hexz_core/ops/pack.rs
1//! High-level snapshot packing operations.
2//!
3//! This module implements the core business logic for creating Hexz snapshot files
4//! from raw disk and memory images. It orchestrates a multi-stage pipeline that
5//! transforms raw input data into compressed, indexed, and optionally encrypted
6//! snapshot files optimized for fast random access and deduplication.
7//!
8//! # Core Capabilities
9//!
10//! - **Dictionary Training**: Intelligent sampling and Zstd dictionary optimization
11//! - **Chunking Strategies**: Fixed-size blocks or content-defined (FastCDC) for better deduplication
12//! - **Compression**: LZ4 (fast) or Zstd (high-ratio) with optional dictionary support
13//! - **Encryption**: Per-block AES-256-GCM authenticated encryption
14//! - **Deduplication**: BLAKE3 based content deduplication (disabled for encrypted data)
15//! - **Hierarchical Indexing**: Two-level index structure for efficient random access
16//! - **Progress Reporting**: Optional callback interface for UI integration
17//!
18//! # Architecture
19//!
20//! The packing process follows a carefully orchestrated pipeline. Each stage is designed
21//! to be memory-efficient (streaming) and to minimize write amplification:
22//!
23//! ```text
24//! ┌─────────────────────────────────────────────────────────────────────┐
25//! │ Stage 1: Dictionary Training (Optional, Zstd only) │
26//! │ │
27//! │ Input File → Stratified Sampling → Entropy Filtering → Zstd Train │
28//! │ │
29//! │ - Samples ~4000 blocks evenly distributed across input │
30//! │ - Filters out zero blocks and high-entropy data (>6.0 bits/byte) │
31//! │ - Produces dictionary (max 110 KiB) optimized for dataset │
32//! │ - Training time: 2-5 seconds for typical VM images │
33//! └─────────────────────────────────────────────────────────────────────┘
34//! ↓
35//! ┌─────────────────────────────────────────────────────────────────────┐
36//! │ Stage 2: Stream Processing (Per Input: Disk, Memory) │
37//! │ │
38//! │ Raw Input → Chunking → Compression → Encryption → Dedup → Write │
39//! │ │
40//! │ Chunking: │
41//! │ - Fixed-size: Divide into equal blocks (default 64 KiB) │
42//! │ - FastCDC: Content-defined boundaries for better deduplication │
43//! │ │
44//! │ Zero Block Optimization: │
45//! │ - Detect all-zero chunks (common in VM images) │
46//! │ - Store as metadata only (offset=0, length=0) │
47//! │ - Saves significant space for sparse images │
48//! │ │
49//! │ Deduplication (Unencrypted only): │
50//! │ - Compute BLAKE3 hash of compressed data │
51//! │ - Check hash table for existing block │
52//! │ - Reuse offset if duplicate found │
53//! │ - Note: Disabled for encrypted data (unique nonces prevent dedup) │
54//! │ │
55//! │ Index Page Building: │
56//! │ - Accumulate BlockInfo metadata (offset, length, checksum) │
57//! │ - Flush page when reaching 4096 entries (~16 MB logical data) │
58//! │ - Write serialized page to output, record PageEntry │
59//! └─────────────────────────────────────────────────────────────────────┘
60//! ↓
61//! ┌─────────────────────────────────────────────────────────────────────┐
62//! │ Stage 3: Index Finalization │
63//! │ │
64//! │ MasterIndex (disk_pages[], memory_pages[], sizes) → Serialize │
65//! │ │
66//! │ - Collect all PageEntry records from both streams │
67//! │ - Write master index at end of file │
68//! │ - Record index offset in header │
69//! └─────────────────────────────────────────────────────────────────────┘
70//! ↓
71//! ┌─────────────────────────────────────────────────────────────────────┐
72//! │ Stage 4: Header Writing │
73//! │ │
74//! │ - Seek to file start (reserved 512 bytes) │
75//! │ - Write Header with format metadata │
76//! │ - Includes: compression type, encryption params, index offset │
77//! │ - Flush to ensure atomicity │
78//! └─────────────────────────────────────────────────────────────────────┘
79//! ```
80//!
81//! # Optimization Strategies
82//!
83//! ## Dictionary Training Algorithm
84//!
85//! The dictionary training process improves compression ratios by 10-30% for
86//! structured data (file systems, databases) by building a Zstd shared dictionary:
87//!
88//! 1. **Stratified Sampling**: Sample blocks evenly across input to capture diversity
89//! - Step size = file_size / target_samples (typically 4000 samples)
90//! - Ensures coverage of different file system regions
91//!
92//! 2. **Quality Filtering**: Exclude unsuitable blocks
93//! - Skip all-zero blocks (no compressible patterns)
94//! - Compute Shannon entropy for each block
95//! - Reject blocks with entropy > 6.0 bits/byte (likely encrypted/random)
96//!
97//! 3. **Training**: Feed filtered samples to Zstd dictionary builder
98//! - Target dictionary size: 110 KiB (fits in L2 cache)
99//! - Uses Zstd's COVER algorithm to extract common patterns
100//!
101//! ## Deduplication Mechanism
102//!
103//! Content-based deduplication eliminates redundant blocks:
104//!
105//! - **Hash Table**: Maps BLAKE3 hash → physical offset for each unique compressed block
106//! - **Collision Handling**: BLAKE3 collisions are astronomically unlikely (2^128 blocks)
107//! - **Memory Usage**: ~48 bytes per unique block (32-byte hash + 8-byte offset + HashMap overhead)
108//! - **Write Behavior**: Only write each unique block once; reuse offset for duplicates
109//! - **Encryption Interaction**: Disabled when encrypting (each block gets unique nonce/ciphertext)
110//!
111//! ## Index Page Management
112//!
113//! The two-level index hierarchy balances random access performance and metadata overhead:
114//!
115//! - **Page Size**: 4096 entries per page
116//! - With 64 KiB blocks: Each page covers ~256 MB of logical data
117//! - Serialized page size: ~64 KiB (fits in L2 cache)
118//!
119//! - **Flushing Strategy**: Eager flush when page fills
120//! - Prevents memory growth during large packs
121//! - Enables streaming operation (constant memory)
122//!
123//! - **Master Index**: Array of PageEntry records
124//! - Binary search for O(log N) page lookup
125//! - Typical overhead: 1 KiB per GB of data
126//!
127//! # Memory Usage Patterns
128//!
129//! The packing operation is designed for constant memory usage regardless of input size:
130//!
131//! - **Chunking Buffer**: 1 block (64 KiB default)
132//! - **Compression Output**: ~1.5× block size (worst case: incompressible data)
133//! - **Current Index Page**: Up to 4096 × 20 bytes = 80 KiB
134//! - **Deduplication Map**: ~48 bytes × unique_blocks
135//! - Example: 10 GB image with 50% dedup = ~80 MB HashMap
136//! - **Dictionary**: 110 KiB (if trained)
137//!
