Crate hexga_number

Source

Modules§

prelude

Macros§

map_on
A powerful macro to impl other macros for the given types.
map_on_constant
map_on_constant_unit
map_on_float
f32, f64
map_on_integer
(u8, u16, u32, u64, usize) + (i8, i16, i32, i64, isize)
map_on_integer_signed
i8, i16, i32, i64, isize
map_on_integer_unsigned
u8, u16, u32, u64, usize
map_on_number
(u8, u16, u32, u64, usize) + (i8, i16, i32, i64, isize) + (f32, f64)
map_on_number_and_bool
(u8, u16, u32, u64, usize) + (i8, i16, i32, i64, isize) + (f32, f64) + (bool)
map_on_operator_assign
(AddAssign, SubAssign) + (MulAssign, DivAssign, RemAssign) + (BitOrAssign, BitAndAssign, ShlAssign, ShrAssign)
map_on_operator_assign_arithmetic
(AddAssign, SubAssign) + (MulAssign, DivAssign, RemAssign)
map_on_operator_assign_arithmetic_unit
AddAssign, SubAssign
map_on_operator_assign_bit
BitOrAssign, BitAndAssign, ShlAssign, ShrAssign
map_on_operator_binary
(Add, Sub) + (Mul, Div, Rem) + (BitOr, BitAnd, Shl, Shr)
map_on_operator_binary_arithmetic
(Add, Sub) + (Mul, Div, Rem)
map_on_operator_binary_arithmetic_unit
Add, Sub
map_on_operator_binary_bit
BitOr, BitAnd, Shl, Shr
map_on_operator_unary
(Not) + (Neg, Abs)
map_on_operator_unary_arithmetic_unit
Neg, Abs
map_on_operator_unary_bit
Not

Enums§

NumberType
OverflowPolicy

Traits§

Abs
ArithmeticNegative
BitArithmetic
For every type that support bit based operation (and &, or |, xor ^, not !, shift << / >>…)
BitManip
Decrease
The -1 operation
Half
Define the 0.5 representation
Increase
The +1 operation
MaxValue
MinValue
MinusOne
Define the -1 representation
NaNValue
Define the Not a Number (NaN) representation
Number
+, -, *, /, %, 0, 1, ==, >=, min val, max val
NumberArithmetic
+, -, *, /, %, 0
NumberFloat
fX
NumberInteger
uX or iX
NumberIntegerSigned
iX
NumberIntegerUnsigned
uX
NumberNegative
NumberPrimitive
fX or uX or iX
NumberPrimitiveNegative
fX or or iX
One
Define the 1 representation : The neutral element of the multiplication such that x * X::ONE = x
OverflowBehavior
PrimitiveType
UnitArithmetic
+, -, 0
UnwrapZero
Zero
Define the 0 representation : The absorbing element of the multiplication such that x * X::ZERO = X::ZERO

Functions§

half
minus_one
one
zero