occur while constructing a [`SiblingSubgraph`].
#[derive(Debug, Clone, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum InvalidSubgraph {
/// The subgraph is not convex.
#[error("The subgraph is not convex.")]
NotConvex,
/// Not all nodes have the same parent.
#[error("Not a sibling subgraph.")]
NoSharedParent,
/// Empty subgraphs are not supported.
#[error("Empty subgraphs are not supported.")]
EmptySubgraph,
/// An invalid boundary port was found.
#[error("Invalid boundary port.")]
InvalidBoundary(#[from] InvalidSubgraphBoundary),
}
/// Errors that can occur while constructing a [`SiblingSubgraph`].
#[derive(Debug, Clone, PartialEq, Eq, Error)]
#[non_exhaustive]
pub enum InvalidSubgraphBoundary {
/// A boundary port's node is not in the set of nodes.
#[error("(node {0:?}, port {1:?}) is in the boundary, but node {0:?} is not in the set.")]
PortNodeNotInSet(Node, Port),
/// A boundary port has no connections outside the subgraph.
#[error("(node {0:?}, port {1:?}) is in the boundary, but the port is not connected to a node outside the subgraph.")]
DisconnectedBoundaryPort(Node, Port),
/// There's a non-unique input-boundary port.
#[error("A port in the input boundary is used multiple times.")]
NonUniqueInput,
/// There's an empty partition in the input boundary.
#[error("A partition in the input boundary is empty.")]
EmptyPartition,
/// Different types in a partition of the input boundary.
#[error("The partition {0} in the input boundary has ports with different types.")]
MismatchedTypes(usize),
}
#[cfg(test)]
mod tests {
use std::error::Error;
use cool_asserts::assert_matches;
use crate::extension::PRELUDE_REGISTRY;
use crate::utils::test_quantum_extension::cx_gate;
use crate::{
builder::{
BuildError, DFGBuilder, Dataflow, DataflowHugr, DataflowSubContainer, HugrBuilder,
ModuleBuilder,
},
extension::{
prelude::{BOOL_T, QB_T},
EMPTY_REG,
},
hugr::views::{HierarchyView, SiblingGraph},
ops::handle::{DfgID, FuncID, NodeHandle},
std_extensions::logic::{test::and_op, NotOp},
type_row,
};
use super::*;
impl SiblingSubgraph {
/// A sibling subgraph from a HUGR.
///
/// The subgraph is given by the sibling graph of the root. If you wish to
/// create a subgraph from another root, wrap the argument `region` in a
/// [`super::SiblingGraph`].
///
/// This will return an [`InvalidSubgraph::EmptySubgraph`] error if the
/// subgraph is empty.
fn from_sibling_graph(sibling_graph: &impl HugrView) -> Result<Self, InvalidSubgraph> {
let root = sibling_graph.root();
let nodes = sibling_graph.children(root).collect_vec();
if nodes.is_empty() {
Err(InvalidSubgraph::EmptySubgraph)
} else {
Ok(Self {
nodes,
inputs: Vec::new(),
outputs: Vec::new(),
})
}
}
}
fn build_hugr() -> Result<(Hugr, Node), BuildError> {
let mut mod_builder = ModuleBuilder::new();
let func = mod_builder.declare(
"test",
FunctionType::new_endo(type_row![QB_T, QB_T, QB_T]).into(),
)?;
let func_id = {
let mut dfg = mod_builder.define_declaration(&func)?;
let [w0, w1, w2] = dfg.input_wires_arr();
let [w0, w1] = dfg.add_dataflow_op(cx_gate(), [w0, w1])?.outputs_arr();
dfg.finish_with_outputs([w0, w1, w2])?
};
let hugr = mod_builder
.finish_prelude_hugr()
.map_err(|e| -> BuildError { e.into() })?;
Ok((hugr, func_id.node()))
}
fn build_3not_hugr() -> Result<(Hugr, Node), BuildError> {
let mut mod_builder = ModuleBuilder::new();
let func = mod_builder.declare("test", FunctionType::new_endo(type_row![BOOL_T]).into())?;
let func_id = {
let mut dfg = mod_builder.define_declaration(&func)?;
let outs1 = dfg.add_dataflow_op(NotOp, dfg.input_wires())?;
let outs2 = dfg.add_dataflow_op(NotOp, outs1.outputs())?;
let outs3 = dfg.add_dataflow_op(NotOp, outs2.outputs())?;
dfg.finish_with_outputs(outs3.outputs())?