138//! Total typical memory: 100-200 MB for dedup hash table + ~1 MB working set.
139//!
140//! # Error Recovery
141//!
142//! The packing operation is not atomic. On failure:
143//!
144//! - **Partial File**: Output file is left in incomplete state
145//! - **Header Invalid**: Header is written last, so partial packs have zeroed header
146//! - **Detection**: Readers validate magic bytes and header checksum
147//! - **Recovery**: None; must delete partial file and retry pack operation
148//!
149//! Future enhancement: Two-phase commit with temporary file + atomic rename.
150//!
151//! # Usage Contexts
152//!
153//! This module is designed to be called from multiple contexts:
154//!
155//! - **CLI Commands**: `hexz data pack` (with terminal progress bars)
156//! - **Python Bindings**: `hexz.pack()` (with optional callbacks)
157//! - **Rust Applications**: Direct API usage for embedded scenarios
158//!
159//! By keeping pack operations separate from UI/CLI code, we avoid pulling in
160//! heavy dependencies (`clap`, `indicatif`) into library contexts.
161//!
162//! # Examples
163//!
164//! ## Basic Packing (LZ4, No Encryption)
165//!
166//! ```no_run
167//! use hexz_core::ops::pack::{pack_snapshot, PackConfig};
168//! use std::path::PathBuf;
169//!
170//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
171//! let config = PackConfig {
172//! disk: Some(PathBuf::from("disk.raw")),
173//! memory: None,
174//! output: PathBuf::from("snapshot.hxz"),
175//! compression: "lz4".to_string(),
176//! ..Default::default()
177//! };
178//!
179//! pack_snapshot::<fn(u64, u64)>(config, None)?;
180//! # Ok(())
181//! # }
182//! ```
183//!
184//! ## Advanced Packing (Zstd with Dictionary, CDC, Encryption)
185//!
186//! ```no_run
187//! use hexz_core::ops::pack::{pack_snapshot, PackConfig};
188//! use std::path::PathBuf;
189//!
190//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
191//! let config = PackConfig {
192//! disk: Some(PathBuf::from("ubuntu.qcow2")),
193//! output: PathBuf::from("ubuntu.hxz"),
194//! compression: "zstd".to_string(),
195//! train_dict: true, // Train dictionary for better ratio
196//! cdc_enabled: true, // Content-defined chunking
197//! encrypt: true,
198//! password: Some("secure_passphrase".to_string()),
199//! min_chunk: 16384, // 16 KiB minimum chunk
200//! avg_chunk: 65536, // 64 KiB average chunk
201//! max_chunk: 262144, // 256 KiB maximum chunk
202//! ..Default::default()
203//! };
204//!
205//! pack_snapshot::<fn(u64, u64)>(config, None)?;
206//! # Ok(())
207//! # }
208//! ```
209//!
210//! ## Progress Reporting
211//!
212//! ```no_run
213//! use hexz_core::ops::pack::{pack_snapshot, PackConfig};
214//! use std::path::PathBuf;
215//!
216//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
217//! let config = PackConfig {
218//! disk: Some(PathBuf::from("disk.raw")),
219//! output: PathBuf::from("snapshot.hxz"),
220//! ..Default::default()
221//! };
222//!
223//! // Callback receives (current_logical_pos, total_size)
224//! pack_snapshot(config, Some(|pos, total| {
225//! let pct = (pos as f64 / total as f64) * 100.0;
226//! println!("Packing: {:.1}%", pct);
227//! }))?;
228//! # Ok(())
229//! # }
230//! ```
231//!
232//! # Performance Characteristics
233//!
234//! ## Throughput (Single-Threaded, i7-14700K)
235//!
236//! Validated benchmarks (see `docs/project-docs/BENCHMARKS.md` for details):
237//!
238//! - **LZ4 Compression**: 22 GB/s (minimal CPU overhead)
239//! - **LZ4 Decompression**: 31 GB/s
240//! - **Zstd Level 3 Compression**: 8.7 GB/s
241//! - **Zstd Level 3 Decompression**: 12.9 GB/s
242//! - **BLAKE3 Hashing**: 5.3 GB/s (2.2× faster than SHA-256)
243//! - **SHA-256 Hashing**: 2.5 GB/s
244//! - **FastCDC Chunking**: 2.7 GB/s (gear-based rolling hash)
245//! - **AES-256-GCM Encryption**: 2.1 GB/s (hardware AES-NI acceleration)
246//! - **Pack Throughput (LZ4, no CDC)**: 4.9 GB/s (64KB blocks)
247//! - **Pack Throughput (LZ4 + CDC)**: 1.9 GB/s (CDC adds 2.6× overhead)
248//! - **Pack Throughput (Zstd-3)**: 1.6 GB/s
249//! - **Block Size Impact**: 2.3 GB/s (4KB) → 4.7 GB/s (64KB) → 5.1 GB/s (1MB)
250//!
251//! Typical bottleneck: CDC chunking (when enabled) or compression CPU time. SSD I/O rarely limits.
252//!
253//! Run benchmarks: `cargo bench --bench compression`, `cargo bench --bench hashing`, `cargo bench --bench cdc_chunking`, `cargo bench --bench encryption`, `cargo bench --bench write_throughput`, and `cargo bench --bench block_size_tradeoffs`
254//!
255//! ## Compression Ratios (Typical VM Images)
256//!
257//! - **LZ4**: 2-3× (fast but lower ratio)
258//! - **Zstd Level 3**: 3-5× (good balance)
259//! - **Zstd + Dictionary**: 4-7× (+30% improvement from dictionary)
260//! - **CDC Deduplication**: Not validated - need benchmark comparing CDC vs fixed-size chunking
261//!
262//! ## Time Estimates (64 GB VM Image, Single Thread)
263//!
264//! - **LZ4, Fixed Blocks**: ~30-45 seconds
265//! - **Zstd, Fixed Blocks**: ~2-3 minutes
266//! - **Zstd + Dictionary + CDC**: ~3-5 minutes (includes 2-5s training time)
267//!
268//! # Atomicity and Crash Safety
269//!
270//! **WARNING**: Pack operations are NOT atomic. If interrupted:
271//!
272//! - Output file is left in a partially written state
273//! - The header (written last) will be all zeros
274//! - Readers will reject the file due to invalid magic bytes
275//! - Manual cleanup is required (delete partial file)
276//!
277//! For production use cases requiring atomicity, write to a temporary file and
278//! perform an atomic rename after successful completion.
