1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#![no_std]
use embedded_hal::blocking::delay::DelayUs;
use embedded_hal::digital::v2::OutputPin;
// Inspired by
// - https://github.com/polyfloyd/ledcat/blob/master/src/device/hub75.rs
// - https://github.com/mmou/led-marquee/blob/8c88531a6938edff6db829ca21c15304515874ea/src/hub.rs
// - https://github.com/adafruit/RGB-matrix-Panel/blob/master/RGBmatrixPanel.cpp
// - https://www.mikrocontroller.net/topic/452187 (sorry, german only)

/// # Theory of Operation
/// This display is essentially split in half, with the top 16 rows being
/// controlled by one set of shift registers (r1, g1, b1) and the botton 16
/// rows by another set (r2, g2, b2). So, the best way to update it is to
/// show one of the botton and top rows in tandem. The row (between 0-15) is then
/// selected by the A, B, C, D pins, which are just, as one might expect, the bits 0 to 3.
///
/// The display doesn't really do brightness, so we have to do it ourselves, by
/// rendering the same frame multiple times, with some pixels being turned of if
/// they are darker (pwm)

pub struct Hub75<PINS> {
    //       r1, g1, b1, r2, g2, b2, column, row
    data: [[(u8, u8, u8, u8, u8, u8); 64]; 16],
    brightness_step: u8,
    brightness_count: u8,
    pins: PINS,
}

/// A trait, so that it's easier to reason about the pins
/// Implemented for a tuple `(r1, g1, b1, r2, g2, b2, a, b, c, d, clk, lat, oe)`
/// with every element implementing `OutputPin`
pub trait Outputs {
    type R1: OutputPin;
    type G1: OutputPin;
    type B1: OutputPin;
    type R2: OutputPin;
    type G2: OutputPin;
    type B2: OutputPin;
    type A: OutputPin;
    type B: OutputPin;
    type C: OutputPin;
    type D: OutputPin;
    type CLK: OutputPin;
    type LAT: OutputPin;
    type OE: OutputPin;
    fn r1(&mut self) -> &mut Self::R1;
    fn g1(&mut self) -> &mut Self::G1;
    fn b1(&mut self) -> &mut Self::B1;
    fn r2(&mut self) -> &mut Self::R2;
    fn g2(&mut self) -> &mut Self::G2;
    fn b2(&mut self) -> &mut Self::B2;
    fn a(&mut self) -> &mut Self::A;
    fn b(&mut self) -> &mut Self::B;
    fn c(&mut self) -> &mut Self::C;
    fn d(&mut self) -> &mut Self::D;
    fn clk(&mut self) -> &mut Self::CLK;
    fn lat(&mut self) -> &mut Self::LAT;
    fn oe(&mut self) -> &mut Self::OE;
}

impl<
        R1: OutputPin,
        G1: OutputPin,
        B1: OutputPin,
        R2: OutputPin,
        G2: OutputPin,
        B2: OutputPin,
        A: OutputPin,
        B: OutputPin,
        C: OutputPin,
        D: OutputPin,
        CLK: OutputPin,
        LAT: OutputPin,
        OE: OutputPin,
    > Outputs for (R1, G1, B1, R2, G2, B2, A, B, C, D, CLK, LAT, OE)
{
    type R1 = R1;
    type G1 = G1;
    type B1 = B1;
    type R2 = R2;
    type G2 = G2;
    type B2 = B2;
    type A = A;
    type B = B;
    type C = C;
    type D = D;
    type CLK = CLK;
    type LAT = LAT;
    type OE = OE;
    fn r1(&mut self) -> &mut R1 {
        &mut self.0
    }
    fn g1(&mut self) -> &mut G1 {
        &mut self.1
    }
    fn b1(&mut self) -> &mut B1 {
        &mut self.2
    }
    fn r2(&mut self) -> &mut R2 {
        &mut self.3
    }
    fn g2(&mut self) -> &mut G2 {
        &mut self.4
    }
    fn b2(&mut self) -> &mut B2 {
        &mut self.5
    }
    fn a(&mut self) -> &mut A {
        &mut self.6
    }
    fn b(&mut self) -> &mut B {
        &mut self.7
    }
    fn c(&mut self) -> &mut C {
        &mut self.8
    }
    fn d(&mut self) -> &mut D {
        &mut self.9
    }
    fn clk(&mut self) -> &mut CLK {
        &mut self.10
    }
    fn lat(&mut self) -> &mut LAT {
        &mut self.11
    }
    fn oe(&mut self) -> &mut OE {
        &mut self.12
    }
}

impl<PINS: Outputs> Hub75<PINS> {
    /// Create a new hub instance
    ///
    /// Takes an implementation of the Outputs trait,
    /// using a tuple `(r1, g1, b1, r2, g2, b2, a, b, c, d, clk, lat, oe)`,
    /// with every member implementing `OutputPin` is usually the right choice.
    ///
    /// `brightness_bits` provides the number of brightness_bits for each color (1-8).
    /// More bits allow for much more colors, especially in combination with the gamma correction,
    /// but each extra bit doubles the time `output` will take. This might lead to noticable flicker.
    ///
    /// 3-4 bits are usually a good choice.
    pub fn new(pins: PINS, brightness_bits: u8) -> Self {
        assert!(brightness_bits < 9 && brightness_bits > 0);
        let data = [[(0, 0, 0, 0, 0, 0); 64]; 16];
        let brightness_step = 1 << (8 - brightness_bits);
        let brightness_count = ((1 << brightness_bits as u16) - 1) as u8;
        Self {
            data,
            brightness_step,
            brightness_count,
            pins,
        }
    }

