1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
//! Inference for extension requirements on nodes of a hugr.
//!
//! Checks if the extensions requirements have a solution in terms of some
//! number of starting variables, and comes up with concrete solutions when
//! possible.
//!
//! Open extension variables can come from toplevel nodes: notionally "inputs"
//! to the graph where being wired up to a larger hugr would provide the
//! information needed to solve variables. When extension requirements of nodes
//! depend on these open variables, then the validation check for extensions
//! will succeed regardless of what the variable is instantiated to.
use super::ExtensionSet;
use crate::{
hugr::views::HugrView,
ops::{OpTag, OpTrait},
types::EdgeKind,
Direction, Node,
};
use super::validate::ExtensionError;
use petgraph::graph as pg;
use petgraph::{Directed, EdgeType, Undirected};
use std::collections::{HashMap, HashSet, VecDeque};
use thiserror::Error;
/// A mapping from nodes on the hugr to extension requirement sets which have
/// been inferred for their inputs.
pub type ExtensionSolution = HashMap<Node, ExtensionSet>;
/// Infer extensions for a hugr. This is the main API exposed by this module.
///
/// Return all the solutions found for locations on the graph, these can be
/// passed to [`validate_with_extension_closure`]
///
/// [`validate_with_extension_closure`]: crate::Hugr::validate_with_extension_closure
pub fn infer_extensions(hugr: &impl HugrView) -> Result<ExtensionSolution, InferExtensionError> {
let mut ctx = UnificationContext::new(hugr);
ctx.main_loop()?;
ctx.instantiate_variables();
let all_results = ctx.main_loop()?;
let new_results = all_results
.into_iter()
.filter(|(n, _sol)| hugr.get_nodetype(*n).input_extensions().is_none())
.collect();
Ok(new_results)
}
/// Metavariables don't need much
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
struct Meta(u32);
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
/// Things we know about metavariables
enum Constraint {
/// A variable has the same value as another variable
Equal(Meta),
/// Variable extends the value of another by a set of extensions
Plus(ExtensionSet, Meta),
}
#[derive(Debug, Clone, PartialEq, Error)]
#[non_exhaustive]
/// Errors which arise during unification
pub enum InferExtensionError {
#[error("Mismatched extension sets {expected} and {actual}")]
/// We've solved a metavariable, then encountered a constraint
/// that says it should be something other than our solution
MismatchedConcrete {
/// The solution we were trying to insert for this meta
expected: ExtensionSet,
/// The incompatible solution that we found was already there
actual: ExtensionSet,
},
#[error("Solved extensions {expected} at {expected_loc:?} and {actual} at {actual_loc:?} should be equal.")]
/// A version of the above with info about which nodes failed to unify
MismatchedConcreteWithLocations {
/// Where the solution we want to insert came from
expected_loc: (Node, Direction),
/// The solution we were trying to insert for this meta
expected: ExtensionSet,
/// Which node we're trying to add a solution for
actual_loc: (Node, Direction),
/// The incompatible solution that we found was already there
actual: ExtensionSet,
},
/// A variable went unsolved that wasn't related to a parameter
#[error("Unsolved variable at location {:?}", location)]
Unsolved {
/// The location on the hugr that's associated to the unsolved meta
location: (Node, Direction),
},
/// An extension mismatch between two nodes which are connected by an edge.
/// This should mirror (or reuse) `ValidationError`'s SrcExceedsTgtExtensions
/// and TgtExceedsSrcExtensions
#[error("Edge mismatch: {0}")]
EdgeMismatch(#[from] ExtensionError),
}
/// A graph of metavariables connected by constraints.
/// The edges represent `Equal` constraints in the undirected graph and `Plus`
/// constraints in the directed case.
struct GraphContainer<Dir: EdgeType> {
graph: pg::Graph<Meta, (), Dir>,
node_map: HashMap<Meta, pg::NodeIndex>,
}
impl<T: EdgeType> GraphContainer<T> {
/// Add a metavariable to the graph as a node and return the `NodeIndex`.
