hexz_core/ops/pack.rs
1//! High-level snapshot packing operations.
2//!
3//! This module implements the core business logic for creating Hexz snapshot files
4//! from raw disk and memory images. It orchestrates a multi-stage pipeline that
5//! transforms raw input data into compressed, indexed, and optionally encrypted
6//! snapshot files optimized for fast random access and deduplication.
7//!
8//! # Core Capabilities
9//!
10//! - **Dictionary Training**: Intelligent sampling and Zstd dictionary optimization
11//! - **Chunking Strategies**: Fixed-size blocks or content-defined (FastCDC) for better deduplication
12//! - **Compression**: LZ4 (fast) or Zstd (high-ratio) with optional dictionary support
13//! - **Encryption**: Per-block AES-256-GCM authenticated encryption
14//! - **Deduplication**: BLAKE3 based content deduplication (disabled for encrypted data)
15//! - **Hierarchical Indexing**: Two-level index structure for efficient random access
16//! - **Progress Reporting**: Optional callback interface for UI integration
17//!
18//! # Architecture
19//!
20//! The packing process follows a carefully orchestrated pipeline. Each stage is designed
21//! to be memory-efficient (streaming) and to minimize write amplification:
22//!
23//! ```text
24//! ┌─────────────────────────────────────────────────────────────────────┐
25//! │ Stage 1: Dictionary Training (Optional, Zstd only) │
26//! │ │
27//! │ Input File → Stratified Sampling → Entropy Filtering → Zstd Train │
28//! │ │
29//! │ - Samples ~4000 blocks evenly distributed across input │
30//! │ - Filters out zero blocks and high-entropy data (>6.0 bits/byte) │
31//! │ - Produces dictionary (max 110 KiB) optimized for dataset │
32//! │ - Training time: 2-5 seconds for typical VM images │
33//! └─────────────────────────────────────────────────────────────────────┘
34//! ↓
35//! ┌─────────────────────────────────────────────────────────────────────┐
36//! │ Stage 2: Stream Processing (Per Input: Disk, Memory) │
37//! │ │
38//! │ Raw Input → Chunking → Compression → Encryption → Dedup → Write │
39//! │ │
40//! │ Chunking: │
41//! │ - Fixed-size: Divide into equal blocks (default 64 KiB) │
42//! │ - FastCDC: Content-defined boundaries for better deduplication │
43//! │ │
44//! │ Zero Block Optimization: │
45//! │ - Detect all-zero chunks (common in VM images) │
46//! │ - Store as metadata only (offset=0, length=0) │
47//! │ - Saves significant space for sparse images │
48//! │ │
49//! │ Deduplication (Unencrypted only): │
50//! │ - Compute BLAKE3 hash of compressed data │
51//! │ - Check hash table for existing block │
52//! │ - Reuse offset if duplicate found │
53//! │ - Note: Disabled for encrypted data (unique nonces prevent dedup) │
54//! │ │
55//! │ Index Page Building: │
56//! │ - Accumulate BlockInfo metadata (offset, length, checksum) │
57//! │ - Flush page when reaching 4096 entries (~16 MB logical data) │
58//! │ - Write serialized page to output, record PageEntry │
59//! └─────────────────────────────────────────────────────────────────────┘
60//! ↓
61//! ┌─────────────────────────────────────────────────────────────────────┐
62//! │ Stage 3: Index Finalization │
63//! │ │
64//! │ MasterIndex (disk_pages[], memory_pages[], sizes) → Serialize │
65//! │ │
66//! │ - Collect all PageEntry records from both streams │
67//! │ - Write master index at end of file │
68//! │ - Record index offset in header │
69//! └─────────────────────────────────────────────────────────────────────┘
70//! ↓
71//! ┌─────────────────────────────────────────────────────────────────────┐
72//! │ Stage 4: Header Writing │
73//! │ │
74//! │ - Seek to file start (reserved 512 bytes) │
75//! │ - Write Header with format metadata │
76//! │ - Includes: compression type, encryption params, index offset │
77//! │ - Flush to ensure atomicity │
78//! └─────────────────────────────────────────────────────────────────────┘
79//! ```
80//!
81//! # Optimization Strategies
82//!
83//! ## Dictionary Training Algorithm
84//!
85//! The dictionary training process improves compression ratios by 10-30% for
86//! structured data (file systems, databases) by building a Zstd shared dictionary:
87//!
88//! 1. **Stratified Sampling**: Sample blocks evenly across input to capture diversity
89//! - Step size = file_size / target_samples (typically 4000 samples)
90//! - Ensures coverage of different file system regions
91//!
92//! 2. **Quality Filtering**: Exclude unsuitable blocks
93//! - Skip all-zero blocks (no compressible patterns)
94//! - Compute Shannon entropy for each block
95//! - Reject blocks with entropy > 6.0 bits/byte (likely encrypted/random)
96//!
97//! 3. **Training**: Feed filtered samples to Zstd dictionary builder
98//! - Target dictionary size: 110 KiB (fits in L2 cache)
99//! - Uses Zstd's COVER algorithm to extract common patterns
100//!
101//! ## Deduplication Mechanism
102//!
103//! Content-based deduplication eliminates redundant blocks:
104//!
105//! - **Hash Table**: Maps BLAKE3 hash → physical offset for each unique compressed block
106//! - **Collision Handling**: BLAKE3 collisions are astronomically unlikely (2^128 blocks)
107//! - **Memory Usage**: ~48 bytes per unique block (32-byte hash + 8-byte offset + HashMap overhead)
108//! - **Write Behavior**: Only write each unique block once; reuse offset for duplicates
109//! - **Encryption Interaction**: Disabled when encrypting (each block gets unique nonce/ciphertext)
110//!
