1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use core::sync::atomic::{AtomicBool, Ordering};

use lock_api::{GuardSend, RawMutex};

use crate::backoff::Backoff;

/// A simple [test and test-and-set] [spinlock] with [exponential backoff].
///
/// [test and test-and-set]: https://en.wikipedia.org/wiki/Test_and_test-and-set
/// [spinlock]: https://en.wikipedia.org/wiki/Spinlock
/// [exponential backoff]: https://en.wikipedia.org/wiki/Exponential_backoff
// Based on `spin::mutex::SpinMutex`, but with backoff.
pub struct RawSpinMutex {
    lock: AtomicBool,
}

unsafe impl RawMutex for RawSpinMutex {
    #[allow(clippy::declare_interior_mutable_const)]
    const INIT: Self = Self {
        lock: AtomicBool::new(false),
    };

    type GuardMarker = GuardSend;

    #[inline]
    fn lock(&self) {
        let mut backoff = Backoff::new();
        while self
            .lock
            .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
            .is_err()
        {
            while self.is_locked() {
                backoff.snooze();
            }
        }
    }

    #[inline]
    fn try_lock(&self) -> bool {
        self.lock
            .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
    }

    #[inline]
    unsafe fn unlock(&self) {
        self.lock.store(false, Ordering::Release);
    }

    #[inline]
    fn is_locked(&self) -> bool {
        self.lock.load(Ordering::Relaxed)
    }
}

/// A [`lock_api::Mutex`] based on [`RawSpinMutex`].
pub type SpinMutex<T> = lock_api::Mutex<RawSpinMutex, T>;

/// A [`lock_api::MutexGuard`] based on [`RawSpinMutex`].
pub type SpinMutexGuard<'a, T> = lock_api::MutexGuard<'a, RawSpinMutex, T>;

// From `spin::mutex::spin`
#[cfg(test)]
mod tests {
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::{mem, thread};

    use super::*;

    #[test]
    fn smoke() {
        let m = SpinMutex::<_>::new(());
        drop(m.lock());
        drop(m.lock());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn lots_and_lots() {
        static M: SpinMutex<()> = SpinMutex::<_>::new(());
        static mut CNT: u32 = 0;
        const J: u32 = 1000;
        const K: u32 = 3;

        fn inc() {
            for _ in 0..J {
                unsafe {
                    let _g = M.lock();
                    CNT += 1;
                }
            }
        }

        let (tx, rx) = channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            thread::spawn(move || {
                inc();
                tx2.send(()).unwrap();
            });
            let tx2 = tx.clone();
            thread::spawn(move || {
                inc();
                tx2.send(()).unwrap();
            });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(unsafe { CNT }, J * K * 2);
    }

    #[test]
    fn try_lock() {
        let mutex = SpinMutex::<_>::new(42);

        // First lock succeeds
        let a = mutex.try_lock();
        assert_eq!(a.as_ref().map(|r| **r), Some(42));

        // Additional lock failes
        let b = mutex.try_lock();
        assert!(b.is_none());

        // After dropping lock, it succeeds again
        ::core::mem::drop(a);
        let c = mutex.try_lock();
        assert_eq!(c.as_ref().map(|r| **r), Some(42));
    }

    #[test]
    fn test_into_inner() {
        let m = SpinMutex::<_>::new(Box::new(10));
        assert_eq!(m.into_inner(), Box::new(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = SpinMutex::<_>::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(SpinMutex::<_>::new(1));
        let arc2 = Arc::new(SpinMutex::<_>::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            let lock = arc2.lock();
            let lock2 = lock.lock();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(SpinMutex::<_>::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || -> () {
            struct Unwinder {
                i: Arc<SpinMutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.lock();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_mutex_unsized() {
        let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock(), comp);
    }

    #[test]
    fn test_mutex_force_lock() {
        let lock = SpinMutex::<_>::new(());
        mem::forget(lock.lock());
        unsafe {
            lock.force_unlock();
        }
        assert!(lock.try_lock().is_some());
    }
}