/// If it's already there, just return the existing `NodeIndex`
fn add_or_retrieve(&mut self, m: Meta) -> pg::NodeIndex {
self.node_map.get(&m).cloned().unwrap_or_else(|| {
let ix = self.graph.add_node(m);
self.node_map.insert(m, ix);
ix
})
}
/// Create an edge between two nodes on the graph
fn add_edge(&mut self, src: Meta, tgt: Meta) {
let src_ix = self.add_or_retrieve(src);
let tgt_ix = self.add_or_retrieve(tgt);
self.graph.add_edge(src_ix, tgt_ix, ());
}
/// Return the strongly connected components of the graph in terms of
/// metavariables. In the undirected case, return the connected components
fn sccs(&self) -> Vec<Vec<Meta>> {
petgraph::algo::tarjan_scc(&self.graph)
.into_iter()
.map(|cc| {
cc.into_iter()
.map(|n| *self.graph.node_weight(n).unwrap())
.collect()
})
.collect()
}
}
impl GraphContainer<Undirected> {
fn new() -> Self {
GraphContainer {
graph: pg::Graph::new_undirected(),
node_map: HashMap::new(),
}
}
}
impl GraphContainer<Directed> {
fn new() -> Self {
GraphContainer {
graph: pg::Graph::new(),
node_map: HashMap::new(),
}
}
}
type EqGraph = GraphContainer<Undirected>;
/// Our current knowledge about the extensions of the graph
struct UnificationContext {
/// A list of constraints for each metavariable
constraints: HashMap<Meta, HashSet<Constraint>>,
/// A map which says which nodes correspond to which metavariables
extensions: HashMap<(Node, Direction), Meta>,
/// Solutions to metavariables
solved: HashMap<Meta, ExtensionSet>,
/// A graph which says which metavariables should be equal
eq_graph: EqGraph,
/// A mapping from metavariables which have been merged, to the meta they've
// been merged to
shunted: HashMap<Meta, Meta>,
/// Variables we're allowed to include in solutionss
variables: HashSet<Meta>,
/// A name for the next metavariable we create
fresh_name: u32,
}
/// Invariant: Constraint::Plus always points to a fresh metavariable
impl UnificationContext {
/// Create a new unification context, and populate it with constraints from
/// traversing the hugr which is passed in.
fn new(hugr: &impl HugrView) -> Self {
let mut ctx = Self {
constraints: HashMap::new(),
extensions: HashMap::new(),
solved: HashMap::new(),
eq_graph: EqGraph::new(),
shunted: HashMap::new(),
variables: HashSet::new(),
fresh_name: 0,
};
ctx.gen_constraints(hugr);
ctx
}
/// Create a fresh metavariable, and increment `fresh_name` for next time
fn fresh_meta(&mut self) -> Meta {
let fresh = Meta(self.fresh_name);
self.fresh_name += 1;
self.constraints.insert(fresh, HashSet::new());
fresh
}
/// Declare a constraint on the metavariable
fn add_constraint(&mut self, m: Meta, c: Constraint) {
self.constraints.entry(m).or_default().insert(c);
}
/// Declare that a meta has been solved
fn add_solution(&mut self, m: Meta, rs: ExtensionSet) {
let existing_sol = self.solved.insert(m, rs);
debug_assert!(existing_sol.is_none());
}
/// If a metavariable has been merged, return the new meta, otherwise return
/// the same meta.
///
/// This could loop if there were a cycle in the `shunted` list, but there
/// shouldn't be, because we only ever shunt to *new* metas.