279
280use hexz_common::constants::{DICT_TRAINING_SIZE, ENTROPY_THRESHOLD};
281use hexz_common::crypto::KeyDerivationParams;
282use hexz_common::{Error, Result};
283use std::fs::File;
284use std::io::{Read, Seek, SeekFrom};
285use std::path::{Path, PathBuf};
286
287use crate::algo::compression::{create_compressor_from_str, zstd::ZstdCompressor};
288use crate::algo::dedup::cdc::StreamChunker;
289use crate::algo::dedup::dcam::DedupeParams;
290use crate::algo::encryption::{Encryptor, aes_gcm::AesGcmEncryptor};
291use crate::ops::parallel_pack::{CompressedChunk, RawChunk};
292use crate::ops::snapshot_writer::SnapshotWriter;
293
294/// Configuration parameters for snapshot packing.
295///
296/// This struct encapsulates all settings for the packing process. It's designed
297/// to be easily constructed from CLI arguments or programmatic APIs.
298///
299/// # Examples
300///
301/// ```
302/// use hexz_core::ops::pack::PackConfig;
303/// use std::path::PathBuf;
304///
305/// // Basic configuration with defaults
306/// let config = PackConfig {
307/// disk: Some(PathBuf::from("disk.img")),
308/// output: PathBuf::from("snapshot.hxz"),
309/// ..Default::default()
310/// };
311///
312/// // Advanced configuration with CDC and encryption
313/// let advanced = PackConfig {
314/// disk: Some(PathBuf::from("disk.img")),
315/// output: PathBuf::from("snapshot.hxz"),
316/// compression: "zstd".to_string(),
317/// encrypt: true,
318/// password: Some("secret".to_string()),
319/// cdc_enabled: true,
320/// min_chunk: 16384,
321/// avg_chunk: 65536,
322/// max_chunk: 131072,
323/// ..Default::default()
324/// };
325/// ```
326#[derive(Debug, Clone)]
327pub struct PackConfig {
328 /// Path to the disk image (optional).
329 pub disk: Option<PathBuf>,
330 /// Path to the memory image (optional).
331 pub memory: Option<PathBuf>,
332 /// Output snapshot file path.
333 pub output: PathBuf,
334 /// Compression algorithm ("lz4" or "zstd").
335 pub compression: String,
336 /// Enable encryption.
337 pub encrypt: bool,
338 /// Encryption password (required if encrypt=true).
339 pub password: Option<String>,
340 /// Train a compression dictionary (zstd only).
341 pub train_dict: bool,
342 /// Block size in bytes.
343 pub block_size: u32,
344 /// Enable content-defined chunking (CDC).
345 pub cdc_enabled: bool,
346 /// Minimum chunk size for CDC.
347 pub min_chunk: u32,
348 /// Average chunk size for CDC.
349 pub avg_chunk: u32,
350 /// Maximum chunk size for CDC.
351 pub max_chunk: u32,
352 /// Enable parallel compression (use multiple CPU cores).
353 pub parallel: bool,
354 /// Number of worker threads (0 = auto-detect).
355 pub num_workers: usize,
356 /// Show progress bar (if no callback provided).
357 pub show_progress: bool,
358}
359
360impl Default for PackConfig {
361 fn default() -> Self {
362 Self {
363 disk: None,
364 memory: None,
365 output: PathBuf::from("output.hxz"),
366 compression: "lz4".to_string(),
367 encrypt: false,
368 password: None,
369 train_dict: false,
370 block_size: 65536,
371 cdc_enabled: false,
372 min_chunk: 16384,
373 avg_chunk: 65536,
374 max_chunk: 131072,
375 parallel: true, // Enable by default for performance
376 num_workers: 0, // Auto-detect CPU cores
377 show_progress: true, // Show progress by default
378 }
379 }
380}
381
382/// Calculates Shannon entropy of a byte slice.
383///
384/// Shannon entropy measures the "randomness" or information content of data:
385/// - **0.0**: All bytes are identical (highly compressible)
386/// - **8.0**: Maximum entropy, random data (incompressible)
387///
388/// # Formula
389///
390/// ```text
391/// H(X) = -Σ p(x) * log2(p(x))
392/// ```
393///
394/// Where `p(x)` is the frequency of each byte value.
395///
396/// # Usage
397///
398/// Used during dictionary training to filter out high-entropy (random) blocks
399/// that wouldn't benefit from compression. Only blocks with entropy below
400/// `ENTROPY_THRESHOLD` are included in the training set.
401///
402/// # Parameters
403///
404/// - `data`: Byte slice to analyze
405///
406/// # Returns
407///
408/// Entropy value from 0.0 (homogeneous) to 8.0 (random).
409///
410/// # Examples
411///
412/// ```
413/// # use hexz_core::ops::pack::calculate_entropy;
414/// // Homogeneous data (low entropy)
415/// let zeros = vec![0u8; 1024];
416/// let entropy = calculate_entropy(&zeros);
417/// assert_eq!(entropy, 0.0);
418///
419/// // Random data (high entropy)
420/// let random: Vec<u8> = (0..=255).cycle().take(1024).collect();
421/// let entropy = calculate_entropy(&random);
422/// assert!(entropy > 7.0);
423/// ```
424pub fn calculate_entropy(data: &[u8]) -> f64 {
425 if data.is_empty() {
426 return 0.0;
427 }
428
429 let mut frequencies = [0u32; 256];
430 for &byte in data {
431 frequencies[byte as usize] += 1;
432 }
433
434 let len = data.len() as f64;
435 let mut entropy = 0.0;
436
437 for &count in frequencies.iter() {
438 if count > 0 {
439 let p = count as f64 / len;
440 entropy -= p * p.log2();
441 }
442 }
443
444 entropy
445}
446
447/// Fixed-size block chunker with buffer reuse.
448///
449/// Splits input into equal-sized blocks (except possibly the last one).
450/// Simpler and faster than CDC, but less effective for deduplication.
451///
452/// Reuses an internal buffer across calls to `next_chunk()`, eliminating
453/// per-chunk allocation after the first call.
454pub struct FixedChunker<R> {
455 reader: R,
456 block_size: usize,
457 buffer: Vec<u8>,
458 done: bool,
459}
460
461impl<R: Read> FixedChunker<R> {
462 /// Creates a new fixed-size chunker.
463 pub fn new(reader: R, block_size: usize) -> Self {
464 Self {
465 reader,
466 block_size,
467 buffer: vec![0u8; block_size],
468 done: false,
469 }
470 }
471
472 /// Returns the next chunk as a borrowed slice, or `None` at EOF.
473 ///
474 /// Zero allocations after the first call thanks to buffer reuse.
