1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use super::Network;
use rand::prelude::*;
impl Network {
pub fn make_square_lattice(length: u32) -> Network {
let n = length * length;
let mut edge_list = Vec::new();
for i in 0..n {
let first = i;
let second = (i / length) * length + (i + 1) % length;
let third = (i + length) % n;
edge_list.push((first, second));
edge_list.push((first, third));
}
Network { n, edge_list }
}
pub fn make_regular_lattice(dim: u32, length: u32) -> Network {
let n = length.pow(dim);
let mut edge_list = Vec::new();
let mut x = vec![0u32; dim as usize];
for index in 0..n {
let mut buff = index;
for i in 0..dim {
x[(dim - 1 - i) as usize] = buff / length.pow(dim - 1 - i);
buff = index % length.pow(dim - 1 - i);
}
for i in 0..dim {
let first = index;
let mut second = 0;
for j in 0..dim {
if i != j {
second += x[j as usize] * length.pow(j);
} else {
second += ((x[j as usize] + 1) % length) * length.pow(j);
}
}
edge_list.push((first, second));
}
}
Network { n, edge_list }
}
pub fn make_regular_random_graph(n: u32, frac: f64, rng: &mut StdRng) -> Network {
let mut edge_list = Vec::<(u32, u32)>::new();
let mut perfect_list = Vec::<(u32, u32)>::new();
for i in 0..(n - 1) {
for j in (i + 1)..n {
perfect_list.push((i, j));
}
}
let n_e = n * (n - 1) / 2;
let e = (frac * n_e as f64).round() as u32;
for i in 0..e {
let index = rng.gen::<u32>() % (n_e - i);
let choosed = perfect_list[(i + index) as usize];
edge_list.push(choosed);
perfect_list[(i + index) as usize] = perfect_list[i as usize];
perfect_list[i as usize] = choosed;
}
Network { n, edge_list }
}
pub fn exist_self_loop(&self) -> bool {
let length = self.edge_list.len();
for i in 0..length {
if self.edge_list[i].0 == self.edge_list[i].1 {
return true;
}
}
false
}
pub fn exist_multi_loop(&self) -> bool {
let mut target = self.clone();
target.make_acsending_order();
let length = target.edge_list.len();
for i in 0..length {
let speciman = target.edge_list[i];
for j in (i + 1)..length {
let target = target.edge_list[j];
if target == speciman {
return true;
}
}
}
false
}
fn make_acsending_order(&mut self) {
for i in 0..self.edge_list.len() {
if self.edge_list[i].0 > self.edge_list[i].1 {
let temp = self.edge_list[i].0;
self.edge_list[i].0 = self.edge_list[i].1;
self.edge_list[i].1 = temp;
}
}
}
pub fn show_network(&self) {
println!("n = {}", self.n);
for i in 0..self.edge_list.len() {
println!(
"edge_list[{}] = ({},{})",
i, self.edge_list[i].0, self.edge_list[i].1
);
}
}
}
#[test]
fn test_self_multi() {
let target1 = Network::make_square_lattice(2);
let target2 = Network::make_square_lattice(3);
let n = 3;
let edge_list = vec![(0, 1), (1, 1), (1, 2)];
let target3 = Network { n, edge_list };
assert_eq!(target1.exist_multi_loop(), true);
assert_eq!(target2.exist_multi_loop(), false);
assert_eq!(target3.exist_multi_loop(), false);
assert_eq!(target1.exist_self_loop(), false);
assert_eq!(target2.exist_self_loop(), false);
assert_eq!(target3.exist_self_loop(), true);
}
#[test]
fn test_make_regular_random_graph() {
let mut rng: StdRng = SeedableRng::seed_from_u64(100u64);
let n = 100u32;
let frac = 0.5;
let target = Network::make_regular_random_graph(n, frac, &mut rng);
assert_eq!(target.exist_multi_loop(), false);
assert_eq!(target.exist_self_loop(), false);
assert_eq!(target.get_n(), 100u32);
assert_eq!(target.get_edge_list().len(), 25 * 99);
}