fn resolve(&self, m: Meta) -> Meta {
self.shunted.get(&m).cloned().map_or(m, |m| self.resolve(m))
}
/// Get the relevant constraints for a metavariable. If it's been merged,
/// get the constraints for the merged metavariable
fn get_constraints(&self, m: &Meta) -> Option<&HashSet<Constraint>> {
self.constraints.get(&self.resolve(*m))
}
/// Get the relevant solution for a metavariable. If it's been merged, get
/// the solution for the merged metavariable
fn get_solution(&self, m: &Meta) -> Option<&ExtensionSet> {
self.solved.get(&self.resolve(*m))
}
/// Return the metavariable corresponding to the given location on the
/// graph, either by making a new meta, or looking it up
fn make_or_get_meta(&mut self, node: Node, dir: Direction) -> Meta {
if let Some(m) = self.extensions.get(&(node, dir)) {
*m
} else {
let m = self.fresh_meta();
self.extensions.insert((node, dir), m);
m
}
}
/// Iterate over the nodes in a hugr and generate unification constraints
fn gen_constraints<T>(&mut self, hugr: &T)
where
T: HugrView,
{
if hugr.root_type().input_extensions().is_none() {
let m_input = self.make_or_get_meta(hugr.root(), Direction::Incoming);
self.variables.insert(m_input);
}
for node in hugr.nodes() {
let m_input = self.make_or_get_meta(node, Direction::Incoming);
let m_output = self.make_or_get_meta(node, Direction::Outgoing);
let node_type = hugr.get_nodetype(node);
// Add constraints for the inputs and outputs of dataflow nodes according
// to the signature of the parent node
if let Some([input, output]) = hugr.get_io(node) {
for dir in Direction::BOTH {
let m_input_node = self.make_or_get_meta(input, dir);
self.add_constraint(m_input_node, Constraint::Equal(m_input));
let m_output_node = self.make_or_get_meta(output, dir);
// If the parent node is a FuncDefn, it will have no
// op_signature, so the Incoming and Outgoing ports will
// have equal extension requirements.
// The function that it contains, however, may have an
// extension delta, so its output shouldn't be equal to the
// FuncDefn's output.
//
// TODO: Add a constraint that the extensions of the output
// node of a FuncDefn should be those of the input node plus
// the extension delta specified in the function signature.
if node_type.tag() != OpTag::FuncDefn {
self.add_constraint(m_output_node, Constraint::Equal(m_output));
}
}
}
if hugr.get_optype(node).tag() == OpTag::Conditional {
for case in hugr.children(node) {
let m_case_in = self.make_or_get_meta(case, Direction::Incoming);
let m_case_out = self.make_or_get_meta(case, Direction::Outgoing);
self.add_constraint(m_case_in, Constraint::Equal(m_input));
self.add_constraint(m_case_out, Constraint::Equal(m_output));
}
}
if node_type.tag() == OpTag::Cfg {
let mut children = hugr.children(node);
let entry = children.next().unwrap();
let exit = children.next().unwrap();
let m_entry = self.make_or_get_meta(entry, Direction::Incoming);
let m_exit = self.make_or_get_meta(exit, Direction::Outgoing);
self.add_constraint(m_input, Constraint::Equal(m_entry));
self.add_constraint(m_output, Constraint::Equal(m_exit));
}
match node_type.io_extensions() {
// Input extensions are open
None => {
let delta = node_type.op().extension_delta();
let c = if delta.is_empty() {
Constraint::Equal(m_input)
} else {
Constraint::Plus(delta, m_input)
};
self.add_constraint(m_output, c);
}
// We have a solution for everything!
Some((input_exts, output_exts)) => {
self.add_solution(m_input, input_exts.clone());
self.add_solution(m_output, output_exts);
}
}
}
// Separate loop so that we can assume that a metavariable has been
// added for every (Node, Direction) in the graph already.
for tgt_node in hugr.nodes() {
let sig = hugr.get_nodetype(tgt_node).op();
// Incoming ports with an edge that should mean equal extension reqs
for port in hugr.node_inputs(tgt_node).filter(|src_port| {
let kind = sig.port_kind(*src_port);
kind.as_ref().is_some_and(EdgeKind::is_static)
|| matches!(kind, Some(EdgeKind::Value(_)) | Some(EdgeKind::ControlFlow))
}) {
let m_tgt = *self
.extensions
.get(&(tgt_node, Direction::Incoming))
.unwrap();
for (src_node, _) in hugr.linked_ports(tgt_node, port) {
let m_src = self
.extensions
.get(&(src_node, Direction::Outgoing))
.unwrap();
self.add_constraint(*m_src, Constraint::Equal(m_tgt));
}
}
}
}
/// When trying to unify two metas, check if they both correspond to
/// different ends of the same wire. If so, return an `ExtensionError`.