475 fn next_chunk(&mut self) -> std::io::Result<Option<&[u8]>> {
476 if self.done {
477 return Ok(None);
478 }
479 let mut pos = 0;
480 self.buffer.resize(self.block_size, 0);
481 while pos < self.block_size {
482 match self.reader.read(&mut self.buffer[pos..]) {
483 Ok(0) => break,
484 Ok(n) => pos += n,
485 Err(e) => return Err(e),
486 }
487 }
488 if pos == 0 {
489 self.done = true;
490 Ok(None)
491 } else {
492 self.buffer.truncate(pos);
493 Ok(Some(&self.buffer))
494 }
495 }
496}
497
498impl<R: Read> Iterator for FixedChunker<R> {
499 type Item = std::io::Result<Vec<u8>>;
500
501 fn next(&mut self) -> Option<Self::Item> {
502 match self.next_chunk() {
503 Ok(Some(slice)) => Some(Ok(slice.to_vec())),
504 Ok(None) => None,
505 Err(e) => Some(Err(e)),
506 }
507 }
508}
509
510/// Packs a snapshot file from disk and/or memory images.
511///
512/// This is the main entry point for creating Hexz snapshot files. It orchestrates
513/// the complete packing pipeline: dictionary training, stream processing, index
514/// building, and header finalization.
515///
516/// # Workflow
517///
518/// 1. **Validation**: Ensure at least one input (disk or memory) is provided
519/// 2. **File Creation**: Create output file, reserve 512 bytes for header
520/// 3. **Dictionary Training**: If requested (Zstd only), train dictionary from input samples
521/// 4. **Dictionary Writing**: If trained, write dictionary immediately after header
522/// 5. **Compressor Initialization**: Create LZ4 or Zstd compressor (with optional dictionary)
523/// 6. **Encryptor Initialization**: If requested, derive key from password using PBKDF2
524/// 7. **Stream Processing**: Process disk stream (if provided), then memory stream (if provided)
525/// - Each stream independently chunks, compresses, encrypts, deduplicates, and indexes
526/// 8. **Master Index Writing**: Serialize master index (all PageEntry records) to end of file
527/// 9. **Header Writing**: Seek to start, write complete header with metadata and offsets
528/// 10. **Flush**: Ensure all data is written to disk
529///
530/// # Parameters
531///
532/// - `config`: Packing configuration parameters (see [`PackConfig`])
533/// - `progress_callback`: Optional callback for progress reporting
534/// - Called frequently during stream processing (~once per 64 KiB)
535/// - Signature: `Fn(logical_pos: u64, total_size: u64)`
536/// - Example: `|pos, total| println!("Progress: {:.1}%", (pos as f64 / total as f64) * 100.0)`
537///
538/// # Returns
539///
540/// - `Ok(())`: Snapshot packed successfully
541/// - `Err(Error::Io)`: I/O error (file access, disk full, permission denied)
542/// - `Err(Error::Compression)`: Compression error (unlikely, usually indicates invalid state)
543/// - `Err(Error::Encryption)`: Encryption error (invalid password format, crypto failure)
544///
545/// # Errors
546///
547/// This function can fail for several reasons:
548///
549/// ## I/O Errors
550///
551/// - **Input file not found**: `config.disk` or `config.memory` path doesn't exist
552/// - **Permission denied**: Cannot read input or write output
553/// - **Disk full**: Insufficient space for output file
554/// - **Output exists**: May overwrite existing file without warning
555///
556/// ## Configuration Errors
557///
558/// - **No inputs**: Neither `disk` nor `memory` is provided
559/// - **Missing password**: `encrypt = true` but `password = None`
560/// - **Invalid block size**: Block size too small (<1 KiB) or too large (>16 MiB)
561/// - **Invalid CDC params**: `min_chunk >= avg_chunk >= max_chunk` constraint violated
562///
563/// ## Compression/Encryption Errors
564///
565/// - **Dictionary training failure**: Zstd training fails (rare, usually on corrupted input)
566/// - **Compression failure**: Compressor returns error (rare, usually indicates bug)
567/// - **Encryption failure**: Key derivation or cipher initialization fails
568///
569/// # Examples
570///
571/// ## Basic Usage
572///
573/// ```no_run
574/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
575/// use std::path::PathBuf;
576///
577/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
578/// let config = PackConfig {
579/// disk: Some(PathBuf::from("disk.raw")),
580/// output: PathBuf::from("snapshot.hxz"),
581/// ..Default::default()
582/// };
583///
584/// pack_snapshot::<fn(u64, u64)>(config, None)?;
585/// # Ok(())
586/// # }
587/// ```
588///
589/// ## With Progress Reporting
590///
591/// ```no_run
592/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
593/// use std::path::PathBuf;
594///
595/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
596/// let config = PackConfig {
597/// disk: Some(PathBuf::from("ubuntu.qcow2")),
598/// output: PathBuf::from("ubuntu.hxz"),
599/// compression: "zstd".to_string(),
600/// train_dict: true,
601/// ..Default::default()
602/// };
603///
604/// pack_snapshot(config, Some(|pos, total| {
605/// eprint!("\rPacking: {:.1}%", (pos as f64 / total as f64) * 100.0);
606/// }))?;
607/// eprintln!("\nDone!");
608/// # Ok(())
609/// # }
610/// ```
611///
612/// ## Encrypted Snapshot
613///
614/// ```no_run
615/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
616/// use std::path::PathBuf;
617///
618/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
619/// let config = PackConfig {
620/// disk: Some(PathBuf::from("sensitive.raw")),
621/// output: PathBuf::from("sensitive.hxz"),
622/// encrypt: true,
623/// password: Some("strong_passphrase".to_string()),
624/// ..Default::default()
625/// };
626///
627/// pack_snapshot::<fn(u64, u64)>(config, None)?;
628/// println!("Encrypted snapshot created");
629/// # Ok(())
630/// # }
631/// ```
632///
633/// ## Content-Defined Chunking for Deduplication
634///
635/// ```no_run
636/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
637/// use std::path::PathBuf;
638///
639/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
640/// let config = PackConfig {
641/// disk: Some(PathBuf::from("incremental-backup.raw")),
642/// output: PathBuf::from("backup.hxz"),
643/// cdc_enabled: true,
644/// min_chunk: 16384, // 16 KiB
645/// avg_chunk: 65536, // 64 KiB
646/// max_chunk: 262144, // 256 KiB
647/// ..Default::default()
648/// };
649///
650/// pack_snapshot::<fn(u64, u64)>(config, None)?;
651/// # Ok(())
652/// # }
653/// ```
654///
655/// # Performance
656///
657/// See module-level documentation for detailed performance characteristics.
658///
659/// Typical throughput for a 64 GB VM image on modern hardware (Intel i7, NVMe SSD):
660///
661/// - **LZ4, no encryption**: ~2 GB/s (~30 seconds total)
662/// - **Zstd level 3, no encryption**: ~500 MB/s (~2 minutes total)
663/// - **Zstd + dictionary + CDC**: ~400 MB/s (~3 minutes including training)
664///
665/// # Atomicity
666///
667/// This operation is NOT atomic. On failure, the output file will be left in a
668/// partially written state. The file header is written last, so incomplete files
669/// will have an all-zero header and will be rejected by readers.