111//! ## Index Page Management
112//!
113//! The two-level index hierarchy balances random access performance and metadata overhead:
114//!
115//! - **Page Size**: 4096 entries per page
116//! - With 64 KiB blocks: Each page covers ~256 MB of logical data
117//! - Serialized page size: ~64 KiB (fits in L2 cache)
118//!
119//! - **Flushing Strategy**: Eager flush when page fills
120//! - Prevents memory growth during large packs
121//! - Enables streaming operation (constant memory)
122//!
123//! - **Master Index**: Array of PageEntry records
124//! - Binary search for O(log N) page lookup
125//! - Typical overhead: 1 KiB per GB of data
126//!
127//! # Memory Usage Patterns
128//!
129//! The packing operation is designed for constant memory usage regardless of input size:
130//!
131//! - **Chunking Buffer**: 1 block (64 KiB default)
132//! - **Compression Output**: ~1.5× block size (worst case: incompressible data)
133//! - **Current Index Page**: Up to 4096 × 20 bytes = 80 KiB
134//! - **Deduplication Map**: ~48 bytes × unique_blocks
135//! - Example: 10 GB image with 50% dedup = ~80 MB HashMap
136//! - **Dictionary**: 110 KiB (if trained)
137//!
138//! Total typical memory: 100-200 MB for dedup hash table + ~1 MB working set.
139//!
140//! # Error Recovery
141//!
142//! The packing operation is not atomic. On failure:
143//!
144//! - **Partial File**: Output file is left in incomplete state
145//! - **Header Invalid**: Header is written last, so partial packs have zeroed header
146//! - **Detection**: Readers validate magic bytes and header checksum
147//! - **Recovery**: None; must delete partial file and retry pack operation
148//!
149//! Future enhancement: Two-phase commit with temporary file + atomic rename.
150//!
151//! # Usage Contexts
152//!
153//! This module is designed to be called from multiple contexts:
154//!
155//! - **CLI Commands**: `hexz data pack` (with terminal progress bars)
156//! - **Python Bindings**: `hexz.pack()` (with optional callbacks)
157//! - **Rust Applications**: Direct API usage for embedded scenarios
158//!
159//! By keeping pack operations separate from UI/CLI code, we avoid pulling in
160//! heavy dependencies (`clap`, `indicatif`) into library contexts.
161//!
162//! # Examples
163//!
164//! ## Basic Packing (LZ4, No Encryption)
165//!
166//! ```no_run
167//! use hexz_core::ops::pack::{pack_snapshot, PackConfig};
168//! use std::path::PathBuf;
169//!
170//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
171//! let config = PackConfig {
172//! disk: Some(PathBuf::from("disk.raw")),
173//! memory: None,
174//! output: PathBuf::from("snapshot.hxz"),
175//! compression: "lz4".to_string(),
176//! ..Default::default()
177//! };
178//!
179//! pack_snapshot::<fn(u64, u64)>(config, None)?;
180//! # Ok(())
181//! # }
182//! ```
183//!
184//! ## Advanced Packing (Zstd with Dictionary, CDC, Encryption)
185//!
186//! ```no_run
187//! use hexz_core::ops::pack::{pack_snapshot, PackConfig};
188//! use std::path::PathBuf;
189//!
190//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
191//! let config = PackConfig {
192//! disk: Some(PathBuf::from("ubuntu.qcow2")),
193//! output: PathBuf::from("ubuntu.hxz"),
194//! compression: "zstd".to_string(),
195//! train_dict: true, // Train dictionary for better ratio
196//! cdc_enabled: true, // Content-defined chunking
197//! encrypt: true,
198//! password: Some("secure_passphrase".to_string()),
199//! min_chunk: 16384, // 16 KiB minimum chunk
200//! avg_chunk: 65536, // 64 KiB average chunk
201//! max_chunk: 262144, // 256 KiB maximum chunk
202//! ..Default::default()
203//! };
204//!
205//! pack_snapshot::<fn(u64, u64)>(config, None)?;
206//! # Ok(())
207//! # }
208//! ```
209//!
210//! ## Progress Reporting
211//!
212//! ```no_run
213//! use hexz_core::ops::pack::{pack_snapshot, PackConfig};
214//! use std::path::PathBuf;
215//!
216//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
217//! let config = PackConfig {
218//! disk: Some(PathBuf::from("disk.raw")),
219//! output: PathBuf::from("snapshot.hxz"),
220//! ..Default::default()
221//! };
222//!
223//! // Callback receives (current_logical_pos, total_size)
224//! pack_snapshot(config, Some(|pos, total| {
225//! let pct = (pos as f64 / total as f64) * 100.0;
226//! println!("Packing: {:.1}%", pct);
227//! }))?;
228//! # Ok(())
229//! # }
230//! ```
231//!
232//! # Performance Characteristics
233//!
234//! ## Throughput (Single-Threaded, i7-14700K)
235//!
236//! Validated benchmarks (see `docs/project-docs/BENCHMARKS.md` for details):
237//!
