Skip to main content

hermes_core/structures/
simd.rs

1//! Shared SIMD-accelerated functions for posting list compression
2//!
3//! This module provides platform-optimized implementations for common operations:
4//! - **Unpacking**: Convert packed 8/16/32-bit values to u32 arrays
5//! - **Delta decoding**: Prefix sum for converting deltas to absolute values
6//! - **Add one**: Increment all values in an array (for TF decoding)
7//!
8//! Supports:
9//! - **NEON** on aarch64 (Apple Silicon, ARM servers)
10//! - **SSE/SSE4.1** on x86_64 (Intel/AMD)
11//! - **Scalar fallback** for other architectures
12
13// ============================================================================
14// NEON intrinsics for aarch64 (Apple Silicon, ARM servers)
15// ============================================================================
16
17#[cfg(target_arch = "aarch64")]
18#[allow(unsafe_op_in_unsafe_fn)]
19mod neon {
20    use std::arch::aarch64::*;
21
22    /// SIMD unpack for 8-bit values using NEON
23    #[target_feature(enable = "neon")]
24    pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
25        let chunks = count / 16;
26        let remainder = count % 16;
27
28        for chunk in 0..chunks {
29            let base = chunk * 16;
30            let in_ptr = input.as_ptr().add(base);
31
32            // Load 16 bytes
33            let bytes = vld1q_u8(in_ptr);
34
35            // Widen u8 -> u16 -> u32
36            let low8 = vget_low_u8(bytes);
37            let high8 = vget_high_u8(bytes);
38
39            let low16 = vmovl_u8(low8);
40            let high16 = vmovl_u8(high8);
41
42            let v0 = vmovl_u16(vget_low_u16(low16));
43            let v1 = vmovl_u16(vget_high_u16(low16));
44            let v2 = vmovl_u16(vget_low_u16(high16));
45            let v3 = vmovl_u16(vget_high_u16(high16));
46
47            let out_ptr = output.as_mut_ptr().add(base);
48            vst1q_u32(out_ptr, v0);
49            vst1q_u32(out_ptr.add(4), v1);
50            vst1q_u32(out_ptr.add(8), v2);
51            vst1q_u32(out_ptr.add(12), v3);
52        }
53
54        // Handle remainder
55        let base = chunks * 16;
56        for i in 0..remainder {
57            output[base + i] = input[base + i] as u32;
58        }
59    }
60
61    /// SIMD unpack for 16-bit values using NEON
62    #[target_feature(enable = "neon")]
63    pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
64        let chunks = count / 8;
65        let remainder = count % 8;
66
67        for chunk in 0..chunks {
68            let base = chunk * 8;
69            let in_ptr = input.as_ptr().add(base * 2) as *const u16;
70
71            let vals = vld1q_u16(in_ptr);
72            let low = vmovl_u16(vget_low_u16(vals));
73            let high = vmovl_u16(vget_high_u16(vals));
74
75            let out_ptr = output.as_mut_ptr().add(base);
76            vst1q_u32(out_ptr, low);
77            vst1q_u32(out_ptr.add(4), high);
78        }
79
80        // Handle remainder
81        let base = chunks * 8;
82        for i in 0..remainder {
83            let idx = (base + i) * 2;
84            output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
85        }
86    }
87
88    /// SIMD unpack for 32-bit values using NEON (fast copy)
89    #[target_feature(enable = "neon")]
90    pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
91        let chunks = count / 4;
92        let remainder = count % 4;
93
94        let in_ptr = input.as_ptr() as *const u32;
95        let out_ptr = output.as_mut_ptr();
96
97        for chunk in 0..chunks {
98            let vals = vld1q_u32(in_ptr.add(chunk * 4));
99            vst1q_u32(out_ptr.add(chunk * 4), vals);
100        }
101
102        // Handle remainder
103        let base = chunks * 4;
104        for i in 0..remainder {
105            let idx = (base + i) * 4;
106            output[base + i] =
107                u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
108        }
109    }
110
111    /// SIMD prefix sum for 4 u32 values using NEON
112    /// Input:  [a, b, c, d]
113    /// Output: [a, a+b, a+b+c, a+b+c+d]
114    #[inline]
115    #[target_feature(enable = "neon")]
116    unsafe fn prefix_sum_4(v: uint32x4_t) -> uint32x4_t {
117        // Step 1: shift by 1 and add
118        // [a, b, c, d] + [0, a, b, c] = [a, a+b, b+c, c+d]
119        let shifted1 = vextq_u32(vdupq_n_u32(0), v, 3);
120        let sum1 = vaddq_u32(v, shifted1);
121
122        // Step 2: shift by 2 and add
123        // [a, a+b, b+c, c+d] + [0, 0, a, a+b] = [a, a+b, a+b+c, a+b+c+d]
