Crate hexga_number
Source - prelude
- map_on
- A powerful macro to impl other macros for the given types.
- map_on_constant
- map_on_constant_unit
- map_on_float
f32
, f64
- map_on_integer
- (
u8
, u16
, u32
, u64
, usize
) + (i8
, i16
, i32
, i64
, isize
) - map_on_integer_signed
i8
, i16
, i32
, i64
, isize
- map_on_integer_unsigned
u8
, u16
, u32
, u64
, usize
- map_on_number
- (
u8
, u16
, u32
, u64
, usize
) + (i8
, i16
, i32
, i64
, isize
) + (f32
, f64
) - map_on_number_and_bool
- (
u8
, u16
, u32
, u64
, usize
) + (i8
, i16
, i32
, i64
, isize
) + (f32
, f64
) + (bool
) - map_on_operator_assign
- (
AddAssign
, SubAssign
) + (MulAssign
, DivAssign
, RemAssign
) + (BitOrAssign
, BitAndAssign
, ShlAssign
, ShrAssign
) - map_on_operator_assign_arithmetic
- (
AddAssign
, SubAssign
) + (MulAssign
, DivAssign
, RemAssign
) - map_on_operator_assign_arithmetic_unit
AddAssign
, SubAssign
- map_on_operator_assign_bit
BitOrAssign
, BitAndAssign
, ShlAssign
, ShrAssign
- map_on_operator_binary
- (
Add
, Sub
) + (Mul
, Div
, Rem
) + (BitOr
, BitAnd
, Shl
, Shr
) - map_on_operator_binary_arithmetic
- (
Add
, Sub
) + (Mul
, Div
, Rem
) - map_on_operator_binary_arithmetic_unit
Add
, Sub
- map_on_operator_binary_bit
BitOr
, BitAnd
, Shl
, Shr
- map_on_operator_unary
- (
Not
) + (Neg
, Abs
) - map_on_operator_unary_arithmetic_unit
Neg
, Abs
- map_on_operator_unary_bit
Not
- NumberType
- OverflowPolicy
- Abs
- ArithmeticNegative
- BitArithmetic
- For every type that support bit based operation (and
&
, or |
, xor ^
, not !
, shift <<
/ >>
…) - BitManip
- Decrease
- The
-1
operation - Half
- Define the
0.5
representation - Increase
- The
+1
operation - MaxValue
- MinValue
- MinusOne
- Define the
-1
representation - NaNValue
- Define the Not a Number (NaN) representation
- Number
- +, -, *, /, %, 0, 1, ==, >=, min val, max val
- NumberArithmetic
- +, -, *, /, %, 0
- NumberFloat
- fX
- NumberInteger
- uX or iX
- NumberIntegerSigned
- iX
- NumberIntegerUnsigned
- uX
- NumberNegative
- NumberPrimitive
- fX or uX or iX
- NumberPrimitiveNegative
- fX or or iX
- One
- Define the
1
representation : The neutral element of the multiplication such that x * X::ONE = x
- OverflowBehavior
- PrimitiveType
- UnitArithmetic
- +, -, 0
- UnwrapZero
- Zero
- Define the
0
representation : The absorbing element of the multiplication such that x * X::ZERO = X::ZERO
- half
- minus_one
- one
- zero