238//! - **LZ4 Compression**: 22 GB/s (minimal CPU overhead)
239//! - **LZ4 Decompression**: 31 GB/s
240//! - **Zstd Level 3 Compression**: 8.7 GB/s
241//! - **Zstd Level 3 Decompression**: 12.9 GB/s
242//! - **BLAKE3 Hashing**: 5.3 GB/s (2.2× faster than SHA-256)
243//! - **SHA-256 Hashing**: 2.5 GB/s
244//! - **FastCDC Chunking**: 2.7 GB/s (gear-based rolling hash)
245//! - **AES-256-GCM Encryption**: 2.1 GB/s (hardware AES-NI acceleration)
246//! - **Pack Throughput (LZ4, no CDC)**: 4.9 GB/s (64KB blocks)
247//! - **Pack Throughput (LZ4 + CDC)**: 1.9 GB/s (CDC adds 2.6× overhead)
248//! - **Pack Throughput (Zstd-3)**: 1.6 GB/s
249//! - **Block Size Impact**: 2.3 GB/s (4KB) → 4.7 GB/s (64KB) → 5.1 GB/s (1MB)
250//!
251//! Typical bottleneck: CDC chunking (when enabled) or compression CPU time. SSD I/O rarely limits.
252//!
253//! Run benchmarks: `cargo bench --bench compression`, `cargo bench --bench hashing`, `cargo bench --bench cdc_chunking`, `cargo bench --bench encryption`, `cargo bench --bench write_throughput`, and `cargo bench --bench block_size_tradeoffs`
254//!
255//! ## Compression Ratios (Typical VM Images)
256//!
257//! - **LZ4**: 2-3× (fast but lower ratio)
258//! - **Zstd Level 3**: 3-5× (good balance)
259//! - **Zstd + Dictionary**: 4-7× (+30% improvement from dictionary)
260//! - **CDC Deduplication**: Not validated - need benchmark comparing CDC vs fixed-size chunking
261//!
262//! ## Time Estimates (64 GB VM Image, Single Thread)
263//!
264//! - **LZ4, Fixed Blocks**: ~30-45 seconds
265//! - **Zstd, Fixed Blocks**: ~2-3 minutes
266//! - **Zstd + Dictionary + CDC**: ~3-5 minutes (includes 2-5s training time)
267//!
268//! # Atomicity and Crash Safety
269//!
270//! **WARNING**: Pack operations are NOT atomic. If interrupted:
271//!
272//! - Output file is left in a partially written state
273//! - The header (written last) will be all zeros
274//! - Readers will reject the file due to invalid magic bytes
275//! - Manual cleanup is required (delete partial file)
276//!
277//! For production use cases requiring atomicity, write to a temporary file and
278//! perform an atomic rename after successful completion.
279
280use hexz_common::constants::{DICT_TRAINING_SIZE, ENTROPY_THRESHOLD};
281use hexz_common::crypto::KeyDerivationParams;
282use hexz_common::{Error, Result};
283use std::fs::File;
284use std::io::{Read, Seek, SeekFrom};
285use std::path::{Path, PathBuf};
286
287use crate::algo::compression::{create_compressor_from_str, zstd::ZstdCompressor};
288use crate::algo::dedup::cdc::StreamChunker;
289use crate::algo::dedup::dcam::DedupeParams;
290use crate::algo::encryption::{Encryptor, aes_gcm::AesGcmEncryptor};
291use crate::ops::snapshot_writer::SnapshotWriter;
292
293/// Configuration parameters for snapshot packing.
294///
295/// This struct encapsulates all settings for the packing process. It's designed
296/// to be easily constructed from CLI arguments or programmatic APIs.
297///
298/// # Examples
299///
300/// ```
301/// use hexz_core::ops::pack::PackConfig;
302/// use std::path::PathBuf;
303///
304/// // Basic configuration with defaults
305/// let config = PackConfig {
306/// disk: Some(PathBuf::from("disk.img")),
307/// output: PathBuf::from("snapshot.hxz"),
308/// ..Default::default()
309/// };
310///
311/// // Advanced configuration with CDC and encryption
312/// let advanced = PackConfig {
313/// disk: Some(PathBuf::from("disk.img")),
314/// output: PathBuf::from("snapshot.hxz"),
315/// compression: "zstd".to_string(),
316/// encrypt: true,
317/// password: Some("secret".to_string()),
318/// cdc_enabled: true,
319/// min_chunk: 16384,
320/// avg_chunk: 65536,
321/// max_chunk: 131072,
322/// ..Default::default()
323/// };
324/// ```
325#[derive(Debug, Clone)]
326pub struct PackConfig {
327 /// Path to the disk image (optional).
328 pub disk: Option<PathBuf>,
329 /// Path to the memory image (optional).
330 pub memory: Option<PathBuf>,
331 /// Output snapshot file path.
332 pub output: PathBuf,
333 /// Compression algorithm ("lz4" or "zstd").
334 pub compression: String,
335 /// Enable encryption.
336 pub encrypt: bool,
337 /// Encryption password (required if encrypt=true).
338 pub password: Option<String>,
339 /// Train a compression dictionary (zstd only).
340 pub train_dict: bool,
341 /// Block size in bytes.
342 pub block_size: u32,
343 /// Enable content-defined chunking (CDC).
344 pub cdc_enabled: bool,
345 /// Minimum chunk size for CDC.
346 pub min_chunk: u32,
347 /// Average chunk size for CDC.
348 pub avg_chunk: u32,
349 /// Maximum chunk size for CDC.
350 pub max_chunk: u32,
351}
352
353impl Default for PackConfig {
354 fn default() -> Self {
355 Self {
356 disk: None,
357 memory: None,
358 output: PathBuf::from("output.hxz"),
359 compression: "lz4".to_string(),
360 encrypt: false,
361 password: None,
362 train_dict: false,
363 block_size: 65536,
364 cdc_enabled: false,
365 min_chunk: 16384,
366 avg_chunk: 65536,
367 max_chunk: 131072,
368 }
369 }
370}
371
372/// Calculates Shannon entropy of a byte slice.
