hexx/hex/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
#![allow(clippy::inline_always)]
/// Type conversions
mod convert;
/// Hexagonal grid utilities, like edge and vertices
#[cfg(feature = "grid")]
pub mod grid;
/// Traits implementations
mod impls;
/// Iterator tools module
mod iter;
/// Hex ring utils
mod rings;
/// swizzle utils
mod siwzzle;
#[cfg(test)]
mod tests;
pub(crate) use iter::ExactSizeHexIterator;
pub use iter::HexIterExt;
use crate::{DirectionWay, EdgeDirection, VertexDirection};
use glam::{IVec2, IVec3, Vec2};
#[cfg(feature = "grid")]
pub use grid::{GridEdge, GridVertex};
use std::{
cmp::{max, min},
fmt::Debug,
};
/// Hexagonal [axial] coordinates
///
/// # Why Axial ?
///
/// Axial coordinates allow to compute and use *cubic* coordinates with less
/// storage, and allow:
/// - Vector operations
/// - Rotations
/// - Symmetry
/// - Simple algorithms
///
/// when *offset* and *doubled* coordinates don't. Furthermore, it makes the
/// [`Hex`] behave like classic 2D coordinates ([`IVec2`]) and therefore more
/// user friendly.
///
/// Check out this [comparison] article for more information.
///
/// # Conversions
///
/// * Cubic: use [`Self::z`] to compute the third axis
/// * Offset: use [`Self::from_offset_coordinates`] and
/// [`Self::to_offset_coordinates`]
/// * Doubled: use [`Self::from_doubled_coordinates`] and
/// [`Self::to_doubled_coordinates`]
///
/// [comparison]: https://www.redblobgames.com/grids/hexagons/#coordinates-comparison
/// [axial]: https://www.redblobgames.com/grids/hexagons/#coordinates-axial
#[derive(Copy, Clone, Default, Eq, PartialEq)]
#[cfg_attr(not(target_arch = "spirv"), derive(Hash))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "packed", repr(C))]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
pub struct Hex {
/// `x` axial coordinate (sometimes called `q` or `i`)
pub x: i32,
/// `y` axial coordinate (sometimes called `r` or `j`)
pub y: i32,
}
#[inline(always)]
#[must_use]
/// Instantiates a new hexagon from axial coordinates
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = hex(3, 5);
/// assert_eq!(coord.x, 3);
/// assert_eq!(coord.y, 5);
/// assert_eq!(coord.z(), -3 - 5);
/// ```
pub const fn hex(x: i32, y: i32) -> Hex {
Hex::new(x, y)
}
impl Hex {
/// (0, 0)
pub const ORIGIN: Self = Self::ZERO;
/// (0, 0)
pub const ZERO: Self = Self::new(0, 0);
/// (1, 1)
pub const ONE: Self = Self::new(1, 1);
/// (-1, -1)
pub const NEG_ONE: Self = Self::new(-1, -1);
/// +X (Q) (1, 0)
pub const X: Self = Self::new(1, 0);
/// -X (-Q) (-1, 0)
pub const NEG_X: Self = Self::new(-1, 0);
/// +Y (R) (0, 1)
pub const Y: Self = Self::new(0, 1);
/// -Y (-R) (0, -1)
pub const NEG_Y: Self = Self::new(0, -1);
/// Unit vectors that increase the X axis in clockwise order
pub const INCR_X: [Self; 2] = [Self::new(1, 0), Self::new(1, -1)];
/// Unit vectors that increase the Y axis in clockwise order
pub const INCR_Y: [Self; 2] = [Self::new(0, 1), Self::new(-1, 1)];
/// Unit vectors that increase the Z axis in clockwise order