670///
671/// For atomic pack operations, write to a temporary file and perform an atomic
672/// rename after success:
673///
674/// ```no_run
675/// # use hexz_core::ops::pack::{pack_snapshot, PackConfig};
676/// # use std::path::PathBuf;
677/// # use std::fs;
678/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
679/// let mut config = PackConfig {
680/// disk: Some(PathBuf::from("disk.raw")),
681/// output: PathBuf::from("snapshot.st.tmp"),
682/// ..Default::default()
683/// };
684///
685/// pack_snapshot::<fn(u64, u64)>(config.clone(), None)?;
686/// fs::rename("snapshot.st.tmp", "snapshot.hxz")?;
687/// # Ok(())
688/// # }
689/// ```
690///
691/// # Thread Safety
692///
693/// This function is not thread-safe with respect to the output file. Do not call
694/// `pack_snapshot` concurrently with the same output path. Concurrent packing to
695/// different output files is safe.
696///
697/// The progress callback must be `Send + Sync` if you want to call this function
698/// from a non-main thread.
699pub fn pack_snapshot<F>(config: PackConfig, progress_callback: Option<F>) -> Result<()>
700where
701 F: Fn(u64, u64) + Send + Sync,
702{
703 // Validate inputs
704 if config.disk.is_none() && config.memory.is_none() {
705 return Err(Error::Io(std::io::Error::new(
706 std::io::ErrorKind::InvalidInput,
707 "At least one input (disk or memory) must be provided",
708 )));
709 }
710
711 // Train compression dictionary if requested
712 let dictionary = if config.compression == "zstd" && config.train_dict {
713 Some(train_dictionary(
714 config
715 .disk
716 .as_ref()
717 .or(config.memory.as_ref())
718 .ok_or_else(|| {
719 Error::Io(std::io::Error::new(
720 std::io::ErrorKind::InvalidInput,
721 "No input file available for dictionary training",
722 ))
723 })?,
724 config.block_size,
725 )?)
726 } else {
727 None
728 };
729
730 // Initialize compressor
731 let (compressor, compression_type) =
732 create_compressor_from_str(&config.compression, None, dictionary.clone())?;
733
734 // Initialize encryptor if requested
735 let (encryptor, enc_params): (Option<Box<dyn Encryptor>>, _) = if config.encrypt {
736 let password = config.password.clone().ok_or_else(|| {
737 Error::Io(std::io::Error::new(
738 std::io::ErrorKind::InvalidInput,
739 "Password required for encryption",
740 ))
741 })?;
742 let params = KeyDerivationParams::default();
743 let enc = AesGcmEncryptor::new(password.as_bytes(), ¶ms.salt, params.iterations)?;
744 (Some(Box::new(enc) as Box<dyn Encryptor>), Some(params))
745 } else {
746 (None, None)
747 };
748
749 // Build the snapshot writer with optional encryption
750 let mut builder = SnapshotWriter::builder(&config.output, compressor, compression_type)
751 .block_size(config.block_size)
752 .variable_blocks(config.cdc_enabled);
753
754 if let (Some(enc), Some(params)) = (encryptor, enc_params) {
755 builder = builder.encryption(enc, params);
756 }
757
758 let mut writer = builder.build()?;
759
760 // Write dictionary to file
761 if let Some(d) = &dictionary {
762 writer.write_dictionary(d)?;
763 }
764
765 // Set up progress bar if show_progress is enabled and no user callback given
766 let disk_size = config
767 .disk
768 .as_ref()
769 .and_then(|p| std::fs::metadata(p).ok())
770 .map(|m| m.len())
771 .unwrap_or(0);
772 let memory_size = config
773 .memory
774 .as_ref()
775 .and_then(|p| std::fs::metadata(p).ok())
776 .map(|m| m.len())
777 .unwrap_or(0);
778 let total_size = disk_size + memory_size;
779
780 let progress_bar = if config.show_progress && progress_callback.is_none() && total_size > 0 {
781 Some(crate::ops::progress::PackProgress::new(
782 total_size, "Packing",
783 ))
784 } else {
785 None
786 };
787
788 // Process disk stream
789 if let Some(ref path) = config.disk {
790 let cb = |pos: u64, total: u64| {
791 if let Some(ref pb) = progress_bar {
792 pb.set_position(pos);
793 }
794 if let Some(ref cb) = progress_callback {
795 cb(pos, total);
796 }
797 };
798 process_stream(path.clone(), true, &mut writer, &config, Some(&cb))?;
799 }
800
801 // Process memory stream
802 if let Some(ref path) = config.memory {
803 let cb = |pos: u64, total: u64| {
804 if let Some(ref pb) = progress_bar {
805 pb.set_position(disk_size + pos);
806 }
807 if let Some(ref cb) = progress_callback {
808 cb(pos, total);
809 }
810 };
811 process_stream(path.clone(), false, &mut writer, &config, Some(&cb))?;
812 }
813
814 if let Some(ref pb) = progress_bar {
815 pb.finish();
816 }
817
818 writer.finalize(None, None)?;
819
820 Ok(())
821}
822
823/// Trains a Zstd compression dictionary from stratified samples.
824///
825/// Dictionary training analyzes a representative sample of input blocks to build
826/// a shared dictionary that improves compression ratios for structured data
827/// (file systems, databases, logs) by capturing common patterns.