/// Otherwise check whether they both correspond to *some* location on the
/// graph and include that info the otherwise generic `MismatchedConcrete`.
fn report_mismatch(
&self,
m1: Meta,
m2: Meta,
rs1: ExtensionSet,
rs2: ExtensionSet,
) -> InferExtensionError {
let loc1 = self
.extensions
.iter()
.find(|(_, m)| **m == m1 || self.resolve(**m) == m1)
.map(|a| a.0);
let loc2 = self
.extensions
.iter()
.find(|(_, m)| **m == m2 || self.resolve(**m) == m2)
.map(|a| a.0);
if let (Some((node1, dir1)), Some((node2, dir2))) = (loc1, loc2) {
// N.B. We're looking for the case where an equality constraint
// arose because the two locations are connected by an edge
// If the directions are the same, they shouldn't be connected
// to each other. If the nodes are the same, there's no edge!
//
// TODO: It's still possible that the equality constraint
// arose because one node is a dataflow parent and the other
// is one of it's I/O nodes. In that case, the directions could be
// the same, and we should try to detect it
if dir1 != dir2 && node1 != node2 {
let [(src, src_rs), (tgt, tgt_rs)] = if *dir2 == Direction::Incoming {
[(node1, rs1.clone()), (node2, rs2.clone())]
} else {
[(node2, rs2.clone()), (node1, rs1.clone())]
};
return InferExtensionError::EdgeMismatch(if src_rs.is_subset(&tgt_rs) {
ExtensionError::TgtExceedsSrcExtensions {
from: *src,
from_extensions: src_rs,
to: *tgt,
to_extensions: tgt_rs,
}
} else {
ExtensionError::SrcExceedsTgtExtensions {
from: *src,
from_extensions: src_rs,
to: *tgt,
to_extensions: tgt_rs,
}
});
}
}
if let (Some(loc1), Some(loc2)) = (loc1, loc2) {
InferExtensionError::MismatchedConcreteWithLocations {
expected_loc: *loc1,
expected: rs1,
actual_loc: *loc2,
actual: rs2,
}
} else {
InferExtensionError::MismatchedConcrete {
expected: rs1,
actual: rs2,
}
}
}
/// Take a group of equal metas and merge them into a new, single meta.
///
/// Returns the set of new metas created and the set of metas that were
/// merged.
fn merge_equal_metas(&mut self) -> Result<(HashSet<Meta>, HashSet<Meta>), InferExtensionError> {
let mut merged: HashSet<Meta> = HashSet::new();
let mut new_metas: HashSet<Meta> = HashSet::new();
for cc in self.eq_graph.sccs().into_iter() {
// Within a connected component everything is equal
let combined_meta = self.fresh_meta();
for m in cc.iter() {
// The same meta shouldn't be shunted twice directly. Only
// transitively, as we still process the meta it was shunted to
if self.shunted.contains_key(m) {
continue;
}
if let Some(cs) = self.constraints.remove(m) {
for c in cs
.iter()
.filter(|c| !matches!(c, Constraint::Equal(_)))
.cloned()
.collect::<Vec<_>>()
.into_iter()
{
self.add_constraint(combined_meta, c.clone());
}
merged.insert(*m);
// Record a new meta the first time that we use it; don't
// bother recording a new meta if we don't add any
// constraints. It should be safe to call this multiple times
new_metas.insert(combined_meta);
}
// Here, solved.get is equivalent to get_solution, because if
// `m` had already been shunted, we wouldn't skipped it
if let Some(solution) = self.solved.get(m) {
match self.solved.get(&combined_meta) {
Some(existing_solution) => {
if solution != existing_solution {
return Err(self.report_mismatch(
*m,
combined_meta,
solution.clone(),
existing_solution.clone(),
));
}
}
None => {
self.solved.insert(combined_meta, solution.clone());
}
}
}
if self.variables.contains(m) {
self.variables.insert(combined_meta);
self.variables.remove(m);
}
self.shunted.insert(*m, combined_meta);
}
}
Ok((new_metas, merged))
}
/// Inspect the constraints of a given metavariable and try to find a
/// solution based on those.