pub const INCR_Z: [Self; 2] = [Self::new(-1, 0), Self::new(0, -1)];
/// Unit vectors that decrease the X axis in clockwise order
pub const DECR_X: [Self; 2] = [Self::new(-1, 0), Self::new(-1, 1)];
/// Unit vectors that decrease the Y axis in clockwise order
pub const DECR_Y: [Self; 2] = [Self::new(0, -1), Self::new(1, -1)];
/// Unit vectors that decrease the Z axis in clockwise order
pub const DECR_Z: [Self; 2] = [Self::new(1, 0), Self::new(0, 1)];
/// Hexagon edge neighbor coordinates array, following [`EdgeDirection`]
/// order
///
/// ```txt
/// Z ___ -Y
/// / \
/// +--+ 4 +--+
/// / 3 \___/ 5 \
/// \ / \ /
/// -X +--+ +--+ X
/// / \___/ \
/// \ 2 / \ 0 /
/// +--+ 1 +--+
/// \___/
/// Y -Z
/// ```
///
/// Cubic coordinates:
///
/// ```txt
/// (0, -1, 1)
/// ___
/// / \
/// (-1, 0, 1) +--+ 4 +--+ (1, -1, 0)
/// / 3 \___/ 5 \
/// \ / \ /
/// +--+ +--+
/// / \___/ \
/// (-1, 1, 0) \ 2 / \ 0 / (1, 0, -1)
/// +--+ 1 +--+
/// \___/
/// (0, 1, -1)
/// ```
pub const NEIGHBORS_COORDS: [Self; 6] = [
Self::new(1, 0),
Self::new(0, 1),
Self::new(-1, 1),
Self::new(-1, 0),
Self::new(0, -1),
Self::new(1, -1),
];
/// Hexagon diagonal neighbor coordinates array, following
/// [`VertexDirection`] order
///
/// ```txt
/// Z -Y
/// \___/
/// \ 4 / \ 5 /
/// +--+ +--+
/// __/ \___/ \__
/// \ / \ /
/// -X 3 +--+ +--+ 0 X
/// __/ \___/ \__
/// \ / \ /
/// +--+ +--+
/// / 2 \___/ 1 \
///
/// Y -Z
/// ```
pub const DIAGONAL_COORDS: [Self; 6] = [
Self::new(2, -1),
Self::new(1, 1),
Self::new(-1, 2),
Self::new(-2, 1),
Self::new(-1, -1),
Self::new(1, -2),
];
#[inline(always)]
#[must_use]
/// Instantiates a new hexagon from axial coordinates
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(3, 5);
/// assert_eq!(coord.x, 3);
/// assert_eq!(coord.y, 5);
/// assert_eq!(coord.z(), -3 - 5);
/// ```
pub const fn new(x: i32, y: i32) -> Self {
Self { x, y }
}
#[inline]
#[must_use]
/// Instantiates a new hexagon with all coordinates set to `v`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::splat(3);
/// assert_eq!(coord.x, 3);
/// assert_eq!(coord.y, 3);
/// assert_eq!(coord.z(), -3 - 3);
/// ```
pub const fn splat(v: i32) -> Self {
Self { x: v, y: v }
}
#[inline]
#[must_use]
/// Instantiates new hexagonal coordinates in cubic space
///
/// # Panics
///
/// Will panic if the coordinates are invalid, meaning that the sum of
/// coordinates is not equal to zero
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new_cubic(3, 5, -8);
/// assert_eq!(coord.x, 3);
/// assert_eq!(coord.y, 5);
/// assert_eq!(coord.z(), -8);
/// ```
pub const fn new_cubic(x: i32, y: i32, z: i32) -> Self {
assert!(x + y + z == 0);
Self { x, y }
}
#[inline]
#[must_use]
#[doc(alias = "q")]
/// `x` coordinate (sometimes called `q` or `i`)
pub const fn x(self) -> i32 {
self.x
}
#[inline]
#[must_use]
#[doc(alias = "r")]
/// `y` coordinate (sometimes called `r` or `j`)
pub const fn y(self) -> i32 {
self.y
}
#[inline]
#[must_use]
#[doc(alias = "s")]
/// `z` coordinate (sometimes called `s` or `k`).