124        let shifted2 = vextq_u32(vdupq_n_u32(0), sum1, 2);
125        vaddq_u32(sum1, shifted2)
126    }
127
128    /// SIMD delta decode: convert deltas to absolute doc IDs
129    /// deltas[i] stores (gap - 1), output[i] = first + sum(gaps[0..i])
130    /// Uses NEON SIMD prefix sum for high throughput
131    #[target_feature(enable = "neon")]
132    pub unsafe fn delta_decode(
133        output: &mut [u32],
134        deltas: &[u32],
135        first_doc_id: u32,
136        count: usize,
137    ) {
138        if count == 0 {
139            return;
140        }
141
142        output[0] = first_doc_id;
143        if count == 1 {
144            return;
145        }
146
147        let ones = vdupq_n_u32(1);
148        let mut carry = vdupq_n_u32(first_doc_id);
149
150        let full_groups = (count - 1) / 4;
151        let remainder = (count - 1) % 4;
152
153        for group in 0..full_groups {
154            let base = group * 4;
155
156            // Load 4 deltas and add 1 (since we store gap-1)
157            let d = vld1q_u32(deltas[base..].as_ptr());
158            let gaps = vaddq_u32(d, ones);
159
160            // Compute prefix sum within the 4 elements
161            let prefix = prefix_sum_4(gaps);
162
163            // Add carry (broadcast last element of previous group)
164            let result = vaddq_u32(prefix, carry);
165
166            // Store result
167            vst1q_u32(output[base + 1..].as_mut_ptr(), result);
168
169            // Update carry: broadcast the last element for next iteration
170            carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
171        }
172
173        // Handle remainder
174        let base = full_groups * 4;
175        let mut scalar_carry = vgetq_lane_u32(carry, 0);
176        for j in 0..remainder {
177            scalar_carry = scalar_carry.wrapping_add(deltas[base + j]).wrapping_add(1);
178            output[base + j + 1] = scalar_carry;
179        }
180    }
181
182    /// SIMD add 1 to all values (for TF decoding: stored as tf-1)
183    #[target_feature(enable = "neon")]
184    pub unsafe fn add_one(values: &mut [u32], count: usize) {
185        let ones = vdupq_n_u32(1);
186        let chunks = count / 4;
187        let remainder = count % 4;
188
189        for chunk in 0..chunks {
190            let base = chunk * 4;
191            let ptr = values.as_mut_ptr().add(base);
192            let v = vld1q_u32(ptr);
193            let result = vaddq_u32(v, ones);
194            vst1q_u32(ptr, result);
195        }
196
197        let base = chunks * 4;
198        for i in 0..remainder {
199            values[base + i] += 1;
200        }
201    }
202
203    /// Fused unpack 8-bit + delta decode using NEON
204    /// Processes 4 values at a time, fusing unpack and prefix sum
205    #[target_feature(enable = "neon")]
206    pub unsafe fn unpack_8bit_delta_decode(
207        input: &[u8],
208        output: &mut [u32],
209        first_value: u32,
210        count: usize,
211    ) {
212        output[0] = first_value;
213        if count <= 1 {
214            return;
215        }
216
217        let ones = vdupq_n_u32(1);
218        let mut carry = vdupq_n_u32(first_value);
219
220        let full_groups = (count - 1) / 4;
221        let remainder = (count - 1) % 4;
222
223        for group in 0..full_groups {
224            let base = group * 4;
225
226            // Load 4 bytes and widen to u32
227            let b0 = input[base] as u32;
228            let b1 = input[base + 1] as u32;
229            let b2 = input[base + 2] as u32;
230            let b3 = input[base + 3] as u32;
231            let deltas = [b0, b1, b2, b3];
232            let d = vld1q_u32(deltas.as_ptr());
233
234            // Add 1 (since we store gap-1)
235            let gaps = vaddq_u32(d, ones);
236
237            // Compute prefix sum within the 4 elements
238            let prefix = prefix_sum_4(gaps);
239
240            // Add carry
241            let result = vaddq_u32(prefix, carry);
242
243            // Store result
244            vst1q_u32(output[base + 1..].as_mut_ptr(), result);
245
246            // Update carry
247            carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
248        }
249
250        // Handle remainder
251        let base = full_groups * 4;
252        let mut scalar_carry = vgetq_lane_u32(carry, 0);
253        for j in 0..remainder {
254            scalar_carry = scalar_carry
255                .wrapping_add(input[base + j] as u32)
