hex2d_dpcext/
algo.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/// Breadth First Search
pub mod bfs {

    use hex2d::Coordinate;
    use hex2d;

    use std::hash;
    use std::collections::VecDeque;
    use std::collections::HashMap;
    use std::collections::hash_map::Entry::{Occupied,Vacant};

    struct Visited<I = i32>
        where I : hex2d::Integer
        {
            prev : Coordinate<I>,
            dist : u32,
        }

    /// Breadth First Search
    ///
    /// Use BFS to find closest (in walk steps) Coordinates that satisfy `is_dest` and can be
    /// reached with a walk through coordinates for which `can_pass` returns true.
    pub struct Traverser<FCanPass, FIsDest, I = i32> where
        I : hex2d::Integer,
        I : hash::Hash,
        FCanPass : Fn(Coordinate<I>) -> bool,
        FIsDest : Fn(Coordinate<I>) -> bool
    {
        visited : HashMap<Coordinate<I>, Visited<I>>,
        to_traverse : VecDeque<Coordinate<I>>,
        can_pass : FCanPass,
        is_dest : FIsDest,
        start : Coordinate<I>,
    }

    impl<FCanPass, FIsDest, I> Traverser<FCanPass, FIsDest, I> where
        I : hex2d::Integer,
        I : hash::Hash,
        FCanPass : Fn(Coordinate<I>) -> bool,
        FIsDest : Fn(Coordinate<I>) -> bool
    {

        /// Create a Traverser instance with initial conditions
        pub fn new(can_pass : FCanPass, is_dest : FIsDest, start: Coordinate<I>) -> Traverser<FCanPass, FIsDest, I> {
            let mut to_traverse = VecDeque::new();
            to_traverse.push_back(start);

            let mut visited = HashMap::new();
            visited.insert(start, Visited{prev: start, dist: 0});

            Traverser {
                visited: visited,
                to_traverse: to_traverse,
                can_pass: can_pass,
                is_dest: is_dest,
                start: start,
            }
        }

        /// Find next closest coordinate.
        ///
        /// Can be called multiple times, each time returning next coordinate
        pub fn find(&mut self) -> Option<Coordinate<I>> {

            loop {
                let pos = match self.to_traverse.pop_front() {
                    None => return None,
                    Some(coord) => coord,
                };

                // Traverse before returning, so `find` can be call subsequently
                // for more than just first answer
                if (self.can_pass)(pos) {

                    let &Visited{dist, ..} = self.visited.get(&pos).expect("BFS: Should have been visited already");

                    let dist = dist + 1;

                    for &npos in pos.neighbors().iter() {
                        match self.visited.entry(npos) {
                            Occupied(_) => { /* already visited */ }
                            Vacant(entry) => {
                                entry.insert(Visited{prev: pos, dist: dist});
                                self.to_traverse.push_back(npos);
                            }
                        }
                    }
                }

                if (self.is_dest)(pos) {
                    return Some(pos);
                }
            }
        }

        /// Return neighbor Coordinate to `pos` that is one step closer to
        /// `start` from initial conditions.
        ///
        /// Useful for finding whole path to a Coordinate returned by `find`.
        ///
        /// Returns `None` for Coordinates that were not yet visited.
        /// Returns `start` for `start` (from initial conditions)
        pub fn backtrace(&self, pos : Coordinate<I>) -> Option<Coordinate<I>> {
            self.visited.get(&pos).map(|entry| entry.prev)
        }

        /// Perform a recursive `backtrace` walk to find a neighbor of `start` that leads to the
        /// Coordinate returned by `find()`.
        ///
        /// Returns `None` for Coordinates that were not yet visited.
        /// Returns `start` for `start` (from initial conditions)
        pub fn backtrace_last(&self, mut pos : Coordinate<I>) -> Option<Coordinate<I>> {
            loop {
                pos = match self.visited.get(&pos) {
                    None => return None,
                    Some(entry) => {
                        if entry.prev == self.start {
                            return Some(pos);
                        } else {
                            entry.prev
                        }
                    }
                }
            }
        }
    }
}

/// Very tricky, but (hopefully) good enough, recursive LoS algorithm
pub mod los {
    use hex2d;
    use hex2d::Angle::{Left,Right};

    use hex2d::Direction;
    use hex2d::Coordinate;

    fn los_rec<FOpaqueness, FVisible, I>(
        opaqueness : &FOpaqueness,
        visible : &mut FVisible,
        light: I,
        pos : Coordinate<I>,
        start_dir : Direction,
        main_dir : Direction,
        dir : Option<Direction>,
        pdir : Option<Direction>,
    ) where
        I : hex2d::Integer,
        FOpaqueness : Fn(Coordinate<I>) -> I,
        FVisible : FnMut(Coordinate<I>, I)
        {

            let mut light = light;
            let opaq = opaqueness(pos);

            if opaq >= light {
                return;
            } else {
                light = light - opaq;
            }

            visible(pos, light);

            let neighbors = match (dir, pdir) {
                (Some(dir), Some(pdir)) => {
                    if dir == pdir {
                        vec!(dir)
                    } else {
                        vec!(dir, pdir)
                    }
                },
                (Some(dir), None) => {
                    if main_dir == dir {
                        vec!(dir, dir + Left, dir + Right)
                    } else {
                        vec!(dir, main_dir)
                    }
                },
                _ => {
                    vec!(main_dir, main_dir + Left, main_dir + Right)
                }
            };

            for &d in neighbors.iter() {
                let npos = pos + d;
                match dir {
                    Some(_) => los_rec::<FOpaqueness, FVisible, I>(opaqueness, visible, light, npos, start_dir, d, Some(d), dir),
                    None => los_rec::<FOpaqueness, FVisible, I>(opaqueness, visible, light, npos, start_dir, main_dir, Some(d), dir),
                }
            }
        }