///
/// This cubic space coordinate is computed as `-x - y`
pub const fn z(self) -> i32 {
-self.x - self.y
}
#[inline]
#[must_use]
/// Creates a [`Hex`] from an array
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let p = Hex::from_array([3, 5]);
/// assert_eq!(p.x, 3);
/// assert_eq!(p.y, 5);
/// ```
pub const fn from_array([x, y]: [i32; 2]) -> Self {
Self::new(x, y)
}
#[inline]
#[must_use]
/// Converts `self` to an array as `[x, y]`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(3, 5);
/// let [x, y] = coord.to_array();
/// assert_eq!(x, 3);
/// assert_eq!(y, 5);
/// ```
pub const fn to_array(self) -> [i32; 2] {
[self.x, self.y]
}
#[inline]
#[must_use]
#[allow(clippy::cast_precision_loss)]
/// Converts `self` to an [`f32`] array as `[x, y]`
pub const fn to_array_f32(self) -> [f32; 2] {
[self.x as f32, self.y as f32]
}
#[inline]
#[must_use]
/// Converts `self` to cubic coordinates array as `[x, y, z]`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(3, 5);
/// let [x, y, z] = coord.to_cubic_array();
/// assert_eq!(x, 3);
/// assert_eq!(y, 5);
/// assert_eq!(z, -3 - 5);
/// ```
pub const fn to_cubic_array(self) -> [i32; 3] {
[self.x, self.y, self.z()]
}
#[inline]
#[must_use]
#[allow(clippy::cast_precision_loss)]
/// Converts `self` to cubic [`f32`] coordinates array as `[x, y, z]`
pub const fn to_cubic_array_f32(self) -> [f32; 3] {
[self.x as f32, self.y as f32, self.z() as f32]
}
/// Creates a [`Hex`] from the first 2 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
#[must_use]
pub const fn from_slice(slice: &[i32]) -> Self {
Self::new(slice[0], slice[1])
}
/// Writes the elements of `self` to the first 2 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [i32]) {
slice[0] = self.x;
slice[1] = self.y;
}
#[must_use]
#[inline]
/// Converts `self` to an [`IVec2`].
/// This operation is a direct mapping of coordinates, no hex to square
/// coordinates are performed. To convert hex coordinates to world space
/// use [`HexLayout`]
///
/// [`HexLayout`]: crate::HexLayout
pub const fn as_ivec2(self) -> IVec2 {
IVec2 {
x: self.x,
y: self.y,
}
}
#[must_use]
#[inline]
#[doc(alias = "as_cubic")]
/// Converts `self` to an [`IVec3`] using cubic coordinates.
/// This operation is a direct mapping of coordinates.
/// To convert hex coordinates to world space use [`HexLayout`]
///
/// [`HexLayout`]: crate::HexLayout
pub const fn as_ivec3(self) -> IVec3 {
IVec3 {
x: self.x,
y: self.y,
z: self.z(),
}
}
#[allow(clippy::cast_precision_loss)]
#[must_use]
#[inline]
/// Converts `self` to a [`Vec2`].
/// This operation is a direct mapping of coordinates.
/// To convert hex coordinates to world space use [`HexLayout`]
///
/// [`HexLayout`]: crate::HexLayout
pub const fn as_vec2(self) -> Vec2 {
Vec2 {
x: self.x as f32,
y: self.y as f32,
}
}
#[inline]
#[must_use]
/// Negates the coordinate, giving its reflection (symmetry) around the
/// origin.
///
/// [`Hex`] implements [`Neg`] (`-` operator) but this method is `const`.
///
/// [`Neg`]: std::ops::Neg
pub const fn const_neg(self) -> Self {
Self {
x: -self.x,
y: -self.y,
}
}
#[inline]
#[must_use]
/// adds `self` and `other`.
///
/// [`Hex`] implements [`Add`] (`+` operator) but this method is `const`.
///
/// [`Add`]: std::ops::Add
pub const fn const_add(self, other: Self) -> Self {
Self {
x: self.x + other.x,
y: self.y + other.y,
}
}
#[inline]
#[must_use]
/// substracts `self` and `rhs`.
///
/// [`Hex`] implements [`Sub`] (`-` operator) but this method is `const`.
///
/// [`Sub`]: std::ops::Sub
pub const fn const_sub(self, rhs: Self) -> Self {
Self {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
#[inline]
#[must_use]
#[allow(clippy::cast_possible_truncation)]
/// Rounds floating point coordinates to [`Hex`].
/// This method is used for operations like multiplications and divisions
/// with floating point numbers.
/// See the original author Jacob Rus's [article](https://observablehq.com/@jrus/hexround) for
/// more details
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let point = [0.6, 10.2];
/// let coord = Hex::round(point);
/// assert_eq!(coord.x, 1);
/// assert_eq!(coord.y, 10);
/// ```
pub fn round([mut x, mut y]: [f32; 2]) -> Self {
let [mut x_r, mut y_r] = [x.round(), y.round()];
x -= x_r;
y -= y_r;
if x.abs() >= y.abs() {
x_r += 0.5_f32.mul_add(y, x).round();
} else {
y_r += 0.5_f32.mul_add(x, y).round();
}
Self::new(x_r as i32, y_r as i32)
}
#[inline]
#[must_use]
/// Computes the absolute value of `self`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(-1, -32).abs();
/// assert_eq!(coord.x, 1);
/// assert_eq!(coord.y, 32);
/// ```
pub const fn abs(self) -> Self {
Self {
x: self.x.abs(),
y: self.y.abs(),
}
}
/// Returns a vector containing the minimum values for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y),
/// ..]`.