256                .wrapping_add(1);
257            output[base + j + 1] = scalar_carry;
258        }
259    }
260
261    /// Fused unpack 16-bit + delta decode using NEON
262    #[target_feature(enable = "neon")]
263    pub unsafe fn unpack_16bit_delta_decode(
264        input: &[u8],
265        output: &mut [u32],
266        first_value: u32,
267        count: usize,
268    ) {
269        output[0] = first_value;
270        if count <= 1 {
271            return;
272        }
273
274        let ones = vdupq_n_u32(1);
275        let mut carry = vdupq_n_u32(first_value);
276
277        let full_groups = (count - 1) / 4;
278        let remainder = (count - 1) % 4;
279
280        for group in 0..full_groups {
281            let base = group * 4;
282            let in_ptr = input.as_ptr().add(base * 2) as *const u16;
283
284            // Load 4 u16 values and widen to u32
285            let vals = vld1_u16(in_ptr);
286            let d = vmovl_u16(vals);
287
288            // Add 1 (since we store gap-1)
289            let gaps = vaddq_u32(d, ones);
290
291            // Compute prefix sum within the 4 elements
292            let prefix = prefix_sum_4(gaps);
293
294            // Add carry
295            let result = vaddq_u32(prefix, carry);
296
297            // Store result
298            vst1q_u32(output[base + 1..].as_mut_ptr(), result);
299
300            // Update carry
301            carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
302        }
303
304        // Handle remainder
305        let base = full_groups * 4;
306        let mut scalar_carry = vgetq_lane_u32(carry, 0);
307        for j in 0..remainder {
308            let idx = (base + j) * 2;
309            let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
310            scalar_carry = scalar_carry.wrapping_add(delta).wrapping_add(1);
311            output[base + j + 1] = scalar_carry;
312        }
313    }
314
315    /// Check if NEON is available (always true on aarch64)
316    #[inline]
317    pub fn is_available() -> bool {
318        true
319    }
320}
321
322// ============================================================================
323// SSE intrinsics for x86_64 (Intel/AMD)
324// ============================================================================
325
326#[cfg(target_arch = "x86_64")]
327#[allow(unsafe_op_in_unsafe_fn)]
328mod sse {
329    use std::arch::x86_64::*;
330
331    /// SIMD unpack for 8-bit values using SSE
332    #[target_feature(enable = "sse2", enable = "sse4.1")]
333    pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
334        let chunks = count / 16;
335        let remainder = count % 16;
336
337        for chunk in 0..chunks {
338            let base = chunk * 16;
339            let in_ptr = input.as_ptr().add(base);
340
341            let bytes = _mm_loadu_si128(in_ptr as *const __m128i);
342
343            // Zero extend u8 -> u32 using SSE4.1 pmovzx
344            let v0 = _mm_cvtepu8_epi32(bytes);
345            let v1 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 4));
346            let v2 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 8));
347            let v3 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 12));
348
349            let out_ptr = output.as_mut_ptr().add(base);
350            _mm_storeu_si128(out_ptr as *mut __m128i, v0);
351            _mm_storeu_si128(out_ptr.add(4) as *mut __m128i, v1);
352            _mm_storeu_si128(out_ptr.add(8) as *mut __m128i, v2);
353            _mm_storeu_si128(out_ptr.add(12) as *mut __m128i, v3);
354        }
355
356        let base = chunks * 16;
357        for i in 0..remainder {
358            output[base + i] = input[base + i] as u32;
359        }
360    }
361
362    /// SIMD unpack for 16-bit values using SSE
363    #[target_feature(enable = "sse2", enable = "sse4.1")]
364    pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
365        let chunks = count / 8;
366        let remainder = count % 8;
367
368        for chunk in 0..chunks {
369            let base = chunk * 8;
370            let in_ptr = input.as_ptr().add(base * 2);
371
372            let vals = _mm_loadu_si128(in_ptr as *const __m128i);
373            let low = _mm_cvtepu16_epi32(vals);
374            let high = _mm_cvtepu16_epi32(_mm_srli_si128(vals, 8));
375
376            let out_ptr = output.as_mut_ptr().add(base);
377            _mm_storeu_si128(out_ptr as *mut __m128i, low);
378            _mm_storeu_si128(out_ptr.add(4) as *mut __m128i, high);
379        }
380