828///
829/// # Algorithm
830///
831/// 1. **Stratified Sampling**: Sample blocks evenly across the file
832/// - Compute step size: `file_size / target_samples`
833/// - Read one block at each sample point
834/// - Ensures coverage of different regions (boot sector, metadata, data)
835///
836/// 2. **Quality Filtering**: Exclude unsuitable blocks
837/// - Skip all-zero blocks (no compressible patterns)
838/// - Compute Shannon entropy (0-8 bits per byte)
839/// - Reject blocks with entropy > `ENTROPY_THRESHOLD` (6.0)
840/// - Rationale: High-entropy data (encrypted, random) doesn't benefit from dictionaries
841///
842/// 3. **Dictionary Training**: Feed filtered samples to Zstd
843/// - Uses Zstd's COVER algorithm (fast_cover variant)
844/// - Analyzes n-grams to find common subsequences
845/// - Outputs dictionary up to `DICT_TRAINING_SIZE` (110 KiB)
846///
847/// # Parameters
848///
849/// - `input_path`: Path to the input file to sample from
850/// - `block_size`: Size of each sample block in bytes
851///
852/// # Returns
853///
854/// - `Ok(Vec<u8>)`: Trained dictionary bytes (empty if training fails or no suitable samples)
855/// - `Err(Error)`: I/O error reading input file
856///
857/// # Performance
858///
859/// - **Sampling time**: ~100-500 ms (depends on file size and disk speed)
860/// - **Training time**: ~2-5 seconds for 4000 samples
861/// - **Memory usage**: ~256 MB (sample corpus in RAM)
862///
863/// # Compression Improvement
864///
865/// - **Typical**: 10-30% better ratio vs. no dictionary
866/// - **Best case**: 50%+ improvement for highly structured data (databases)
867/// - **Worst case**: No improvement or slight regression (already compressed data)
868///
869/// # Edge Cases
870///
871/// - **Empty file**: Returns empty dictionary with warning
872/// - **All high-entropy data**: Returns empty dictionary with warning
873/// - **Small files**: May not reach target sample count (trains on available data)
874///
875/// # Examples
876///
877/// Called internally by `pack_snapshot` when `train_dict` is enabled:
878///
879/// ```text
880/// let dict = train_dictionary(Path::new("disk.raw"), 65536)?;
881/// // dict: Vec<u8> containing the trained zstd dictionary
882/// ```
883fn train_dictionary(input_path: &Path, block_size: u32) -> Result<Vec<u8>> {
884 let mut f = File::open(input_path)?;
885 let file_len = f.metadata()?.len();
886
887 let mut samples = Vec::new();
888 let mut buffer = vec![0u8; block_size as usize];
889 let target_samples = DICT_TRAINING_SIZE;
890
891 let step = if file_len > 0 {
892 (file_len / target_samples as u64).max(block_size as u64)
893 } else {
894 0
895 };
896
897 let mut attempts = 0;
898 while samples.len() < target_samples && attempts < target_samples * 2 {
899 let offset = attempts as u64 * step;
900 if offset >= file_len {
901 break;
902 }
903
904 f.seek(SeekFrom::Start(offset))?;
905 let n = f.read(&mut buffer)?;
906 if n == 0 {
907 break;
908 }
909 let chunk = &buffer[..n];
910 let is_zeros = chunk.iter().all(|&b| b == 0);
911
912 if !is_zeros {
913 let entropy = calculate_entropy(chunk);
914 if entropy < ENTROPY_THRESHOLD {
915 samples.push(chunk.to_vec());
916 }
917 }
918 attempts += 1;
919 }
920
921 if samples.is_empty() {
922 tracing::warn!("Input seems to be empty or high entropy. Dictionary will be empty.");
923 Ok(Vec::new())
924 } else {
925 let dict_bytes = ZstdCompressor::train(&samples, DICT_TRAINING_SIZE)?;
926 tracing::info!("Dictionary trained: {} bytes", dict_bytes.len());
927 Ok(dict_bytes)
928 }
929}
930
931/// Processes a single input stream (disk or memory) via the [`SnapshotWriter`].
932fn process_stream<F>(
933 path: PathBuf,
934 is_disk: bool,
935 writer: &mut SnapshotWriter,
936 config: &PackConfig,
937 progress_callback: Option<&F>,
938) -> Result<()>
939where
940 F: Fn(u64, u64),
941{
942 let f = File::open(&path)?;
943 let len = f.metadata()?.len();
944
945 writer.begin_stream(is_disk, len);
946
947 // Use parallel path when enabled and not encrypting (encryption needs sequential nonces)
948 if config.parallel && !config.encrypt {
949 process_stream_parallel(f, len, writer, config, progress_callback)?;
950 } else {
951 process_stream_serial(f, len, writer, config, progress_callback)?;
952 }
953
954 writer.end_stream()?;
955 Ok(())
956}
957
958/// Serial (original) stream processing path.
959fn process_stream_serial<F>(
960 f: File,
961 len: u64,
962 writer: &mut SnapshotWriter,
963 config: &PackConfig,
964 progress_callback: Option<&F>,
965) -> Result<()>
966where
967 F: Fn(u64, u64),
968{
969 let mut logical_pos = 0u64;
970
971 if config.cdc_enabled {
972 let params = DedupeParams {
973 f: (config.avg_chunk as f64).log2() as u32,
974 m: config.min_chunk,
975 z: config.max_chunk,
976 w: 48,
977 v: 8,
978 };
979 let chunker = StreamChunker::new(f, params);
980 for chunk_res in chunker {
981 let chunk = chunk_res?;
982 logical_pos += chunk.len() as u64;
983 writer.write_data_block(&chunk)?;
984 if let Some(callback) = progress_callback {
985 callback(logical_pos, len);
986 }
987 }
988 } else {
989 let mut chunker = FixedChunker::new(f, config.block_size as usize);
990 loop {
991 match chunker.next_chunk() {
992 Ok(Some(chunk)) => {
993 logical_pos += chunk.len() as u64;
994 writer.write_data_block(chunk)?;
995 if let Some(callback) = progress_callback {
996 callback(logical_pos, len);
997 }
998 }
999 Ok(None) => break,
1000 Err(e) => return Err(Error::Io(e)),
1001 }
1002 }
1003 }
1004
1005 Ok(())
1006}
1007
1008/// Parallel stream processing: single persistent pipeline for the entire stream.
1009///
1010/// Architecture:
1011/// - Reader thread: reads input file, chunks it, sends to workers
1012/// - N worker threads: compress + BLAKE3 hash chunks in parallel
1013/// - Main thread: receives compressed chunks, reorders via BTreeMap, writes sequentially
1014///
1015/// This avoids per-batch thread pool creation overhead (the old approach created
1016/// ~2800 thread pools for a 180GB file).
1017fn process_stream_parallel<F>(
1018 f: File,
1019 len: u64,
1020 writer: &mut SnapshotWriter,
1021 config: &PackConfig,
1022 progress_callback: Option<&F>,
1023) -> Result<()>
1024where
1025 F: Fn(u64, u64),
1026{
1027 use crate::algo::compression::Compressor;
1028 use crossbeam::channel::bounded;
1029 use std::collections::BTreeMap;
1030 use std::sync::Arc;
1031
1032 let num_workers = if config.num_workers > 0 {
1033 config.num_workers
1034 } else {
1035 num_cpus::get()
1036 };
1037
1038 // Create shared compressor for all workers
1039 let (compressor, _) = create_compressor_from_str(&config.compression, None, None)?;
1040 let compressor: Arc<Box<dyn Compressor + Send + Sync>> = Arc::new(compressor);
1041
1042 // Bounded channels for backpressure: enough to keep workers busy without excessive memory.
1043 // Each in-flight chunk is ~64KB, so num_workers*4 chunks ≈ num_workers*256KB.