373///
374/// Shannon entropy measures the "randomness" or information content of data:
375/// - **0.0**: All bytes are identical (highly compressible)
376/// - **8.0**: Maximum entropy, random data (incompressible)
377///
378/// # Formula
379///
380/// ```text
381/// H(X) = -Σ p(x) * log2(p(x))
382/// ```
383///
384/// Where `p(x)` is the frequency of each byte value.
385///
386/// # Usage
387///
388/// Used during dictionary training to filter out high-entropy (random) blocks
389/// that wouldn't benefit from compression. Only blocks with entropy below
390/// `ENTROPY_THRESHOLD` are included in the training set.
391///
392/// # Parameters
393///
394/// - `data`: Byte slice to analyze
395///
396/// # Returns
397///
398/// Entropy value from 0.0 (homogeneous) to 8.0 (random).
399///
400/// # Examples
401///
402/// ```
403/// # use hexz_core::ops::pack::calculate_entropy;
404/// // Homogeneous data (low entropy)
405/// let zeros = vec![0u8; 1024];
406/// let entropy = calculate_entropy(&zeros);
407/// assert_eq!(entropy, 0.0);
408///
409/// // Random data (high entropy)
410/// let random: Vec<u8> = (0..=255).cycle().take(1024).collect();
411/// let entropy = calculate_entropy(&random);
412/// assert!(entropy > 7.0);
413/// ```
414pub fn calculate_entropy(data: &[u8]) -> f64 {
415 if data.is_empty() {
416 return 0.0;
417 }
418
419 let mut frequencies = [0u32; 256];
420 for &byte in data {
421 frequencies[byte as usize] += 1;
422 }
423
424 let len = data.len() as f64;
425 let mut entropy = 0.0;
426
427 for &count in frequencies.iter() {
428 if count > 0 {
429 let p = count as f64 / len;
430 entropy -= p * p.log2();
431 }
432 }
433
434 entropy
435}
436
437/// Trait for chunk iterators (fixed-size or content-defined).
438///
439/// This trait provides a unified interface for both fixed-size and CDC chunkers,
440/// allowing the packing logic to be agnostic to the chunking strategy.
441trait Chunker: Iterator<Item = std::io::Result<Vec<u8>>> {}
442impl<T: Iterator<Item = std::io::Result<Vec<u8>>>> Chunker for T {}
443
444/// Fixed-size block chunker.
445///
446/// Splits input into equal-sized blocks (except possibly the last one).
447/// Simpler and faster than CDC, but less effective for deduplication.
448///
449/// Uses a read loop to guarantee full blocks, avoiding short reads from
450/// pipes, network streams, or OS buffering.
451pub struct FixedChunker<R> {
452 reader: R,
453 block_size: usize,
454}
455
456impl<R: Read> FixedChunker<R> {
457 /// Creates a new fixed-size chunker.
458 pub fn new(reader: R, block_size: usize) -> Self {
459 Self { reader, block_size }
460 }
461}
462
463impl<R: Read> Iterator for FixedChunker<R> {
464 type Item = std::io::Result<Vec<u8>>;
465
466 fn next(&mut self) -> Option<Self::Item> {
467 let mut buf = vec![0u8; self.block_size];
468 let mut pos = 0;
469 while pos < self.block_size {
470 match self.reader.read(&mut buf[pos..]) {
471 Ok(0) => break,
472 Ok(n) => pos += n,
473 Err(e) => return Some(Err(e)),
474 }
475 }
476 if pos == 0 {
477 None
478 } else {
479 buf.truncate(pos);
480 Some(Ok(buf))
481 }
482 }
483}
484
485/// Packs a snapshot file from disk and/or memory images.
486///
487/// This is the main entry point for creating Hexz snapshot files. It orchestrates
488/// the complete packing pipeline: dictionary training, stream processing, index
489/// building, and header finalization.