381        let base = chunks * 8;
382        for i in 0..remainder {
383            let idx = (base + i) * 2;
384            output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
385        }
386    }
387
388    /// SIMD unpack for 32-bit values using SSE (fast copy)
389    #[target_feature(enable = "sse2")]
390    pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
391        let chunks = count / 4;
392        let remainder = count % 4;
393
394        let in_ptr = input.as_ptr() as *const __m128i;
395        let out_ptr = output.as_mut_ptr() as *mut __m128i;
396
397        for chunk in 0..chunks {
398            let vals = _mm_loadu_si128(in_ptr.add(chunk));
399            _mm_storeu_si128(out_ptr.add(chunk), vals);
400        }
401
402        // Handle remainder
403        let base = chunks * 4;
404        for i in 0..remainder {
405            let idx = (base + i) * 4;
406            output[base + i] =
407                u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
408        }
409    }
410
411    /// SIMD prefix sum for 4 u32 values using SSE
412    /// Input:  [a, b, c, d]
413    /// Output: [a, a+b, a+b+c, a+b+c+d]
414    #[inline]
415    #[target_feature(enable = "sse2")]
416    unsafe fn prefix_sum_4(v: __m128i) -> __m128i {
417        // Step 1: shift by 1 element (4 bytes) and add
418        // [a, b, c, d] + [0, a, b, c] = [a, a+b, b+c, c+d]
419        let shifted1 = _mm_slli_si128(v, 4);
420        let sum1 = _mm_add_epi32(v, shifted1);
421
422        // Step 2: shift by 2 elements (8 bytes) and add
423        // [a, a+b, b+c, c+d] + [0, 0, a, a+b] = [a, a+b, a+b+c, a+b+c+d]
424        let shifted2 = _mm_slli_si128(sum1, 8);
425        _mm_add_epi32(sum1, shifted2)
426    }
427
428    /// SIMD delta decode using SSE with true SIMD prefix sum
429    #[target_feature(enable = "sse2", enable = "sse4.1")]
430    pub unsafe fn delta_decode(
431        output: &mut [u32],
432        deltas: &[u32],
433        first_doc_id: u32,
434        count: usize,
435    ) {
436        if count == 0 {
437            return;
438        }
439
440        output[0] = first_doc_id;
441        if count == 1 {
442            return;
443        }
444
445        let ones = _mm_set1_epi32(1);
446        let mut carry = _mm_set1_epi32(first_doc_id as i32);
447
448        let full_groups = (count - 1) / 4;
449        let remainder = (count - 1) % 4;
450
451        for group in 0..full_groups {
452            let base = group * 4;
453
454            // Load 4 deltas and add 1 (since we store gap-1)
455            let d = _mm_loadu_si128(deltas[base..].as_ptr() as *const __m128i);
456            let gaps = _mm_add_epi32(d, ones);
457
458            // Compute prefix sum within the 4 elements
459            let prefix = prefix_sum_4(gaps);
460
461            // Add carry (broadcast last element of previous group)
462            let result = _mm_add_epi32(prefix, carry);
463
464            // Store result
465            _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
466
467            // Update carry: broadcast the last element for next iteration
468            carry = _mm_shuffle_epi32(result, 0xFF); // broadcast lane 3
469        }
470
471        // Handle remainder
472        let base = full_groups * 4;
473        let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
474        for j in 0..remainder {
475            scalar_carry = scalar_carry.wrapping_add(deltas[base + j]).wrapping_add(1);
476            output[base + j + 1] = scalar_carry;
477        }
478    }
479
480    /// SIMD add 1 to all values using SSE
481    #[target_feature(enable = "sse2")]
482    pub unsafe fn add_one(values: &mut [u32], count: usize) {
483        let ones = _mm_set1_epi32(1);
484        let chunks = count / 4;
485        let remainder = count % 4;
486
487        for chunk in 0..chunks {
488            let base = chunk * 4;
489            let ptr = values.as_mut_ptr().add(base) as *mut __m128i;
490            let v = _mm_loadu_si128(ptr);
491            let result = _mm_add_epi32(v, ones);
492            _mm_storeu_si128(ptr, result);
493        }
494
495        let base = chunks * 4;
496        for i in 0..remainder {
497            values[base + i] += 1;
498        }
499    }
500
501    /// Fused unpack 8-bit + delta decode using SSE
502    #[target_feature(enable = "sse2", enable = "sse4.1")]
503    pub unsafe fn unpack_8bit_delta_decode(
504        input: &[u8],
505        output: &mut [u32],
506        first_value: u32,
507        count: usize,