1044 let channel_size = num_workers * 4;
1045 let (tx_raw, rx_raw) = bounded::<(u64, RawChunk)>(channel_size);
1046 let (tx_compressed, rx_compressed) = bounded::<(u64, CompressedChunk)>(channel_size);
1047
1048 // Spawn persistent compression workers
1049 let mut workers = Vec::with_capacity(num_workers);
1050 for _ in 0..num_workers {
1051 let rx = rx_raw.clone();
1052 let tx = tx_compressed.clone();
1053 let comp = compressor.clone();
1054 workers.push(std::thread::spawn(move || -> Result<()> {
1055 for (seq, chunk) in rx {
1056 let compressed_data = comp.compress(&chunk.data)?;
1057 let hash = blake3::hash(&chunk.data);
1058 if tx
1059 .send((
1060 seq,
1061 CompressedChunk {
1062 compressed: compressed_data,
1063 hash: hash.into(),
1064 logical_offset: chunk.logical_offset,
1065 original_size: chunk.data.len(),
1066 },
1067 ))
1068 .is_err()
1069 {
1070 break; // Receiver dropped, pipeline shutting down
1071 }
1072 }
1073 Ok(())
1074 }));
1075 }
1076
1077 // Drop our copies so channels close when all real holders finish
1078 drop(rx_raw);
1079 drop(tx_compressed);
1080
1081 // Spawn reader thread: reads input, chunks it, feeds workers
1082 let reader_config = config.clone();
1083 let reader = std::thread::spawn(move || -> Result<()> {
1084 let mut seq = 0u64;
1085 let mut logical_pos = 0u64;
1086
1087 if reader_config.cdc_enabled {
1088 let params = DedupeParams {
1089 f: (reader_config.avg_chunk as f64).log2() as u32,
1090 m: reader_config.min_chunk,
1091 z: reader_config.max_chunk,
1092 w: 48,
1093 v: 8,
1094 };
1095 let chunker = StreamChunker::new(f, params);
1096 for chunk_res in chunker {
1097 let chunk = chunk_res?;
1098 let chunk_len = chunk.len();
1099 if tx_raw
1100 .send((
1101 seq,
1102 RawChunk {
1103 data: chunk,
1104 logical_offset: logical_pos,
1105 },
1106 ))
1107 .is_err()
1108 {
1109 break; // Workers shut down
1110 }
1111 logical_pos += chunk_len as u64;
1112 seq += 1;
1113 }
1114 } else {
1115 let mut chunker = FixedChunker::new(f, reader_config.block_size as usize);
1116 loop {
1117 match chunker.next_chunk() {
1118 Ok(Some(chunk)) => {
1119 let chunk_len = chunk.len();
1120 if tx_raw
1121 .send((
1122 seq,
1123 RawChunk {
1124 data: chunk.to_vec(),
1125 logical_offset: logical_pos,
1126 },
1127 ))
1128 .is_err()
1129 {
1130 break; // Workers shut down
1131 }
1132 logical_pos += chunk_len as u64;
1133 seq += 1;
1134 }
1135 Ok(None) => break,
1136 Err(e) => return Err(Error::Io(e)),
1137 }
1138 }
1139 }
1140 Ok(())
1141 });
1142
1143 // Main thread: receive compressed chunks, reorder, write sequentially.
1144 // Workers return chunks out-of-order; BTreeMap restores logical order.
1145 let mut next_seq = 0u64;
1146 let mut reorder_buf: BTreeMap<u64, CompressedChunk> = BTreeMap::new();
1147 let mut write_error: Option<Error> = None;
1148
1149 for (seq, compressed) in rx_compressed.iter() {
1150 reorder_buf.insert(seq, compressed);
1151
1152 // Drain all consecutive chunks ready to write
1153 while let Some(chunk) = reorder_buf.remove(&next_seq) {
1154 match writer.write_precompressed_block(
1155 &chunk.compressed,
1156 &chunk.hash,
1157 chunk.original_size as u32,
1158 ) {
1159 Ok(()) => {
1160 if let Some(callback) = progress_callback {
1161 callback(chunk.logical_offset + chunk.original_size as u64, len);
1162 }
1163 next_seq += 1;
1164 }
1165 Err(e) => {
1166 write_error = Some(e);
1167 break;
1168 }
1169 }
1170 }
1171 if write_error.is_some() {
1172 break;
1173 }
1174 }
1175
1176 // Drop receiver to unblock workers/reader if we exited early due to write error.
1177 // This causes workers' send() to fail → workers exit → reader's send() fails → reader exits.
1178 drop(rx_compressed);
1179
1180 // Wait for all threads to finish
1181 let reader_result = reader
1182 .join()
1183 .map_err(|_| Error::Io(std::io::Error::other("Reader thread panicked")))?;
1184
1185 for worker in workers {
1186 worker
1187 .join()
1188 .map_err(|_| Error::Io(std::io::Error::other("Worker thread panicked")))?