#[inline]
#[must_use]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
}
}
/// Returns a vector containing the maximum values for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y),
/// ..]`.
#[inline]
#[must_use]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
}
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub const fn dot(self, rhs: Self) -> i32 {
(self.x * rhs.x) + (self.y * rhs.y)
}
#[inline]
#[must_use]
/// Returns a [`Hex`] with elements representing the sign of `self`.
///
/// - `0` if the number is zero
/// - `1` if the number is positive
/// - `-1` if the number is negative
pub const fn signum(self) -> Self {
Self {
x: self.x.signum(),
y: self.y.signum(),
}
}
#[inline]
#[must_use]
#[doc(alias = "magnitude")]
/// Computes coordinates length as a signed integer.
/// The length of a [`Hex`] coordinate is equal to its distance from the
/// origin.
///
/// See [`Self::ulength`] for the unsigned version
///
/// # Example
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(10, 0);
/// assert_eq!(coord.length(), 10);
/// ```
pub const fn length(self) -> i32 {
let [x, y, z] = [self.x.abs(), self.y.abs(), self.z().abs()];
if x >= y && x >= z {
x
} else if y >= x && y >= z {
y
} else {
z
}
}
#[inline]
#[must_use]
#[doc(alias = "unsigned_length")]
/// Computes coordinates length as an unsigned integer
/// The length of a [`Hex`] coordinate is equal to its distance from the
/// origin.
///
/// See [`Self::length`] for the signed version
///
/// # Example
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(10, 0);
/// assert_eq!(coord.ulength(), 10);
/// ```
pub const fn ulength(self) -> u32 {
let [x, y, z] = [
self.x.unsigned_abs(),
self.y.unsigned_abs(),
self.z().unsigned_abs(),
];
if x >= y && x >= z {
x
} else if y >= x && y >= z {
y
} else {
z
}
}
#[inline]
#[must_use]
/// Computes the distance from `self` to `rhs` in hexagonal space as a
/// signed integer
///
/// See [`Self::unsigned_distance_to`] for the unsigned version
pub const fn distance_to(self, rhs: Self) -> i32 {
self.const_sub(rhs).length()
}
#[inline]
#[must_use]
/// Computes the distance from `self` to `rhs` in hexagonal space as an
/// unsigned integer
///
/// See [`Self::distance_to`] for the signed version
pub const fn unsigned_distance_to(self, rhs: Self) -> u32 {
self.const_sub(rhs).ulength()
}
#[inline]
#[must_use]
/// Retrieves the hexagonal neighbor coordinates matching the given
/// `direction`
pub const fn neighbor_coord(direction: EdgeDirection) -> Self {
direction.into_hex()
}
#[inline]
#[must_use]
/// Retrieves the diagonal neighbor coordinates matching the given
/// `direction`
pub const fn diagonal_neighbor_coord(direction: VertexDirection) -> Self {
direction.into_hex()
}
pub(crate) const fn add_dir(self, direction: EdgeDirection) -> Self {
self.const_add(Self::neighbor_coord(direction))
}
pub(crate) const fn add_diag_dir(self, direction: VertexDirection) -> Self {
self.const_add(Self::diagonal_neighbor_coord(direction))
}
#[inline]
#[must_use]
/// Retrieves the neighbor coordinates matching the given `direction`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(10, 5);
/// let bottom = coord.neighbor(EdgeDirection::FLAT_BOTTOM);
/// assert_eq!(bottom, Hex::new(10, 6));
/// ```
pub const fn neighbor(self, direction: EdgeDirection) -> Self {
self.const_add(Self::neighbor_coord(direction))
}
#[inline]
#[must_use]
/// Retrieves the diagonal neighbor coordinates matching the given
/// `direction`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(10, 5);
/// let bottom = coord.diagonal_neighbor(VertexDirection::FLAT_RIGHT);
/// assert_eq!(bottom, Hex::new(12, 4));
/// ```
pub const fn diagonal_neighbor(self, direction: VertexDirection) -> Self {
self.const_add(Self::diagonal_neighbor_coord(direction))
}
#[inline]
#[must_use]
/// Retrieves the direction of the given neighbor. Will return `None` if
/// `other` is not a neighbor of `self`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = Hex::new(10, 5);
/// let bottom = coord.neighbor(EdgeDirection::FLAT_BOTTOM);
/// let dir = coord.neighbor_direction(bottom).unwrap();
/// assert_eq!(dir, EdgeDirection::FLAT_BOTTOM);
/// ```
pub fn neighbor_direction(self, other: Self) -> Option<EdgeDirection> {
EdgeDirection::iter().find(|&dir| self.neighbor(dir) == other)
}
#[must_use]
/// Find in which [`VertexDirection`] wedge `rhs` is relative to `self`.
