1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//!
//! Constructors for struct Network.
//!

use super::Network;

use rand::prelude::*;

impl Network {
    /// Create square lattice.
    pub fn make_square_lattice(length: u32) -> Network {
        let n = length * length;
        let mut edge_list = Vec::new();

        for i in 0..n {
            let first = i;
            let second = (i / length) * length + (i + 1) % length;
            let third = (i + length) % n;
            edge_list.push((first, second));
            edge_list.push((first, third));
        }

        Network { n, edge_list }
    }

    /// Create regular lattice
    pub fn make_regular_lattice(dim: u32, length: u32) -> Network {
        let n = length.pow(dim);
        let mut edge_list = Vec::new();

        // index = x_0 + x_1 L + x_2 L^2 + ... + x_(d-1) L^(d-1) for regular lattice
        // Lattice point is expressed as (x_0, x_1, ... x_(d-1))
        let mut x = vec![0u32; dim as usize];

        for index in 0..n {
            // Get x = [x_0, x_1, ... ,  x_(d-1)]
            let mut buff = index;
            for i in 0..dim {
                x[(dim - 1 - i) as usize] = buff / length.pow(dim - 1 - i);
                buff = index % length.pow(dim - 1 - i);
            }

            // Make edge_list : each index has 2d links
            for i in 0..dim {
                let first = index;
                let mut second = 0;
                for j in 0..dim {
                    if i != j {
                        second += x[j as usize] * length.pow(j);
                    } else {
                        second += ((x[j as usize] + 1) % length) * length.pow(j);
                    }
                }
                edge_list.push((first, second));
            }
        }

        Network { n, edge_list }
    }

    /// create regular random graph
    pub fn make_regular_random_graph(n: u32, frac: f64, rng: &mut StdRng) -> Network {
        let mut edge_list = Vec::<(u32, u32)>::new();

        // First  : Create edge list of perfect graph
        // Second : Choose frac * n_e links
        let mut perfect_list = Vec::<(u32, u32)>::new();
        for i in 0..(n - 1) {
            for j in (i + 1)..n {
                perfect_list.push((i, j));
            }
        }
        let n_e = n * (n - 1) / 2;

        let e = (frac * n_e as f64).round() as u32;

        for i in 0..e {
            let index = rng.gen::<u32>() % (n_e - i);
            let choosed = perfect_list[(i + index) as usize];
            edge_list.push(choosed);
            perfect_list[(i + index) as usize] = perfect_list[i as usize];
            perfect_list[i as usize] = choosed;
        }

        Network { n, edge_list }
    }

    /// Check of the self loop
    /// Calculation time is O(L).
    pub fn exist_self_loop(&self) -> bool {
        let length = self.edge_list.len();
        for i in 0..length {
            if self.edge_list[i].0 == self.edge_list[i].1 {
                return true;
            }
        }
        false
    }

    /// Check of the multi loop
    /// Caution : Calculation time is O(L^2), it can be vast time. Be careful.
    pub fn exist_multi_loop(&self) -> bool {
        let mut target = self.clone();
        target.make_acsending_order();
        let length = target.edge_list.len();

        for i in 0..length {
            let speciman = target.edge_list[i];
            for j in (i + 1)..length {
                let target = target.edge_list[j];
                if target == speciman {
                    return true;
                }
            }
        }

        false
    }

    /// Make edge (v1, v2) be v1 <= v2
    /// This procedure is not elemental for edge_list, but sometimes useful.
    fn make_acsending_order(&mut self) {
        for i in 0..self.edge_list.len() {
            if self.edge_list[i].0 > self.edge_list[i].1 {
                let temp = self.edge_list[i].0;
                self.edge_list[i].0 = self.edge_list[i].1;
                self.edge_list[i].1 = temp;
            }
        }
    }

    pub fn show_network(&self) {
        println!("n = {}", self.n);
        for i in 0..self.edge_list.len() {
            println!(
                "edge_list[{}] = ({},{})",
                i, self.edge_list[i].0, self.edge_list[i].1
            );
        }
    }
}

#[test]
fn test_self_multi() {
    let target1 = Network::make_square_lattice(2);
    let target2 = Network::make_square_lattice(3);

    let n = 3;
    let edge_list = vec![(0, 1), (1, 1), (1, 2)];
    let target3 = Network { n, edge_list };

    assert_eq!(target1.exist_multi_loop(), true);
    assert_eq!(target2.exist_multi_loop(), false);
    assert_eq!(target3.exist_multi_loop(), false);

    assert_eq!(target1.exist_self_loop(), false);
    assert_eq!(target2.exist_self_loop(), false);
    assert_eq!(target3.exist_self_loop(), true);
}

/// Check of the RRG is difficult, so we do the self loop check and multi loop check.N
#[test]
fn test_make_regular_random_graph() {
    let mut rng: StdRng = SeedableRng::seed_from_u64(100u64);
    let n = 100u32;
    let frac = 0.5;

    let target = Network::make_regular_random_graph(n, frac, &mut rng);

    assert_eq!(target.exist_multi_loop(), false);
    assert_eq!(target.exist_self_loop(), false);
    assert_eq!(target.get_n(), 100u32);
    assert_eq!(target.get_edge_list().len(), 25 * 99);
}