490///
491/// # Workflow
492///
493/// 1. **Validation**: Ensure at least one input (disk or memory) is provided
494/// 2. **File Creation**: Create output file, reserve 512 bytes for header
495/// 3. **Dictionary Training**: If requested (Zstd only), train dictionary from input samples
496/// 4. **Dictionary Writing**: If trained, write dictionary immediately after header
497/// 5. **Compressor Initialization**: Create LZ4 or Zstd compressor (with optional dictionary)
498/// 6. **Encryptor Initialization**: If requested, derive key from password using PBKDF2
499/// 7. **Stream Processing**: Process disk stream (if provided), then memory stream (if provided)
500/// - Each stream independently chunks, compresses, encrypts, deduplicates, and indexes
501/// 8. **Master Index Writing**: Serialize master index (all PageEntry records) to end of file
502/// 9. **Header Writing**: Seek to start, write complete header with metadata and offsets
503/// 10. **Flush**: Ensure all data is written to disk
504///
505/// # Parameters
506///
507/// - `config`: Packing configuration parameters (see [`PackConfig`])
508/// - `progress_callback`: Optional callback for progress reporting
509/// - Called frequently during stream processing (~once per 64 KiB)
510/// - Signature: `Fn(logical_pos: u64, total_size: u64)`
511/// - Example: `|pos, total| println!("Progress: {:.1}%", (pos as f64 / total as f64) * 100.0)`
512///
513/// # Returns
514///
515/// - `Ok(())`: Snapshot packed successfully
516/// - `Err(Error::Io)`: I/O error (file access, disk full, permission denied)
517/// - `Err(Error::Compression)`: Compression error (unlikely, usually indicates invalid state)
518/// - `Err(Error::Encryption)`: Encryption error (invalid password format, crypto failure)
519///
520/// # Errors
521///
522/// This function can fail for several reasons:
523///
524/// ## I/O Errors
525///
526/// - **Input file not found**: `config.disk` or `config.memory` path doesn't exist
527/// - **Permission denied**: Cannot read input or write output
528/// - **Disk full**: Insufficient space for output file
529/// - **Output exists**: May overwrite existing file without warning
530///
531/// ## Configuration Errors
532///
533/// - **No inputs**: Neither `disk` nor `memory` is provided
534/// - **Missing password**: `encrypt = true` but `password = None`
535/// - **Invalid block size**: Block size too small (<1 KiB) or too large (>16 MiB)
536/// - **Invalid CDC params**: `min_chunk >= avg_chunk >= max_chunk` constraint violated
537///
538/// ## Compression/Encryption Errors
539///
540/// - **Dictionary training failure**: Zstd training fails (rare, usually on corrupted input)
541/// - **Compression failure**: Compressor returns error (rare, usually indicates bug)
542/// - **Encryption failure**: Key derivation or cipher initialization fails
543///
544/// # Examples
545///
546/// ## Basic Usage
547///
548/// ```no_run
549/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
550/// use std::path::PathBuf;
551///
552/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
553/// let config = PackConfig {
554/// disk: Some(PathBuf::from("disk.raw")),
555/// output: PathBuf::from("snapshot.hxz"),
556/// ..Default::default()
557/// };
558///
559/// pack_snapshot::<fn(u64, u64)>(config, None)?;
560/// # Ok(())
561/// # }
562/// ```
563///
564/// ## With Progress Reporting
565///
566/// ```no_run
567/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
568/// use std::path::PathBuf;
569///
570/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
571/// let config = PackConfig {
572/// disk: Some(PathBuf::from("ubuntu.qcow2")),
573/// output: PathBuf::from("ubuntu.hxz"),
574/// compression: "zstd".to_string(),
575/// train_dict: true,
576/// ..Default::default()
577/// };
578///
579/// pack_snapshot(config, Some(|pos, total| {
580/// eprint!("\rPacking: {:.1}%", (pos as f64 / total as f64) * 100.0);
581/// }))?;
582/// eprintln!("\nDone!");
583/// # Ok(())
584/// # }
585/// ```
586///
587/// ## Encrypted Snapshot
588///
589/// ```no_run
590/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
591/// use std::path::PathBuf;
592///
593/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
594/// let config = PackConfig {
595/// disk: Some(PathBuf::from("sensitive.raw")),
596/// output: PathBuf::from("sensitive.hxz"),
597/// encrypt: true,
598/// password: Some("strong_passphrase".to_string()),
599/// ..Default::default()
600/// };
601///
602/// pack_snapshot::<fn(u64, u64)>(config, None)?;
603/// println!("Encrypted snapshot created");
604/// # Ok(())
605/// # }
606/// ```
607///
608/// ## Content-Defined Chunking for Deduplication
609///
610/// ```no_run
611/// use hexz_core::ops::pack::{pack_snapshot, PackConfig};
612/// use std::path::PathBuf;
613///
614/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
615/// let config = PackConfig {
616/// disk: Some(PathBuf::from("incremental-backup.raw")),
617/// output: PathBuf::from("backup.hxz"),
618/// cdc_enabled: true,
619/// min_chunk: 16384, // 16 KiB
620/// avg_chunk: 65536, // 64 KiB
621/// max_chunk: 262144, // 256 KiB
622/// ..Default::default()
623/// };
624///
625/// pack_snapshot::<fn(u64, u64)>(config, None)?;
626/// # Ok(())
627/// # }
628/// ```
629///
630/// # Performance
631///
632/// See module-level documentation for detailed performance characteristics.
633///
634/// Typical throughput for a 64 GB VM image on modern hardware (Intel i7, NVMe SSD):
635///
636/// - **LZ4, no encryption**: ~2 GB/s (~30 seconds total)
637/// - **Zstd level 3, no encryption**: ~500 MB/s (~2 minutes total)
638/// - **Zstd + dictionary + CDC**: ~400 MB/s (~3 minutes including training)
639///
640/// # Atomicity
641///
642/// This operation is NOT atomic. On failure, the output file will be left in a
643/// partially written state. The file header is written last, so incomplete files
644/// will have an all-zero header and will be rejected by readers.
645///
646/// For atomic pack operations, write to a temporary file and perform an atomic
647/// rename after success:
648///
649/// ```no_run
650/// # use hexz_core::ops::pack::{pack_snapshot, PackConfig};
651/// # use std::path::PathBuf;
652/// # use std::fs;
653/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
654/// let mut config = PackConfig {
655/// disk: Some(PathBuf::from("disk.raw")),
656/// output: PathBuf::from("snapshot.st.tmp"),
657/// ..Default::default()
658/// };
659///
660/// pack_snapshot::<fn(u64, u64)>(config.clone(), None)?;
661/// fs::rename("snapshot.st.tmp", "snapshot.hxz")?;
662/// # Ok(())
663/// # }
664/// ```
665///
666/// # Thread Safety
667///
668/// This function is not thread-safe with respect to the output file. Do not call
669/// `pack_snapshot` concurrently with the same output path. Concurrent packing to
670/// different output files is safe.
671///
672/// The progress callback must be `Send + Sync` if you want to call this function
673/// from a non-main thread.