};
let hugr = mod_builder
.finish_prelude_hugr()
.map_err(|e| -> BuildError { e.into() })?;
Ok((hugr, func_id.node()))
}
/// A HUGR with a copy
fn build_hugr_classical() -> Result<(Hugr, Node), BuildError> {
let mut mod_builder = ModuleBuilder::new();
let func = mod_builder.declare(
"test",
FunctionType::new(type_row![BOOL_T], type_row![BOOL_T]).into(),
)?;
let func_id = {
let mut dfg = mod_builder.define_declaration(&func)?;
let in_wire = dfg.input_wires().exactly_one().unwrap();
let outs = dfg.add_dataflow_op(and_op(), [in_wire, in_wire])?;
dfg.finish_with_outputs(outs.outputs())?
};
let hugr = mod_builder
.finish_hugr(&EMPTY_REG)
.map_err(|e| -> BuildError { e.into() })?;
Ok((hugr, func_id.node()))
}
#[test]
fn construct_subgraph() -> Result<(), InvalidSubgraph> {
let (hugr, func_root) = build_hugr().unwrap();
let sibling_graph: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, func_root).unwrap();
let from_root = SiblingSubgraph::from_sibling_graph(&sibling_graph)?;
let region: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, func_root).unwrap();
let from_region = SiblingSubgraph::from_sibling_graph(®ion)?;
assert_eq!(
from_root.get_parent(&sibling_graph),
from_region.get_parent(&sibling_graph)
);
assert_eq!(
from_root.signature(&sibling_graph),
from_region.signature(&sibling_graph)
);
Ok(())
}
#[test]
fn construct_simple_replacement() -> Result<(), InvalidSubgraph> {
let (mut hugr, func_root) = build_hugr().unwrap();
let func: SiblingGraph<'_, FuncID<true>> = SiblingGraph::try_new(&hugr, func_root).unwrap();
let sub = SiblingSubgraph::try_new_dataflow_subgraph(&func)?;
let empty_dfg = {
let builder = DFGBuilder::new(FunctionType::new_endo(type_row![QB_T, QB_T])).unwrap();
let inputs = builder.input_wires();
builder.finish_prelude_hugr_with_outputs(inputs).unwrap()
};
let rep = sub.create_simple_replacement(&func, empty_dfg).unwrap();
assert_eq!(rep.subgraph().nodes().len(), 1);
assert_eq!(hugr.node_count(), 5); // Module + Def + In + CX + Out
hugr.apply_rewrite(rep).unwrap();
assert_eq!(hugr.node_count(), 4); // Module + Def + In + Out
Ok(())
}
#[test]
fn test_signature() -> Result<(), InvalidSubgraph> {
let (hugr, dfg) = build_hugr().unwrap();
let func: SiblingGraph<'_, FuncID<true>> = SiblingGraph::try_new(&hugr, dfg).unwrap();
let sub = SiblingSubgraph::try_new_dataflow_subgraph(&func)?;
// The identity wire on the third qubit is ignored, so the subgraph's signature only contains
// the first two qubits.
assert_eq!(
sub.signature(&func),
FunctionType::new_endo(type_row![QB_T, QB_T])
);
Ok(())
}
#[test]
fn construct_simple_replacement_invalid_signature() -> Result<(), InvalidSubgraph> {
let (hugr, dfg) = build_hugr().unwrap();
let func: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, dfg).unwrap();
let sub = SiblingSubgraph::from_sibling_graph(&func)?;
let empty_dfg = {
let builder = DFGBuilder::new(FunctionType::new_endo(type_row![QB_T])).unwrap();
let inputs = builder.input_wires();
builder.finish_prelude_hugr_with_outputs(inputs).unwrap()
};
assert_eq!(
sub.create_simple_replacement(&func, empty_dfg).unwrap_err(),
InvalidReplacement::InvalidSignature
);
Ok(())
}
#[test]
fn convex_subgraph() {
let (hugr, func_root) = build_hugr().unwrap();
let func: SiblingGraph<'_, FuncID<true>> = SiblingGraph::try_new(&hugr, func_root).unwrap();
assert_eq!(
SiblingSubgraph::try_new_dataflow_subgraph(&func)
.unwrap()
.nodes()
.len(),
1
)
}
#[test]
fn convex_subgraph_2() {
let (hugr, func_root) = build_hugr().unwrap();
let [inp, out] = hugr.get_io(func_root).unwrap();
let func: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, func_root).unwrap();
// All graph except input/output nodes
SiblingSubgraph::try_new(
hugr.node_outputs(inp)
