hooks_rs/api/
float.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use core::{
    cmp::Ordering,
    ops::{Add, Div, Mul, Neg, Sub},
};

use crate::c;

use super::*;

/// Abstraction of [XFL floating point numbers](https://github.com/XRPLF/XRPL-Standards/discussions/39).
/// The struct is overloaded with basic numeric operations, such as addition, subtraction, multiplication, division, and negation. Comparison operators are also implemented.
#[derive(Clone, Copy)]
pub struct XFL(pub i64);

/// Output an XFL as a serialized object
#[inline(always)]
pub fn float_sto(
    amount: &mut [u8],
    currency_code: &[u8],
    issuer_accid: &[u8],
    float: XFL,
    field_code: FieldId,
) -> Result<u64> {
    let res = unsafe {
        c::float_sto(
            amount.as_mut_ptr() as _,
            amount.len() as _,
            currency_code.as_ptr() as _,
            currency_code.len() as _,
            issuer_accid.as_ptr() as _,
            issuer_accid.len() as _,
            float.0,
            field_code as _,
        )
    };

    res.into()
}

impl XFL {
    /// Create a new XFL number from an exponent and mantissa
    ///
    /// # Example
    /// ```
    /// let plus_1000 = XFL::new(-12, 1000000000000000).unwrap_line_number();
    /// ```
    #[inline(always)]
    pub fn new(exponent: i32, mantissa: i64) -> Result<Self> {
        Self::from_verified_i64(unsafe { c::float_set(exponent, mantissa) })
    }

    /// Read a serialized XFL amount into an XFL
    #[inline(always)]
    pub fn from_sto(serialized_xfl: &[u8; XFL_LEN]) -> Result<Self> {
        Self::from_verified_i64(unsafe {
            c::float_sto_set(serialized_xfl.as_ptr() as _, XFL_LEN as _)
        })
    }

    /// Return the number 1 represented in an XFL enclosing number
    ///
    /// # Example
    /// ```
    /// let half = XFL::one().mulratio(false, 1, 2)
    /// ```
    #[inline(always)]
    pub fn one() -> Self {
        // Instead of using c::float_one, we use the computed enclosing
        // value directly.
        XFL(6089866696204910592)
    }

    /// Convert an XFL floating point into an integer (floor).
    /// The behavior is as follows:
    /// 1. Left shift (multiply by 10) the XFL by the number of specified decimal places
    /// 2. Convert the resulting XFL to an integer, discarding any remainder
    /// 3. Return the integer
    ///
    /// # Example
    /// ```
    /// let approx_pi = XFL::new(-15, 3140000000000000).unwrap_line_number();
    ///
    /// if 3 != approx_pi.to_int64(0, false).unwrap_line_number() {
    ///     rollback(b"incorect rounding", line!().into());
    /// }
    /// ```
    #[inline(always)]
    pub fn to_int64(&self, decimal_places: u32, is_absolute: bool) -> Result<i64> {
        let result = unsafe { c::float_int(self.0, decimal_places, is_absolute as _) };

        match result {
            res if res >= 0 => Ok(res),
            _ => Err(Error::from_code(result as _)),
        }
    }

    /// Get the exponent of an XFL enclosing number
    ///
    /// # Example
    /// ```
    /// let plus_998 = XFL::new(-13, 9980000000000000).unwrap_line_number();
    ///
    /// if plus_998.exponent() != -13 {
    ///     rollback(b"exponent incorrect", line!().into());
    /// }
    /// ```
    #[inline(always)]
    pub fn exponent(&self) -> i64 {
        (((self.0 >> 54 & 0xFF) as i32) - 97).into()
    }

    /// Get the exponent of an XFL enclosing number
    ///
    /// # Example
    /// ```
    /// let plus_998 = XFL::new(-13, 9980000000000000).unwrap_line_number();
    ///
    /// if plus_998.mantissa() != 9980000000000000 {
    ///     rollback(b"mantissa incorrect", line!().into());
    /// }
    /// ```
    #[inline(always)]
    pub fn mantissa(&self) -> i64 {
        unsafe { c::float_mantissa(self.0) }
    }

    /// Multiply an XFL floating point by a non-XFL numerator and denominator
    ///
    /// # Example
    /// ```
    /// if XFL::one().mulratio(false, 1, 2).unwrap_line_number()
    ///     != XFL::one().mulratio(false, 5, 10).unwrap_line_number()
    /// {
    ///     rollback(b"", line!().into());
    /// }
    /// ```
    #[inline(always)]
    pub fn mulratio(&self, round_up: bool, numerator: u32, denominator: u32) -> Result<XFL> {
        Self::from_verified_i64(unsafe {
            c::float_mulratio(self.0, round_up as _, numerator, denominator)
        })
    }

    // Create a new XFL number from a verified i64, that is,
    // a number that is known to be a valid XFL number.
    //
    // Because it is too dangerous to be exposed to the user,
    // this function is only visible to `pub(crate)` level.
    //
    // For that reason, `From<i64> for Result<XFL>` is not implemented.
    //
    // Only use this function to create an XFL number from
    // C function calls.
    #[inline(always)]
    pub(crate) fn from_verified_i64(source: i64) -> Result<Self> {
        match source {
            source if source >= 0 => Ok(XFL(source)),
            _ => Err(Error::from_code(source as _)),
        }
    }
}

impl Add for XFL {
    type Output = Result<XFL>;

    #[inline(always)]
    fn add(self, other: XFL) -> Self::Output {
        Self::from_verified_i64(unsafe { c::float_sum(self.0, other.0) })
    }
}

impl Sub for XFL {
    type Output = Result<XFL>;

    #[inline(always)]
    fn sub(self, other: XFL) -> Self::Output {
        unsafe {
            let rhs = match Self::from_verified_i64(c::float_negate(other.0)) {
                Ok(rhs) => rhs,
                Err(e) => return Err(e),
            };

            Self::from_verified_i64(c::float_sum(self.0, rhs.0))
        }
    }
}

impl Mul for XFL {
    type Output = Result<XFL>;

    #[inline(always)]
    fn mul(self, other: XFL) -> Self::Output {
        Self::from_verified_i64(unsafe { c::float_multiply(self.0, other.0) })
    }
}

impl Div for XFL {
    type Output = Result<XFL>;

    #[inline(always)]
    fn div(self, other: XFL) -> Self::Output {
        Self::from_verified_i64(unsafe { c::float_divide(self.0, other.0) })
    }
}

impl Neg for XFL {
    type Output = Result<XFL>;

    #[inline(always)]
    fn neg(self) -> Self::Output {
        Self::from_verified_i64(unsafe { c::float_negate(self.0) })
    }
}

impl PartialEq for XFL {
    #[inline(always)]
    fn eq(&self, other: &Self) -> bool {
        let res = unsafe { c::float_compare(self.0, other.0, c::COMPARE_EQUAL) };

        match res {
            1 => true,
            // This is based on the invariant that the arguments to eq function
            // are all valid XFL numbers.
            _ => false,
        }
    }
}

impl PartialOrd for XFL {
    #[inline(always)]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        unsafe {
            match c::float_compare(self.0, other.0, c::COMPARE_EQUAL) {
                1 => Some(Ordering::Equal),
                0 => {
                    // This is because float_compare cannot return an ordering at one go.
                    match c::float_compare(self.0, other.0, c::COMPARE_LESS) {
                        1 => Some(Ordering::Less),
                        0 => Some(Ordering::Greater),
                        _ => None,
                    }
                }
                _ => None,
            }
        }
    }
}