674pub fn pack_snapshot<F>(config: PackConfig, progress_callback: Option<F>) -> Result<()>
675where
676 F: Fn(u64, u64) + Send + Sync,
677{
678 // Validate inputs
679 if config.disk.is_none() && config.memory.is_none() {
680 return Err(Error::Io(std::io::Error::new(
681 std::io::ErrorKind::InvalidInput,
682 "At least one input (disk or memory) must be provided",
683 )));
684 }
685
686 // Train compression dictionary if requested
687 let dictionary = if config.compression == "zstd" && config.train_dict {
688 Some(train_dictionary(
689 config
690 .disk
691 .as_ref()
692 .or(config.memory.as_ref())
693 .ok_or_else(|| {
694 Error::Io(std::io::Error::new(
695 std::io::ErrorKind::InvalidInput,
696 "No input file available for dictionary training",
697 ))
698 })?,
699 config.block_size,
700 )?)
701 } else {
702 None
703 };
704
705 // Initialize compressor
706 let (compressor, compression_type) =
707 create_compressor_from_str(&config.compression, None, dictionary.clone())?;
708
709 // Initialize encryptor if requested
710 let (encryptor, enc_params): (Option<Box<dyn Encryptor>>, _) = if config.encrypt {
711 let password = config.password.clone().ok_or_else(|| {
712 Error::Io(std::io::Error::new(
713 std::io::ErrorKind::InvalidInput,
714 "Password required for encryption",
715 ))
716 })?;
717 let params = KeyDerivationParams::default();
718 let enc = AesGcmEncryptor::new(password.as_bytes(), ¶ms.salt, params.iterations)?;
719 (Some(Box::new(enc) as Box<dyn Encryptor>), Some(params))
720 } else {
721 (None, None)
722 };
723
724 // Build the snapshot writer with optional encryption
725 let mut builder = SnapshotWriter::builder(&config.output, compressor, compression_type)
726 .block_size(config.block_size)
727 .variable_blocks(config.cdc_enabled);
728
729 if let (Some(enc), Some(params)) = (encryptor, enc_params) {
730 builder = builder.encryption(enc, params);
731 }
732
733 let mut writer = builder.build()?;
734
735 // Write dictionary to file
736 if let Some(d) = &dictionary {
737 writer.write_dictionary(d)?;
738 }
739
740 // Process disk stream
741 if let Some(ref path) = config.disk {
742 process_stream(
743 path.clone(),
744 true,
745 &mut writer,
746 &config,
747 progress_callback.as_ref(),
748 )?;
749 }
750
751 // Process memory stream
752 if let Some(ref path) = config.memory {
753 process_stream(
754 path.clone(),
755 false,
756 &mut writer,
757 &config,
758 progress_callback.as_ref(),
759 )?;
760 }
761
762 writer.finalize(None, None)?;
763
764 Ok(())
765}
766
767/// Trains a Zstd compression dictionary from stratified samples.
768///
769/// Dictionary training analyzes a representative sample of input blocks to build
770/// a shared dictionary that improves compression ratios for structured data
771/// (file systems, databases, logs) by capturing common patterns.
772///
773/// # Algorithm
774///
775/// 1. **Stratified Sampling**: Sample blocks evenly across the file
776/// - Compute step size: `file_size / target_samples`
777/// - Read one block at each sample point
778/// - Ensures coverage of different regions (boot sector, metadata, data)
779///
780/// 2. **Quality Filtering**: Exclude unsuitable blocks
781/// - Skip all-zero blocks (no compressible patterns)
782/// - Compute Shannon entropy (0-8 bits per byte)
783/// - Reject blocks with entropy > `ENTROPY_THRESHOLD` (6.0)
784/// - Rationale: High-entropy data (encrypted, random) doesn't benefit from dictionaries
785///
786/// 3. **Dictionary Training**: Feed filtered samples to Zstd
787/// - Uses Zstd's COVER algorithm (fast_cover variant)
788/// - Analyzes n-grams to find common subsequences
789/// - Outputs dictionary up to `DICT_TRAINING_SIZE` (110 KiB)
790///
791/// # Parameters
792///
793/// - `input_path`: Path to the input file to sample from
794/// - `block_size`: Size of each sample block in bytes
795///
796/// # Returns
797///
798/// - `Ok(Vec<u8>)`: Trained dictionary bytes (empty if training fails or no suitable samples)
799/// - `Err(Error)`: I/O error reading input file
800///
801/// # Performance
802///
803/// - **Sampling time**: ~100-500 ms (depends on file size and disk speed)
804/// - **Training time**: ~2-5 seconds for 4000 samples
805/// - **Memory usage**: ~256 MB (sample corpus in RAM)
806///
807/// # Compression Improvement
808///
809/// - **Typical**: 10-30% better ratio vs. no dictionary
810/// - **Best case**: 50%+ improvement for highly structured data (databases)
811/// - **Worst case**: No improvement or slight regression (already compressed data)
812///
813/// # Edge Cases
814///
815/// - **Empty file**: Returns empty dictionary with warning
816/// - **All high-entropy data**: Returns empty dictionary with warning
817/// - **Small files**: May not reach target sample count (trains on available data)
818///
819/// # Examples
820///
821/// Called internally by `pack_snapshot` when `train_dict` is enabled:
822///
823/// ```text
824/// let dict = train_dictionary(Path::new("disk.raw"), 65536)?;
825/// // dict: Vec<u8> containing the trained zstd dictionary
826/// ```
827fn train_dictionary(input_path: &Path, block_size: u32) -> Result<Vec<u8>> {
828 let mut f = File::open(input_path)?;
829 let file_len = f.metadata()?.len();
830
831 let mut samples = Vec::new();
832 let mut buffer = vec![0u8; block_size as usize];
833 let target_samples = DICT_TRAINING_SIZE;
834
835 let step = if file_len > 0 {
836 (file_len / target_samples as u64).max(block_size as u64)
837 } else {
838 0
839 };
840
841 let mut attempts = 0;
842 while samples.len() < target_samples && attempts < target_samples * 2 {
843 let offset = attempts as u64 * step;
844 if offset >= file_len {
845 break;
846 }
847
848 f.seek(SeekFrom::Start(offset))?;
849 let n = f.read(&mut buffer)?;
850 if n == 0 {
851 break;
852 }
853 let chunk = &buffer[..n];
854 let is_zeros = chunk.iter().all(|&b| b == 0);
855
856 if !is_zeros {
857 let entropy = calculate_entropy(chunk);
858 if entropy < ENTROPY_THRESHOLD {
859 samples.push(chunk.to_vec());
860 }
861 }
862 attempts += 1;
863 }
864
865 if samples.is_empty() {
866 tracing::warn!("Input seems to be empty or high entropy. Dictionary will be empty.");
867 Ok(Vec::new())
868 } else {
869 let dict_bytes = ZstdCompressor::train(&samples, DICT_TRAINING_SIZE)?;
870 tracing::info!("Dictionary trained: {} bytes", dict_bytes.len());
871 Ok(dict_bytes)
872 }
873}
874
875/// Processes a single input stream (disk or memory) via the [`SnapshotWriter`].