.take(2)
.map(|p| hugr.linked_inputs(inp, p).collect_vec())
.filter(|ps| !ps.is_empty())
.collect(),
hugr.node_inputs(out)
.take(2)
.filter_map(|p| hugr.single_linked_output(out, p))
.collect(),
&func,
)
.unwrap();
}
#[test]
fn degen_boundary() {
let (hugr, func_root) = build_hugr().unwrap();
let func: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, func_root).unwrap();
let [inp, _] = hugr.get_io(func_root).unwrap();
let first_cx_edge = hugr.node_outputs(inp).next().unwrap();
// All graph but one edge
assert_matches!(
SiblingSubgraph::try_new(
vec![hugr
.linked_ports(inp, first_cx_edge)
.map(|(n, p)| (n, p.as_incoming().unwrap()))
.collect()],
vec![(inp, first_cx_edge)],
&func,
),
Err(InvalidSubgraph::InvalidBoundary(
InvalidSubgraphBoundary::DisconnectedBoundaryPort(_, _)
))
);
}
#[test]
fn non_convex_subgraph() {
let (hugr, func_root) = build_3not_hugr().unwrap();
let func: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, func_root).unwrap();
let [inp, _out] = hugr.get_io(func_root).unwrap();
let not1 = hugr.output_neighbours(inp).exactly_one().unwrap();
let not2 = hugr.output_neighbours(not1).exactly_one().unwrap();
let not3 = hugr.output_neighbours(not2).exactly_one().unwrap();
let not1_inp = hugr.node_inputs(not1).next().unwrap();
let not1_out = hugr.node_outputs(not1).next().unwrap();
let not3_inp = hugr.node_inputs(not3).next().unwrap();
let not3_out = hugr.node_outputs(not3).next().unwrap();
assert_matches!(
SiblingSubgraph::try_new(
vec![vec![(not1, not1_inp)], vec![(not3, not3_inp)]],
vec![(not1, not1_out), (not3, not3_out)],
&func
),
Err(InvalidSubgraph::NotConvex)
);
}
#[test]
fn invalid_boundary() {
let (hugr, func_root) = build_hugr().unwrap();
let func: SiblingGraph<'_> = SiblingGraph::try_new(&hugr, func_root).unwrap();
let [inp, out] = hugr.get_io(func_root).unwrap();
let cx_edges_in = hugr.node_outputs(inp);
let cx_edges_out = hugr.node_inputs(out);
// All graph but the CX
assert_matches!(
SiblingSubgraph::try_new(
cx_edges_out.map(|p| vec![(out, p)]).collect(),
cx_edges_in.map(|p| (inp, p)).collect(),
&func,
),
Err(InvalidSubgraph::InvalidBoundary(
InvalidSubgraphBoundary::DisconnectedBoundaryPort(_, _)
))
);
}
#[test]
fn preserve_signature() {
let (hugr, func_root) = build_hugr_classical().unwrap();
let func_graph: SiblingGraph<'_, FuncID<true>> =
SiblingGraph::try_new(&hugr, func_root).unwrap();
let func = SiblingSubgraph::try_new_dataflow_subgraph(&func_graph).unwrap();
let func_defn = hugr.get_optype(func_root).as_func_defn().unwrap();
assert_eq!(func_defn.signature, func.signature(&func_graph).into());
}
#[test]
fn extract_subgraph() -> Result<(), Box<dyn Error>> {
let (hugr, func_root) = build_hugr()?;
let func_graph: SiblingGraph<'_, FuncID<true>> = SiblingGraph::try_new(&hugr, func_root)?;
let subgraph = SiblingSubgraph::try_new_dataflow_subgraph(&func_graph)?;
let extracted = subgraph.extract_subgraph(&hugr, "region");
extracted.validate(&PRELUDE_REGISTRY)?;
Ok(())
}
#[test]
fn edge_both_output_and_copy() {
// https://github.com/CQCL/hugr/issues/518
let one_bit = type_row![BOOL_T];
let two_bit = type_row![BOOL_T, BOOL_T];
let mut builder =
DFGBuilder::new(FunctionType::new(one_bit.clone(), two_bit.clone())).unwrap();
let inw = builder.input_wires().exactly_one().unwrap();
let outw1 = builder.add_dataflow_op(NotOp, [inw]).unwrap().out_wire(0);
let outw2 = builder
.add_dataflow_op(and_op(), [inw, outw1])
.unwrap()
.outputs();
let outw = [outw1].into_iter().chain(outw2);
let h = builder.finish_hugr_with_outputs(outw, &EMPTY_REG).unwrap();
let view = SiblingGraph::<DfgID>::try_new(&h, h.root()).unwrap();
let subg = SiblingSubgraph::try_new_dataflow_subgraph(&view).unwrap();
assert_eq!(subg.nodes().len(), 2);
}
}