508    ) {
509        output[0] = first_value;
510        if count <= 1 {
511            return;
512        }
513
514        let ones = _mm_set1_epi32(1);
515        let mut carry = _mm_set1_epi32(first_value as i32);
516
517        let full_groups = (count - 1) / 4;
518        let remainder = (count - 1) % 4;
519
520        for group in 0..full_groups {
521            let base = group * 4;
522
523            // Load 4 bytes (unaligned) and zero-extend to u32
524            let bytes = _mm_cvtsi32_si128(std::ptr::read_unaligned(
525                input.as_ptr().add(base) as *const i32
526            ));
527            let d = _mm_cvtepu8_epi32(bytes);
528
529            // Add 1 (since we store gap-1)
530            let gaps = _mm_add_epi32(d, ones);
531
532            // Compute prefix sum within the 4 elements
533            let prefix = prefix_sum_4(gaps);
534
535            // Add carry
536            let result = _mm_add_epi32(prefix, carry);
537
538            // Store result
539            _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
540
541            // Update carry: broadcast the last element
542            carry = _mm_shuffle_epi32(result, 0xFF);
543        }
544
545        // Handle remainder
546        let base = full_groups * 4;
547        let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
548        for j in 0..remainder {
549            scalar_carry = scalar_carry
550                .wrapping_add(input[base + j] as u32)
551                .wrapping_add(1);
552            output[base + j + 1] = scalar_carry;
553        }
554    }
555
556    /// Fused unpack 16-bit + delta decode using SSE
557    #[target_feature(enable = "sse2", enable = "sse4.1")]
558    pub unsafe fn unpack_16bit_delta_decode(
559        input: &[u8],
560        output: &mut [u32],
561        first_value: u32,
562        count: usize,
563    ) {
564        output[0] = first_value;
565        if count <= 1 {
566            return;
567        }
568
569        let ones = _mm_set1_epi32(1);
570        let mut carry = _mm_set1_epi32(first_value as i32);
571
572        let full_groups = (count - 1) / 4;
573        let remainder = (count - 1) % 4;
574
575        for group in 0..full_groups {
576            let base = group * 4;
577            let in_ptr = input.as_ptr().add(base * 2);
578
579            // Load 8 bytes (4 u16 values, unaligned) and zero-extend to u32
580            let vals = _mm_loadl_epi64(in_ptr as *const __m128i); // loadl_epi64 supports unaligned
581            let d = _mm_cvtepu16_epi32(vals);
582
583            // Add 1 (since we store gap-1)
584            let gaps = _mm_add_epi32(d, ones);
585
586            // Compute prefix sum within the 4 elements
587            let prefix = prefix_sum_4(gaps);
588
589            // Add carry
590            let result = _mm_add_epi32(prefix, carry);
591
592            // Store result
593            _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
594
595            // Update carry: broadcast the last element
596            carry = _mm_shuffle_epi32(result, 0xFF);
597        }
598
599        // Handle remainder
600        let base = full_groups * 4;
601        let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
602        for j in 0..remainder {
603            let idx = (base + j) * 2;
604            let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
605            scalar_carry = scalar_carry.wrapping_add(delta).wrapping_add(1);
606            output[base + j + 1] = scalar_carry;
607        }
608    }
609
610    /// Check if SSE4.1 is available at runtime
611    #[inline]
612    pub fn is_available() -> bool {
613        is_x86_feature_detected!("sse4.1")
614    }
615}
616
617// ============================================================================
618// AVX2 intrinsics for x86_64 (Intel/AMD with 256-bit registers)
619// ============================================================================
620
621#[cfg(target_arch = "x86_64")]
622#[allow(unsafe_op_in_unsafe_fn)]
623mod avx2 {
624    use std::arch::x86_64::*;
625
626    /// AVX2 unpack for 8-bit values (processes 32 bytes at a time)
627    #[target_feature(enable = "avx2")]
628    pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
629        let chunks = count / 32;
630        let remainder = count % 32;
631
632        for chunk in 0..chunks {
633            let base = chunk * 32;
634            let in_ptr = input.as_ptr().add(base);
635
636            // Load 32 bytes (two 128-bit loads, then combine)