///
/// > This method can be innaccurate in case of a *tie* between directions,
/// > prefer using [`Self::diagonal_way_to`] instead
pub fn main_diagonal_to(self, rhs: Self) -> VertexDirection {
self.diagonal_way_to(rhs).unwrap()
}
#[must_use]
/// Find in which [`VertexDirection`] wedge `rhs` is relative to `self`
pub fn diagonal_way_to(self, rhs: Self) -> DirectionWay<VertexDirection> {
let [x, y, z] = (rhs - self).to_cubic_array();
let [xa, ya, za] = [x.abs(), y.abs(), z.abs()];
match xa.max(ya).max(za) {
v if v == xa => {
DirectionWay::way_from(x < 0, xa == ya, xa == za, VertexDirection::FLAT_RIGHT)
}
v if v == ya => {
DirectionWay::way_from(y < 0, ya == za, ya == xa, VertexDirection::FLAT_BOTTOM_LEFT)
}
_ => DirectionWay::way_from(z < 0, za == xa, za == ya, VertexDirection::FLAT_TOP_LEFT),
}
}
/// Find in which [`EdgeDirection`] wedge `rhs` is relative to `self`
///
/// > This method can be innaccurate in case of a *tie* between directions,
/// > prefer using [`Self::way_to`] for accuracy
#[must_use]
pub fn main_direction_to(self, rhs: Self) -> EdgeDirection {
self.way_to(rhs).unwrap()
}
#[must_use]
/// Find in which [`EdgeDirection`] wedge `rhs` is relative to `self`
pub fn way_to(self, rhs: Self) -> DirectionWay<EdgeDirection> {
let [x, y, z] = (rhs - self).to_cubic_array();
let [x, y, z] = [y - x, z - y, x - z];
let [xa, ya, za] = [x.abs(), y.abs(), z.abs()];
match xa.max(ya).max(za) {
v if v == xa => {
DirectionWay::way_from(x < 0, xa == ya, xa == za, EdgeDirection::FLAT_BOTTOM_LEFT)
}
v if v == ya => {
DirectionWay::way_from(y < 0, ya == za, ya == xa, EdgeDirection::FLAT_TOP)
}
_ => {
DirectionWay::way_from(z < 0, za == xa, za == ya, EdgeDirection::FLAT_BOTTOM_RIGHT)
}
}
}
#[inline]
#[must_use]
/// Retrieves all 6 neighbor coordinates around `self`
pub fn all_neighbors(self) -> [Self; 6] {
Self::NEIGHBORS_COORDS.map(|n| self.const_add(n))
}
#[inline]
#[must_use]
/// Retrieves all 6 neighbor diagonal coordinates around `self`
pub fn all_diagonals(self) -> [Self; 6] {
Self::DIAGONAL_COORDS.map(|n| self.const_add(n))
}
#[inline]
#[must_use]
#[doc(alias = "ccw")]
/// Rotates `self` around [`Hex::ZERO`] counter clockwise (by -60 degrees)
///
/// # Example
///
/// ```rust
/// # use hexx::*;
///
/// let p = Hex::new(1, 2);
/// assert_eq!(p.counter_clockwise(), Hex::new(3, -1));
/// ```
pub const fn counter_clockwise(self) -> Self {
Self::new(-self.z(), -self.x)
}
#[inline]
#[must_use]
/// Rotates `self` around `center` counter clockwise (by -60 degrees)
pub const fn ccw_around(self, center: Self) -> Self {
self.const_sub(center).counter_clockwise().const_add(center)
}
#[inline]
#[must_use]
/// Rotates `self` around [`Hex::ZERO`] counter clockwise by `m` (by `-60 *
/// m` degrees)
pub const fn rotate_ccw(self, m: u32) -> Self {
match m % 6 {
1 => self.counter_clockwise(),
2 => self.counter_clockwise().counter_clockwise(),
3 => self.const_neg(),
4 => self.clockwise().clockwise(),
5 => self.clockwise(),
_ => self,
}
}
#[inline]
#[must_use]
/// Rotates `self` around `center` counter clockwise by `m` (by `-60 * m`
/// degrees)
pub const fn rotate_ccw_around(self, center: Self, m: u32) -> Self {
self.const_sub(center).rotate_ccw(m).const_add(center)
}
#[inline]
#[must_use]
#[doc(alias = "cw")]
/// Rotates `self` around [`Hex::ZERO`] clockwise (by 60 degrees)
///
/// # Example
///
/// ```rust
/// # use hexx::*;
///
/// let p = Hex::new(1, 2);
/// assert_eq!(p.clockwise(), Hex::new(-2, 3));
/// ```
pub const fn clockwise(self) -> Self {
Self::new(-self.y, -self.z())
}
#[inline]