876fn process_stream<F>(
877 path: PathBuf,
878 is_disk: bool,
879 writer: &mut SnapshotWriter,
880 config: &PackConfig,
881 progress_callback: Option<&F>,
882) -> Result<()>
883where
884 F: Fn(u64, u64),
885{
886 let f = File::open(&path)?;
887 let len = f.metadata()?.len();
888
889 writer.begin_stream(is_disk, len);
890
891 // Choose chunker based on configuration
892 let chunker: Box<dyn Chunker> = if config.cdc_enabled {
893 let params = DedupeParams {
894 f: (config.avg_chunk as f64).log2() as u32,
895 m: config.min_chunk,
896 z: config.max_chunk,
897 w: 48,
898 v: 8,
899 };
900 Box::new(StreamChunker::new(f, params))
901 } else {
902 Box::new(FixedChunker::new(f, config.block_size as usize))
903 };
904
905 let mut logical_pos = 0u64;
906
907 for chunk_res in chunker {
908 let chunk = chunk_res?;
909 logical_pos += chunk.len() as u64;
910
911 writer.write_data_block(&chunk)?;
912
913 if let Some(callback) = progress_callback {
914 callback(logical_pos, len);
915 }
916 }
917
918 writer.end_stream()?;
919 Ok(())
920}
921
922#[cfg(test)]
923mod tests {
924 use super::*;
925 use std::io::Cursor;
926
927 #[test]
928 fn test_calculate_entropy_empty() {
929 assert_eq!(calculate_entropy(&[]), 0.0);
930 }
931
932 #[test]
933 fn test_calculate_entropy_uniform() {
934 // All same byte - lowest entropy
935 let data = vec![0x42; 1000];
936 let entropy = calculate_entropy(&data);
937 assert!(
938 entropy < 0.01,
939 "Entropy should be near 0.0 for uniform data"
940 );
941 }
942
943 #[test]
944 fn test_calculate_entropy_binary() {
945 // Two values - low entropy
946 let mut data = vec![0u8; 500];
947 data.extend(vec![1u8; 500]);
948 let entropy = calculate_entropy(&data);
949 assert!(
950 entropy > 0.9 && entropy < 1.1,
951 "Entropy should be ~1.0 for binary data"
952 );
953 }
954
955 #[test]
956 fn test_calculate_entropy_random() {
957 // All 256 values - high entropy
958 let data: Vec<u8> = (0..=255).cycle().take(256 * 4).collect();
959 let entropy = calculate_entropy(&data);
960 assert!(
961 entropy > 7.5,
962 "Entropy should be high for all byte values: got {}",
963 entropy
964 );
965 }
966
967 #[test]
968 fn test_calculate_entropy_single_byte() {
969 assert_eq!(calculate_entropy(&[42]), 0.0);
970 }
971
972 #[test]
973 fn test_calculate_entropy_two_different_bytes() {
974 let data = vec![0, 255];
975 let entropy = calculate_entropy(&data);
976 assert!(entropy > 0.9 && entropy < 1.1, "Entropy should be ~1.0");
977 }
978
979 #[test]
980 fn test_fixed_chunker_exact_blocks() {
981 let data = vec![1, 2, 3, 4, 5, 6, 7, 8];
982 let cursor = Cursor::new(data);
983 let chunker = FixedChunker::new(cursor, 4);
984
985 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
986
987 assert_eq!(chunks.len(), 2);
988 assert_eq!(chunks[0], vec![1, 2, 3, 4]);
989 assert_eq!(chunks[1], vec![5, 6, 7, 8]);
990 }
991
992 #[test]
993 fn test_fixed_chunker_partial_last_block() {
994 let data = vec![1, 2, 3, 4, 5];
995 let cursor = Cursor::new(data);
996 let chunker = FixedChunker::new(cursor, 3);
997
998 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
999
1000 assert_eq!(chunks.len(), 2);
1001 assert_eq!(chunks[0], vec![1, 2, 3]);
1002 assert_eq!(chunks[1], vec![4, 5]);
1003 }
1004
1005 #[test]
1006 fn test_fixed_chunker_empty_input() {
1007 let data = vec![];
1008 let cursor = Cursor::new(data);
1009 let chunker = FixedChunker::new(cursor, 1024);
1010
1011 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1012
1013 assert_eq!(chunks.len(), 0);
1014 }
1015
1016 #[test]
1017 fn test_fixed_chunker_single_byte_blocks() {
1018 let data = vec![1, 2, 3];
1019 let cursor = Cursor::new(data);
1020 let chunker = FixedChunker::new(cursor, 1);
1021
1022 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1023
1024 assert_eq!(chunks.len(), 3);
1025 assert_eq!(chunks[0], vec![1]);
1026 assert_eq!(chunks[1], vec![2]);
1027 assert_eq!(chunks[2], vec![3]);
1028 }
1029
1030 #[test]
1031 fn test_fixed_chunker_large_block_size() {