/// Returns whether a solution was found
fn solve_meta(&mut self, meta: Meta) -> Result<bool, InferExtensionError> {
let mut solved = false;
for c in self.get_constraints(&meta).unwrap().clone().iter() {
match c {
// Just register the equality in the EqGraph, we'll process it later
Constraint::Equal(other_meta) => {
self.eq_graph.add_edge(meta, *other_meta);
}
// N.B. If `meta` is already solved, we can't use that
// information to solve `other_meta`. This is because the Plus
// constraint only signifies a preorder.
// I.e. if meta = other_meta + 'R', it's still possible that the
// solution is meta = other_meta because we could be adding 'R'
// to a set which already contained it.
Constraint::Plus(r, other_meta) => {
if let Some(rs) = self.get_solution(other_meta) {
let rrs = rs.clone().union(r.clone());
match self.get_solution(&meta) {
// Let's check that this is right?
Some(rs) => {
if rs != &rrs {
return Err(self.report_mismatch(
meta,
*other_meta,
rs.clone(),
rrs,
));
}
}
None => {
self.add_solution(meta, rrs);
solved = true;
}
};
};
}
}
}
Ok(solved)
}
/// Tries to return concrete extensions for each node in the graph. This only
/// works when there are no variables in the graph!
///
/// What we really want is to give the concrete extensions where they're
/// available. When there are variables, we should leave the graph as it is,
/// but make sure that no matter what they're instantiated to, the graph
/// still makes sense (should pass the extension validation check)
fn results(&self) -> Result<ExtensionSolution, InferExtensionError> {
// Check that all of the metavariables associated with nodes of the
// graph are solved
let depended_upon = {
let mut h: HashMap<Meta, Vec<Meta>> = HashMap::new();
for (m, m2) in self.constraints.iter().flat_map(|(m, cs)| {
cs.iter().flat_map(|c| match c {
Constraint::Plus(_, m2) => Some((*m, self.resolve(*m2))),
_ => None,
})
}) {
h.entry(m2).or_default().push(m);
}
h
};
// Calculate everything dependent upon a variable.
// Note it would be better to find metas ALL of whose dependencies were (transitively)
// on variables, but this is more complex, and hard to define if there are cycles
// of PLUS constraints, so leaving that as a TODO until we've handled such cycles.
let mut depends_on_var = HashSet::new();
let mut queue = VecDeque::from_iter(self.variables.iter());
while let Some(m) = queue.pop_front() {
if depends_on_var.insert(m) {
if let Some(d) = depended_upon.get(m) {
queue.extend(d.iter())
}
}
}
let mut results: ExtensionSolution = HashMap::new();
for (loc, meta) in self.extensions.iter() {
if let Some(rs) = self.get_solution(meta) {
if loc.1 == Direction::Incoming {
results.insert(loc.0, rs.clone());
}
} else {
// Unsolved nodes must be unsolved because they depend on graph variables.
if !depends_on_var.contains(&self.resolve(*meta)) {
return Err(InferExtensionError::Unsolved { location: *loc });
}
}
}
Ok(results)
}
/// Iterates over a set of metas (the argument) and tries to solve
/// them.
/// Returns the metas that we solved
fn solve_constraints(
&mut self,
vars: &HashSet<Meta>,
) -> Result<HashSet<Meta>, InferExtensionError> {
let mut solved = HashSet::new();
for m in vars.iter() {
if self.solve_meta(*m)? {
solved.insert(*m);
}
}
Ok(solved)
}
/// Once the unification context is set up, attempt to infer ExtensionSets
/// for all of the metavariables in the `UnificationContext`.