    /// Starting from `pos` in direction `dir`, call `visible` for each visible Coordinate.
    ///
    /// Use `light` as starting range of the LoS. For each visible Coordinate, the value returned
    /// by `opaqueness` will be subtracted from `light` to check if the LoS should finish due to
    /// "lack of visibility". `opaqueness` should typically return 1 for fully transparent
    /// Coordinates, and anything bigger than initial `light` for fully opaque Coordinates.
    pub fn los<FOpaqueness, FVisible, I>(
        opaqueness : &FOpaqueness,
        visible : &mut FVisible,
        light: I,
        pos : Coordinate<I>,
        dirs : &[Direction],
    ) where
        I : hex2d::Integer,
        FOpaqueness : Fn(Coordinate<I>) -> I,
        FVisible : FnMut(Coordinate<I>, I)
        {
            for dir in dirs.iter() {
                los_rec::<FOpaqueness, FVisible, I>(opaqueness, visible, light, pos, *dir, *dir, None, None);
            }
        }
}

/// Combination of tricky Los with straight line checking
pub mod los2 {
    use hex2d;
    use hex2d::Angle::{Left, Right, Forward};
    use hex2d::Direction;
    use hex2d::Coordinate;
    use num::{FromPrimitive};
    use std::collections::HashSet;
    use std::hash;
    use std::ops::{Add};
    use std::cmp;

    fn los_check_line<FOpaqueness, I>(
        opaqueness : &FOpaqueness,
        light: I,
        start : Coordinate<I>,
        pos : Coordinate<I>,
        ) -> (bool, I)
        where
        I : hex2d::Integer,
        I : hash::Hash+Eq,
        for <'a> &'a I: Add<&'a I, Output = I>,
        FOpaqueness : Fn(Coordinate<I>) -> I,
    {

        let mut opaq_sum1 : I = FromPrimitive::from_i8(0).unwrap();
        let mut last1 = start;

        let mut opaq_sum2 : I = FromPrimitive::from_i8(0).unwrap();
        let mut last2 = start;

        for &(c1, c2) in start.line_to_with_edge_detection(pos).iter() {
            if opaq_sum1 < light {
                let opaq1 = opaqueness(c1);
                opaq_sum1 = opaq_sum1 + opaq1;
                last1 = c1;
            }

            if opaq_sum2 < light {
                let opaq2 = opaqueness(c2);
                opaq_sum2 = opaq_sum2 + opaq2;
                last2 = c2;
            }
        };

        match (last1 == pos, last2 == pos) {
            (true, true) => (true, light - cmp::min(opaq_sum1, opaq_sum2)),
            (true, false) => (true, light - opaq_sum1),
            (false, true) => (true, light - opaq_sum2),
            (false, false) => (false, light - light),
        }
    }

    fn los_rec<FOpaqueness, FVisible, I>(
        opaqueness : &FOpaqueness,
        visible : &mut FVisible,
        light: I,
        start : Coordinate<I>,
        pos : Coordinate<I>,
        dir : Direction,
        visited : &mut HashSet<Coordinate<I>>,
    ) where
        I : hex2d::Integer,
        I : hash::Hash+Eq,
        for <'a> &'a I: Add<&'a I, Output = I>,
        FOpaqueness : Fn(Coordinate<I>) -> I,
        FVisible : FnMut(Coordinate<I>, I)
        {
            if visited.contains(&pos) {
                return;
            } else {
                visited.insert(pos);
            }

            let (directly_visible, v_light) = los_check_line(
                opaqueness,
                light,
                start,
                pos);

            if directly_visible {
                visible(pos, v_light);
            } else {
                let dir_to = start.direction_to_cw(pos).unwrap_or(dir);
                let neighbors = vec!(Left, Right);
                for npos in neighbors.iter()
                    .map(|&rd| dir_to + rd)
                        .map(|dir| pos + dir) {

                            let (side_visible, v_light) = los_check_line(
                                opaqueness,
                                light,
                                start,
                                npos,);

                            if side_visible {
                                visible(pos, v_light);
                            }
                        }
                return;
            }

            let neighbors = vec!(Forward, Left, Right);

            for &a in neighbors.iter() {
                let npos = pos + (dir + a);
                los_rec::<FOpaqueness, FVisible, I>(
                    opaqueness, visible, light, start, npos, dir, visited
                    );
            }
        }


    /// Starting from `pos` in direction `dir`, call `visible` for each visible Coordinate.
    ///
    /// Use `light` as starting range of the LoS. For each visible Coordinate, the value returned
    /// by `opaqueness` will be subtracted from `light` to check if the LoS should finish due to
    /// "lack of visibility". `opaqueness` should typically return 1 for fully transparent
    /// Coordinates, and anything bigger than initial `light` for fully opaque Coordinates.
    pub fn los<FOpaqueness, FVisible, I>(
        opaqueness : &FOpaqueness,
        visible : &mut FVisible,
        light: I,
        pos : Coordinate<I>,
        dirs : &[Direction],
    ) where
        I : hex2d::Integer,
        I : hash::Hash,
        for <'a> &'a I: Add<&'a I, Output = I>,
        FOpaqueness : Fn(Coordinate<I>) -> I,
        FVisible : FnMut(Coordinate<I>, I)
        {
            for dir in dirs.iter() {
                let mut visited = HashSet::new();
                los_rec::<FOpaqueness, FVisible, I>(
                    opaqueness, visible, light, pos, pos, *dir, &mut visited
                    );
            }
        }
}