#[must_use]
/// Rotates `self` around `center` clockwise (by 60 degrees)
pub const fn cw_around(self, center: Self) -> Self {
self.const_sub(center).clockwise().const_add(center)
}
#[inline]
#[must_use]
/// Rotates `self` around [`Hex::ZERO`] clockwise by `m` (by `60 * m`
/// degrees)
pub const fn rotate_cw(self, m: u32) -> Self {
match m % 6 {
1 => self.clockwise(),
2 => self.clockwise().clockwise(),
3 => self.const_neg(),
4 => self.counter_clockwise().counter_clockwise(),
5 => self.counter_clockwise(),
_ => self,
}
}
#[inline]
#[must_use]
/// Rotates `self` around `center` clockwise by `m` (by `60 * m` degrees)
pub const fn rotate_cw_around(self, center: Self, m: u32) -> Self {
self.const_sub(center).rotate_cw(m).const_add(center)
}
#[inline]
#[must_use]
#[doc(alias = "reflect_q")]
/// Computes the reflection of `self` accross the `x` axis
pub const fn reflect_x(self) -> Self {
Self::new(self.x, self.z())
}
#[inline]
#[must_use]
#[doc(alias = "reflect_r")]
/// Computes the reflection of `self` accross the `y` axis
pub const fn reflect_y(self) -> Self {
Self::new(self.z(), self.y)
}
#[inline]
#[must_use]
#[doc(alias = "reflect_s")]
/// Computes the reflection of `self` accross the `z` axis
pub const fn reflect_z(self) -> Self {
Self::new(self.y, self.x)
}
#[allow(clippy::cast_precision_loss)]
#[must_use]
/// Computes all coordinates in a line from `self` to `other`.
///
/// # Example
/// ```rust
/// # use hexx::*;
/// let start = Hex::ZERO;
/// let end = Hex::new(5, 0);
///
/// let line = start.line_to(end);
/// assert_eq!(line.len(), 6);
/// let line: Vec<Hex> = line.collect();
/// assert_eq!(line.len(), 6);
/// ````
pub fn line_to(self, other: Self) -> impl ExactSizeIterator<Item = Self> {
let distance = self.unsigned_distance_to(other);
let dist = distance.max(1) as f32;
let [a, b]: [Vec2; 2] = [self.as_vec2(), other.as_vec2()];
ExactSizeHexIterator {
iter: (0..=distance).map(move |step| a.lerp(b, step as f32 / dist).into()),
count: distance as usize + 1,
}
}
#[allow(clippy::cast_sign_loss)]
#[must_use]
/// Computes all coordinate in a two segment rectiline path from `self` to
/// `other`
///
/// # Arguments
///
/// * `other` - The destination coordinate
/// * `clockwise` - If set to `true` the line paths will be clockwise
///
/// # Example
/// ```rust
/// # use hexx::*;
/// let start = Hex::ZERO;
/// let end = Hex::new(5, 0);
///
/// let line = start.rectiline_to(end, true);
/// assert_eq!(line.len(), 6);
/// let line: Vec<Hex> = line.collect();
/// assert_eq!(line.len(), 6);
/// assert_eq!(line[0], start);
/// assert_eq!(line[5], end);
/// ````
pub fn rectiline_to(self, other: Self, clockwise: bool) -> impl ExactSizeIterator<Item = Self> {
let delta = other.const_sub(self);
let count = delta.length();
let mut dirs = self.main_diagonal_to(other).edge_directions();
if !clockwise {
dirs.rotate_left(1);
}
// The two directions to apply
let [dir_a, dir_b] = dirs;
// The amount of `da` is the distance between `delta` and the full projection of
// `db`
let proj_b = dir_b * count;
let ca = proj_b.distance_to(delta);
let iter = std::iter::once(self).chain((0..count).scan(self, move |p, i| {
if i < ca {
*p += dir_a;
} else {
*p += dir_b;
}
Some(*p)
}));
ExactSizeHexIterator {
iter,
count: (count + 1) as usize,
}
}
/// Performs a linear interpolation between `self` and `rhs` based on the
/// value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s` is
/// `1.0`, the result will be equal to `rhs`. When `s` is outside of
/// range `[0, 1]`, the result is linearly extrapolated.