///
/// Return a mapping from locations in the graph to concrete `ExtensionSets`
/// where it was possible to infer them. If it wasn't possible to infer a
/// *concrete* `ExtensionSet`, e.g. if the ExtensionSet relies on an open
/// variable in the toplevel graph, don't include that location in the map
fn main_loop(&mut self) -> Result<ExtensionSolution, InferExtensionError> {
let mut remaining = HashSet::<Meta>::from_iter(self.constraints.keys().cloned());
// Keep going as long as we're making progress (= merging and solving nodes)
loop {
// Try to solve metas with the information we have now. This may
// register new equalities on the EqGraph
let to_delete = self.solve_constraints(&remaining)?;
// Merge metas based on the equalities we just registered
let (new, merged) = self.merge_equal_metas()?;
// All of the metas for which we've made progress
let delta: HashSet<Meta> = HashSet::from_iter(to_delete.union(&merged).cloned());
// Clean up dangling constraints on solved metavariables
to_delete.iter().for_each(|m| {
self.constraints.remove(m);
});
// Remove solved and merged metas from remaining "to solve" list
delta.iter().for_each(|m| {
remaining.remove(m);
});
// If we made no progress, we're done!
if delta.is_empty() && new.is_empty() {
break;
}
remaining.extend(new)
}
self.results()
}
/// Gather all the transitive dependencies (induced by constraints) of the
/// variables in the context.
fn search_variable_deps(&self) -> HashSet<Meta> {
let mut seen = HashSet::new();
let mut new_variables: HashSet<Meta> = self.variables.clone();
while !new_variables.is_empty() {
new_variables = new_variables
.into_iter()
.filter(|m| seen.insert(*m))
.flat_map(|m| self.get_constraints(&m))
.flatten()
.map(|c| match c {
Constraint::Plus(_, other) => self.resolve(*other),
Constraint::Equal(other) => self.resolve(*other),
})
.collect();
}
seen
}
/// Instantiate all variables in the graph with the empty extension set, or
/// the smallest solution possible given their constraints.
/// This is done to solve metas which depend on variables, which allows
/// us to come up with a fully concrete solution to pass into validation.
///
/// Nodes which loop into themselves must be considered as a "minimum" set
/// of requirements. If we have
/// 1 = 2 + X, ...
/// 2 = 1 + x, ...
/// then 1 and 2 both definitely contain X, even if we don't know what else.
/// So instead of instantiating to the empty set, we'll instantiate to `{X}`
fn instantiate_variables(&mut self) {
// A directed graph to keep track of `Plus` constraint relationships
let mut relations = GraphContainer::<Directed>::new();
let mut solutions: HashMap<Meta, ExtensionSet> = HashMap::new();
let variable_scope = self.search_variable_deps();
for m in variable_scope.into_iter() {
// If `m` has been merged, [`self.variables`] entry
// will have already been updated to the merged
// value by [`self.merge_equal_metas`] so we don't
// need to worry about resolving it.
if !self.solved.contains_key(&m) {
// Handle the case where the constraints for `m` contain a self
// reference, i.e. "m = Plus(E, m)", in which case the variable
// should be instantiated to E rather than the empty set.
let plus_constraints =
self.get_constraints(&m)
.unwrap()
.iter()
.cloned()
.flat_map(|c| match c {
Constraint::Plus(r, other_m) => Some((r, self.resolve(other_m))),
_ => None,
});
let (rs, other_ms): (Vec<_>, Vec<_>) = plus_constraints.unzip();
let solution = ExtensionSet::union_over(rs);
let unresolved_metas = other_ms
.into_iter()
.filter(|other_m| m != *other_m)
.collect::<Vec<_>>();
// If `m` doesn't depend on any other metas then we have all the
// information we need to come up with a solution for it.
relations.add_or_retrieve(m);
unresolved_metas
.iter()
.for_each(|other_m| relations.add_edge(m, *other_m));
solutions.insert(m, solution);
}
}
// Process the strongly-connected components. petgraph/sccs() returns these
// depended-upon before dependant, as we need.
for cc in relations.sccs() {
// Strongly connected components are looping constraint dependencies.
// This means that each metavariable in the CC has the same solution.
let combined_solution = cc
.iter()
.flat_map(|m| self.get_constraints(m).unwrap())
.filter_map(|c| match c {
Constraint::Plus(_, other_m) => solutions.get(&self.resolve(*other_m)).cloned(),
Constraint::Equal(_) => None,
})
.fold(ExtensionSet::new(), ExtensionSet::union);
for m in cc.iter() {
self.add_solution(*m, combined_solution.clone());
solutions.insert(*m, combined_solution.clone());
}
}
self.variables = HashSet::new();
}
}
#[cfg(test)]
mod test;