1189 .ok(); // Ignore worker errors if we already have a write error
1190 }
1191
1192 // Propagate errors (write errors take priority)
1193 if let Some(e) = write_error {
1194 return Err(e);
1195 }
1196 reader_result?;
1197
1198 Ok(())
1199}
1200
1201#[cfg(test)]
1202mod tests {
1203 use super::*;
1204 use std::io::Cursor;
1205
1206 #[test]
1207 fn test_calculate_entropy_empty() {
1208 assert_eq!(calculate_entropy(&[]), 0.0);
1209 }
1210
1211 #[test]
1212 fn test_calculate_entropy_uniform() {
1213 // All same byte - lowest entropy
1214 let data = vec![0x42; 1000];
1215 let entropy = calculate_entropy(&data);
1216 assert!(
1217 entropy < 0.01,
1218 "Entropy should be near 0.0 for uniform data"
1219 );
1220 }
1221
1222 #[test]
1223 fn test_calculate_entropy_binary() {
1224 // Two values - low entropy
1225 let mut data = vec![0u8; 500];
1226 data.extend(vec![1u8; 500]);
1227 let entropy = calculate_entropy(&data);
1228 assert!(
1229 entropy > 0.9 && entropy < 1.1,
1230 "Entropy should be ~1.0 for binary data"
1231 );
1232 }
1233
1234 #[test]
1235 fn test_calculate_entropy_random() {
1236 // All 256 values - high entropy
1237 let data: Vec<u8> = (0..=255).cycle().take(256 * 4).collect();
1238 let entropy = calculate_entropy(&data);
1239 assert!(
1240 entropy > 7.5,
1241 "Entropy should be high for all byte values: got {}",
1242 entropy
1243 );
1244 }
1245
1246 #[test]
1247 fn test_calculate_entropy_single_byte() {
1248 assert_eq!(calculate_entropy(&[42]), 0.0);
1249 }
1250
1251 #[test]
1252 fn test_calculate_entropy_two_different_bytes() {
1253 let data = vec![0, 255];
1254 let entropy = calculate_entropy(&data);
1255 assert!(entropy > 0.9 && entropy < 1.1, "Entropy should be ~1.0");
1256 }
1257
1258 #[test]
1259 fn test_fixed_chunker_exact_blocks() {
1260 let data = vec![1, 2, 3, 4, 5, 6, 7, 8];
1261 let cursor = Cursor::new(data);
1262 let chunker = FixedChunker::new(cursor, 4);
1263
1264 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1265
1266 assert_eq!(chunks.len(), 2);
1267 assert_eq!(chunks[0], vec![1, 2, 3, 4]);
1268 assert_eq!(chunks[1], vec![5, 6, 7, 8]);
1269 }
1270
1271 #[test]
1272 fn test_fixed_chunker_partial_last_block() {
1273 let data = vec![1, 2, 3, 4, 5];
1274 let cursor = Cursor::new(data);
1275 let chunker = FixedChunker::new(cursor, 3);
1276
1277 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1278
1279 assert_eq!(chunks.len(), 2);
1280 assert_eq!(chunks[0], vec![1, 2, 3]);
1281 assert_eq!(chunks[1], vec![4, 5]);
1282 }
1283
1284 #[test]
1285 fn test_fixed_chunker_empty_input() {
1286 let data = vec![];
1287 let cursor = Cursor::new(data);
1288 let chunker = FixedChunker::new(cursor, 1024);
1289
1290 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1291
1292 assert_eq!(chunks.len(), 0);
1293 }
1294
1295 #[test]
1296 fn test_fixed_chunker_single_byte_blocks() {
1297 let data = vec![1, 2, 3];
1298 let cursor = Cursor::new(data);
1299 let chunker = FixedChunker::new(cursor, 1);
1300
1301 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1302
1303 assert_eq!(chunks.len(), 3);
1304 assert_eq!(chunks[0], vec![1]);
1305 assert_eq!(chunks[1], vec![2]);
1306 assert_eq!(chunks[2], vec![3]);
1307 }
1308
1309 #[test]
1310 fn test_fixed_chunker_large_block_size() {
1311 let data = vec![1, 2, 3, 4, 5];
1312 let cursor = Cursor::new(data.clone());
1313 let chunker = FixedChunker::new(cursor, 10000);
1314
1315 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1316
1317 assert_eq!(chunks.len(), 1);
1318 assert_eq!(chunks[0], data);
1319 }
1320
1321 #[test]
1322 fn test_pack_config_default() {
1323 let config = PackConfig::default();
1324
1325 assert_eq!(config.compression, "lz4");
1326 assert!(!config.encrypt);
1327 assert_eq!(config.password, None);
1328 assert!(!config.train_dict);
1329 assert_eq!(config.block_size, 65536);
1330 assert!(!config.cdc_enabled);
1331 assert_eq!(config.min_chunk, 16384);
1332 assert_eq!(config.avg_chunk, 65536);
1333 assert_eq!(config.max_chunk, 131072);
1334 }
1335
1336 #[test]
1337 fn test_pack_config_clone() {
1338 let config1 = PackConfig {
1339 disk: Some(PathBuf::from("/dev/sda")),
1340 output: PathBuf::from("output.hxz"),
1341 compression: "zstd".to_string(),
1342 encrypt: true,
1343 password: Some("secret".to_string()),
1344 ..Default::default()
1345 };
1346
1347 let config2 = config1.clone();
1348
1349 assert_eq!(config2.disk, config1.disk);
1350 assert_eq!(config2.output, config1.output);
1351 assert_eq!(config2.compression, config1.compression);
1352 assert_eq!(config2.encrypt, config1.encrypt);
1353 assert_eq!(config2.password, config1.password);
1354 }
1355
1356 #[test]
1357 fn test_pack_config_debug() {
1358 let config = PackConfig::default();
1359 let debug_str = format!("{:?}", config);
1360
1361 assert!(debug_str.contains("PackConfig"));
1362 assert!(debug_str.contains("lz4"));
1363 }
1364
1365 #[test]
1366 fn test_entropy_threshold_filtering() {
1367 // Test data with entropy below threshold (compressible)
1368 let low_entropy_data = vec![0u8; 1024];
1369 assert!(calculate_entropy(&low_entropy_data) < ENTROPY_THRESHOLD);
1370
1371 // Test data with entropy above threshold (random)
1372 let high_entropy_data: Vec<u8> = (0..1024).map(|i| ((i * 7) % 256) as u8).collect();
1373 let entropy = calculate_entropy(&high_entropy_data);
1374 // This might not always be above threshold depending on the pattern,
1375 // but we can still test that entropy calculation works
1376 assert!((0.0..=8.0).contains(&entropy));
1377 }
1378
1379 #[test]
1380 fn test_entropy_calculation_properties() {
1381 // Entropy should increase with more unique values
1382 let data1 = vec![0u8; 100];
1383 let data2 = [0u8, 1u8].repeat(50);
1384 let mut data3 = Vec::new();
1385 for i in 0..100 {
1386 data3.push((i % 10) as u8);
1387 }
1388
1389 let entropy1 = calculate_entropy(&data1);
1390 let entropy2 = calculate_entropy(&data2);
1391 let entropy3 = calculate_entropy(&data3);
1392
1393 assert!(
1394 entropy1 < entropy2,
1395 "More unique values should increase entropy"
1396 );
1397 assert!(
1398 entropy2 < entropy3,
1399 "Even more unique values should further increase entropy"
1400 );
1401 }
1402
1403 #[test]
1404 fn test_fixed_chunker_with_different_sizes() {
1405 let data = vec![0u8; 10000];
1406
1407 // Test with various chunk sizes
1408 for chunk_size in [64, 256, 1024, 4096, 65536] {
1409 let cursor = Cursor::new(data.clone());
1410 let chunker = FixedChunker::new(cursor, chunk_size);
1411
1412 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1413
1414 // Verify total data matches
1415 let total_len: usize = chunks.iter().map(|c| c.len()).sum();
1416 assert_eq!(
1417 total_len,
1418 data.len(),
1419 "Total chunked data should match original for chunk_size={}",
1420 chunk_size
1421 );
1422
1423 // Verify all except possibly last chunk have correct size
1424 for (i, chunk) in chunks.iter().enumerate() {
1425 if i < chunks.len() - 1 {
1426 assert_eq!(
1427 chunk.len(),
1428 chunk_size,
1429 "Non-final chunks should be exactly chunk_size"
1430 );
1431 } else {
1432 assert!(
1433 chunk.len() <= chunk_size,
1434 "Final chunk should be <= chunk_size"
1435 );
1436 }
1437 }
1438 }
1439 }
1440}