    /// Output the buffer to the display
    ///
    /// Takes some time and should be called quite often, otherwise the output
    /// will flicker
    pub fn output<DELAY: DelayUs<u8>>(&mut self, delay: &mut DELAY) {
        // Enable the output
        // The previous last row will continue to display
        self.pins.oe().set_low().ok();
        // PWM cycle
        for mut brightness in 0..self.brightness_count {
            brightness = (brightness + 1).saturating_mul(self.brightness_step);
            for (count, row) in self.data.iter().enumerate() {
                for element in row.iter() {
                    if element.0 >= brightness {
                        self.pins.r1().set_high().ok();
                    } else {
                        self.pins.r1().set_low().ok();
                    }
                    if element.1 >= brightness {
                        self.pins.g1().set_high().ok();
                    } else {
                        self.pins.g1().set_low().ok();
                    }
                    if element.2 >= brightness {
                        self.pins.b1().set_high().ok();
                    } else {
                        self.pins.b1().set_low().ok();
                    }
                    if element.3 >= brightness {
                        self.pins.r2().set_high().ok();
                    } else {
                        self.pins.r2().set_low().ok();
                    }
                    if element.4 >= brightness {
                        self.pins.g2().set_high().ok();
                    } else {
                        self.pins.g2().set_low().ok();
                    }
                    if element.5 >= brightness {
                        self.pins.b2().set_high().ok();
                    } else {
                        self.pins.b2().set_low().ok();
                    }
                    self.pins.clk().set_high().ok();
                    self.pins.clk().set_low().ok();
                }
                self.pins.oe().set_high().ok();
                // Prevents ghosting, no idea why
                delay.delay_us(2);
                self.pins.lat().set_low().ok();
                delay.delay_us(2);
                self.pins.lat().set_high().ok();
                // Select row
                if count & 1 != 0 {
                    self.pins.a().set_high().ok();
                } else {
                    self.pins.a().set_low().ok();
                }
                if count & 2 != 0 {
                    self.pins.b().set_high().ok();
                } else {
                    self.pins.b().set_low().ok();
                }
                if count & 4 != 0 {
                    self.pins.c().set_high().ok();
                } else {
                    self.pins.c().set_low().ok();
                }
                if count & 8 != 0 {
                    self.pins.d().set_high().ok();
                } else {
                    self.pins.d().set_low().ok();
                }
                delay.delay_us(2);
                self.pins.oe().set_low().ok();
            }
        }
        // Disable the output
        // Prevents one row from being much brighter than the others
        self.pins.oe().set_high().ok();
    }
    /// Clear the output
    ///
    /// It's a bit faster than using the embedded_graphics interface
    /// to do the same
    pub fn clear(&mut self) {
        for row in self.data.iter_mut() {
            for e in row.iter_mut() {
                e.0 = 0;
                e.1 = 0;
                e.2 = 0;
                e.3 = 0;
                e.4 = 0;
                e.5 = 0;
            }
        }
    }
}

use embedded_graphics::{
    drawable::{Dimensions, Pixel},
    pixelcolor::Rgb565,
    Drawing, SizedDrawing,
};
impl<PINS: Outputs> Drawing<Rgb565> for Hub75<PINS> {
    fn draw<T>(&mut self, item_pixels: T)
    where
        T: IntoIterator<Item = Pixel<Rgb565>>,
    {
        // This table remaps linear input values
        // (the numbers we’d like to use; e.g. 127 = half brightness)
        // to nonlinear gamma-corrected output values
        // (numbers producing the desired effect on the LED;
        // e.g. 36 = half brightness).
        const GAMMA8: [u8; 256] = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4,
            4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11,
            12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22,
            22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37,
            38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 54, 55, 56, 57, 58,
            59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85,
            86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
            115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142, 144,
            146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175, 177, 180,
            182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 220,
            223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255,
        ];
        for Pixel(coord, color) in item_pixels {
            let row = coord[1] % 16;
            let data = &mut self.data[row as usize][coord[0] as usize];
            if coord[1] >= 16 {
                data.3 = GAMMA8[color.r() as usize];
                data.4 = GAMMA8[color.g() as usize];
                data.5 = GAMMA8[color.b() as usize];
            } else {
                data.0 = GAMMA8[color.r() as usize];
                data.1 = GAMMA8[color.g() as usize];
                data.2 = GAMMA8[color.b() as usize];
            }
        }
    }
}

// TODO Does it make sense to include this?
impl<PINS: Outputs> SizedDrawing<Rgb565> for Hub75<PINS> {
    fn draw_sized<T>(&mut self, item_pixels: T)
    where
        T: IntoIterator<Item = Pixel<Rgb565>> + Dimensions,
    {
        self.draw(item_pixels);
    }
}