1032 let data = vec![1, 2, 3, 4, 5];
1033 let cursor = Cursor::new(data.clone());
1034 let chunker = FixedChunker::new(cursor, 10000);
1035
1036 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1037
1038 assert_eq!(chunks.len(), 1);
1039 assert_eq!(chunks[0], data);
1040 }
1041
1042 #[test]
1043 fn test_pack_config_default() {
1044 let config = PackConfig::default();
1045
1046 assert_eq!(config.compression, "lz4");
1047 assert!(!config.encrypt);
1048 assert_eq!(config.password, None);
1049 assert!(!config.train_dict);
1050 assert_eq!(config.block_size, 65536);
1051 assert!(!config.cdc_enabled);
1052 assert_eq!(config.min_chunk, 16384);
1053 assert_eq!(config.avg_chunk, 65536);
1054 assert_eq!(config.max_chunk, 131072);
1055 }
1056
1057 #[test]
1058 fn test_pack_config_clone() {
1059 let config1 = PackConfig {
1060 disk: Some(PathBuf::from("/dev/sda")),
1061 output: PathBuf::from("output.hxz"),
1062 compression: "zstd".to_string(),
1063 encrypt: true,
1064 password: Some("secret".to_string()),
1065 ..Default::default()
1066 };
1067
1068 let config2 = config1.clone();
1069
1070 assert_eq!(config2.disk, config1.disk);
1071 assert_eq!(config2.output, config1.output);
1072 assert_eq!(config2.compression, config1.compression);
1073 assert_eq!(config2.encrypt, config1.encrypt);
1074 assert_eq!(config2.password, config1.password);
1075 }
1076
1077 #[test]
1078 fn test_pack_config_debug() {
1079 let config = PackConfig::default();
1080 let debug_str = format!("{:?}", config);
1081
1082 assert!(debug_str.contains("PackConfig"));
1083 assert!(debug_str.contains("lz4"));
1084 }
1085
1086 #[test]
1087 fn test_entropy_threshold_filtering() {
1088 // Test data with entropy below threshold (compressible)
1089 let low_entropy_data = vec![0u8; 1024];
1090 assert!(calculate_entropy(&low_entropy_data) < ENTROPY_THRESHOLD);
1091
1092 // Test data with entropy above threshold (random)
1093 let high_entropy_data: Vec<u8> = (0..1024).map(|i| ((i * 7) % 256) as u8).collect();
1094 let entropy = calculate_entropy(&high_entropy_data);
1095 // This might not always be above threshold depending on the pattern,
1096 // but we can still test that entropy calculation works
1097 assert!((0.0..=8.0).contains(&entropy));
1098 }
1099
1100 #[test]
1101 fn test_entropy_calculation_properties() {
1102 // Entropy should increase with more unique values
1103 let data1 = vec![0u8; 100];
1104 let data2 = [0u8, 1u8].repeat(50);
1105 let mut data3 = Vec::new();
1106 for i in 0..100 {
1107 data3.push((i % 10) as u8);
1108 }
1109
1110 let entropy1 = calculate_entropy(&data1);
1111 let entropy2 = calculate_entropy(&data2);
1112 let entropy3 = calculate_entropy(&data3);
1113
1114 assert!(
1115 entropy1 < entropy2,
1116 "More unique values should increase entropy"
1117 );
1118 assert!(
1119 entropy2 < entropy3,
1120 "Even more unique values should further increase entropy"
1121 );
1122 }
1123
1124 #[test]
1125 fn test_fixed_chunker_with_different_sizes() {
1126 let data = vec![0u8; 10000];
1127
1128 // Test with various chunk sizes
1129 for chunk_size in [64, 256, 1024, 4096, 65536] {
1130 let cursor = Cursor::new(data.clone());
1131 let chunker = FixedChunker::new(cursor, chunk_size);
1132
1133 let chunks: Vec<_> = chunker.map(|r| r.unwrap()).collect();
1134
1135 // Verify total data matches
1136 let total_len: usize = chunks.iter().map(|c| c.len()).sum();
1137 assert_eq!(
1138 total_len,
1139 data.len(),
1140 "Total chunked data should match original for chunk_size={}",
1141 chunk_size
1142 );
1143
1144 // Verify all except possibly last chunk have correct size
1145 for (i, chunk) in chunks.iter().enumerate() {
1146 if i < chunks.len() - 1 {
1147 assert_eq!(
1148 chunk.len(),
1149 chunk_size,
1150 "Non-final chunks should be exactly chunk_size"
1151 );
1152 } else {
1153 assert!(
1154 chunk.len() <= chunk_size,
1155 "Final chunk should be <= chunk_size"
1156 );
1157 }
1158 }
1159 }
1160 }
1161}