#[doc(alias = "mix")]
#[inline]
#[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
let [start, end]: [Vec2; 2] = [self.as_vec2(), rhs.as_vec2()];
start.lerp(end, s).into()
}
#[allow(clippy::cast_possible_wrap)]
#[must_use]
/// Retrieves all [`Hex`] around `self` in a given `range`.
/// The number of returned coordinates is equal to `Hex::range_count(range)`
///
/// > See also [`Hex::xrange`] to retrieve all coordinates excluding `self`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = hex(12, 34);
/// assert_eq!(coord.range(0).len(), 1);
/// assert_eq!(coord.range(1).len(), 7);
/// ```
pub fn range(self, range: u32) -> impl ExactSizeIterator<Item = Self> {
let radius = range as i32;
ExactSizeHexIterator {
iter: (-radius..=radius).flat_map(move |x| {
let y_min = max(-radius, -x - radius);
let y_max = min(radius, radius - x);
(y_min..=y_max).map(move |y| self.const_add(Self::new(x, y)))
}),
count: Self::range_count(range) as usize,
}
}
#[allow(clippy::cast_possible_wrap)]
#[doc(alias = "excluding_range")]
#[must_use]
/// Retrieves all [`Hex`] around `self` in a given `range` except `self`.
/// The number of returned coordinates is equal to
/// `Hex::range_count(range) - 1`
///
/// > See also [`Hex::range`] to retrieve all coordinates including `self`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// let coord = hex(12, 34);
/// assert_eq!(coord.xrange(0).len(), 0);
/// assert_eq!(coord.xrange(1).len(), 6);
/// ```
pub fn xrange(self, range: u32) -> impl ExactSizeIterator<Item = Self> {
let iter = self.range(range);
ExactSizeHexIterator {
count: iter.len().saturating_sub(1),
iter: iter.filter(move |h| *h != self),
}
}
/// Computes the coordinate of a lower resolution hexagon containing `self`
/// of a given `radius`.
/// The lower resolution coordinate can be considered *parent* of
/// the contained higher resolution coordinates.
/// The `radius` can be thought of as a *chunk size*, as if the grid was
/// split in hexagonal chunks of that radius. The returned value are the
/// coordinates of that chunk, in its own coordinates system.
///
/// See the [source] documentation for more information
///
/// > See also [`Self::to_higher_res`] and [`Self::to_local`]
///
/// # Example
///
/// ```rust
/// # use hexx::*;
///
/// // We define a coordinate
/// let coord = hex(23, 45);
/// // We take its *parent* in a coordinate system of size 5
/// let parent = coord.to_lower_res(5);
/// // We can then retrieve the center of that parent in the same system as `coord`
/// let center = parent.to_higher_res(5);
/// // Therefore the distance between the parent center and `coord` should be lower than 5
/// assert!(coord.distance_to(center) <= 5);
/// ```
///
/// [source]: https://observablehq.com/@sanderevers/hexagon-tiling-of-an-hexagonal-grid
#[must_use]
#[allow(
clippy::cast_possible_wrap,
clippy::cast_precision_loss,
clippy::cast_possible_truncation
)]
#[doc(alias = "downscale")]
pub fn to_lower_res(self, radius: u32) -> Self {
let [x, y, z] = self.to_cubic_array();
let area = Self::range_count(radius) as f32;
let shift = Self::shift(radius) as i32;
let [x, y, z] = [
((y + shift * x) as f32 / area).floor() as i32,
((z + shift * y) as f32 / area).floor() as i32,
((x + shift * z) as f32 / area).floor() as i32,
];
let [x, y] = [
((1 + x - y) as f32 / 3.0).floor() as i32,
((1 + y - z) as f32 / 3.0).floor() as i32,
// ((1 + z - x) as f32 / 3.0).floor() as i32, -- z
];
// debug_assert_eq!(z, -x - y);
Self::new(x, y)
}
/// Computes the center coordinates of `self` in a higher resolution system
/// of a given `radius`.
/// The higher resolution coordinate can be considered as a *child* of
/// `self` as it is contained by it in a lower resolution coordinates
/// system. The `radius` can be thought of as a *chunk size*, as if the
/// grid was split in hexagonal chunks of that radius. The returned
/// value are the coordinates of the center that chunk, in a higher
/// resolution coordinates system.
///
/// See the [source] documentation for more information
///
/// > See also [`Self::to_lower_res`] and [`Self::to_local`]
///
/// # Example
///
/// ```rust
/// # use hexx::*;
///
/// // We define a coordinate
/// let coord = hex(23, 45);
/// // We take its *parent* in a coordinate system of size 5
/// let parent = coord.to_lower_res(5);
/// // We can then retrieve the center of that parent in the same system as `coord`
/// let center = parent.to_higher_res(5);
/// // Therefore the distance between the parent center and `coord` should be lower than 5
/// assert!(coord.distance_to(center) <= 5);
/// ```
///
/// [source]: https://observablehq.com/@sanderevers/hexagon-tiling-of-an-hexagonal-grid
#[must_use]
#[allow(clippy::cast_possible_wrap)]
#[doc(alias = "upscale")]
pub const fn to_higher_res(self, radius: u32) -> Self {
let range = radius as i32;
let [x, y, z] = self.to_cubic_array();
Self::new(x * (range + 1) - range * z, y * (range + 1) - range * x)
}
/// Computes the local coordinates of `self` in a lower resolution
/// coordinates system relative to its containing *parent* hexagon
///
///
/// See the [source] documentation for more information
///
/// > See also [`Self::to_lower_res`] and [`Self::to_local`]
///
/// # Example
///
/// ```rust
/// # use hexx::*;
///
/// // We define a coordinate
/// let coord = hex(23, 45);
/// // We can then retrieve the center of that hexagon in a higher res of size 5
/// let center = coord.to_higher_res(5);
/// // Therefore, the local coordinates of `center` relative to `coord` should be zero
/// assert_eq!(center.to_local(5), Hex::ZERO);
/// ```
///
/// [source]: https://observablehq.com/@sanderevers/hexagon-tiling-of-an-hexagonal-grid
#[must_use]
pub fn to_local(self, radius: u32) -> Self {
let upscale = self.to_lower_res(radius);
let center = upscale.to_higher_res(radius);
self.const_sub(center)
}
#[inline]
#[must_use]
/// Counts how many coordinates there are in the given `range`
///
/// # Example
///
/// ```rust
/// # use hexx::*;
/// assert_eq!(Hex::range_count(15), 721);
/// assert_eq!(Hex::range_count(0), 1);
/// ```
pub const fn range_count(range: u32) -> u32 {
3 * range * (range + 1) + 1
}
/// Shift constant used for [hexmod] operations
///
/// [hexmod]: https://observablehq.com/@sanderevers/hexmod-representation
#[inline]
#[must_use]
pub(crate) const fn shift(range: u32) -> u32 {
3 * range + 2
}
#[must_use]
/// Wraps `self` in an hex range around the origin ([`Hex::ZERO`]).
/// this allows for seamless *wraparound* hexagonal maps.
/// See this [article] for more information.
///
/// Use [`HexBounds`] for custom wrapping
///
/// [`HexBounds`]: crate::HexBounds
/// [article]: https://www.redblobgames.com/grids/hexagons/#wraparound
pub fn wrap_in_range(self, range: u32) -> Self {
self.to_local(range)
}
}
#[cfg(not(target_arch = "spirv"))]
impl Debug for Hex {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Hex")
.field("x", &self.x)
.field("y", &self.y)
.field("z", &self.z())
.finish()
}
}