637            let bytes_lo = _mm_loadu_si128(in_ptr as *const __m128i);
638            let bytes_hi = _mm_loadu_si128(in_ptr.add(16) as *const __m128i);
639
640            // Zero extend first 16 bytes: u8 -> u32
641            let v0 = _mm256_cvtepu8_epi32(bytes_lo);
642            let v1 = _mm256_cvtepu8_epi32(_mm_srli_si128(bytes_lo, 8));
643            let v2 = _mm256_cvtepu8_epi32(bytes_hi);
644            let v3 = _mm256_cvtepu8_epi32(_mm_srli_si128(bytes_hi, 8));
645
646            let out_ptr = output.as_mut_ptr().add(base);
647            _mm256_storeu_si256(out_ptr as *mut __m256i, v0);
648            _mm256_storeu_si256(out_ptr.add(8) as *mut __m256i, v1);
649            _mm256_storeu_si256(out_ptr.add(16) as *mut __m256i, v2);
650            _mm256_storeu_si256(out_ptr.add(24) as *mut __m256i, v3);
651        }
652
653        // Handle remainder with SSE
654        let base = chunks * 32;
655        for i in 0..remainder {
656            output[base + i] = input[base + i] as u32;
657        }
658    }
659
660    /// AVX2 unpack for 16-bit values (processes 16 values at a time)
661    #[target_feature(enable = "avx2")]
662    pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
663        let chunks = count / 16;
664        let remainder = count % 16;
665
666        for chunk in 0..chunks {
667            let base = chunk * 16;
668            let in_ptr = input.as_ptr().add(base * 2);
669
670            // Load 32 bytes (16 u16 values)
671            let vals_lo = _mm_loadu_si128(in_ptr as *const __m128i);
672            let vals_hi = _mm_loadu_si128(in_ptr.add(16) as *const __m128i);
673
674            // Zero extend u16 -> u32
675            let v0 = _mm256_cvtepu16_epi32(vals_lo);
676            let v1 = _mm256_cvtepu16_epi32(vals_hi);
677
678            let out_ptr = output.as_mut_ptr().add(base);
679            _mm256_storeu_si256(out_ptr as *mut __m256i, v0);
680            _mm256_storeu_si256(out_ptr.add(8) as *mut __m256i, v1);
681        }
682
683        // Handle remainder
684        let base = chunks * 16;
685        for i in 0..remainder {
686            let idx = (base + i) * 2;
687            output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
688        }
689    }
690
691    /// AVX2 unpack for 32-bit values (fast copy, 8 values at a time)
692    #[target_feature(enable = "avx2")]
693    pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
694        let chunks = count / 8;
695        let remainder = count % 8;
696
697        let in_ptr = input.as_ptr() as *const __m256i;
698        let out_ptr = output.as_mut_ptr() as *mut __m256i;
699
700        for chunk in 0..chunks {
701            let vals = _mm256_loadu_si256(in_ptr.add(chunk));
702            _mm256_storeu_si256(out_ptr.add(chunk), vals);
703        }
704
705        // Handle remainder
706        let base = chunks * 8;
707        for i in 0..remainder {
708            let idx = (base + i) * 4;
709            output[base + i] =
710                u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
711        }
712    }
713
714    /// AVX2 add 1 to all values (8 values at a time)
715    #[target_feature(enable = "avx2")]
716    pub unsafe fn add_one(values: &mut [u32], count: usize) {
717        let ones = _mm256_set1_epi32(1);
718        let chunks = count / 8;
719        let remainder = count % 8;
720
721        for chunk in 0..chunks {
722            let base = chunk * 8;
723            let ptr = values.as_mut_ptr().add(base) as *mut __m256i;
724            let v = _mm256_loadu_si256(ptr);
725            let result = _mm256_add_epi32(v, ones);
726            _mm256_storeu_si256(ptr, result);
727        }
728
729        let base = chunks * 8;
730        for i in 0..remainder {
731            values[base + i] += 1;
732        }
733    }
734
735    /// Check if AVX2 is available at runtime
736    #[inline]
737    pub fn is_available() -> bool {
738        is_x86_feature_detected!("avx2")
739    }
740}
741
742// ============================================================================
743// Scalar fallback implementations
744// ============================================================================
745
746#[allow(dead_code)]
747mod scalar {
748    /// Scalar unpack for 8-bit values
749    #[inline]
750    pub fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
751        for i in 0..count {
752            output[i] = input[i] as u32;
753        }
754    }
755
756    /// Scalar unpack for 16-bit values
757    #[inline]
758    pub fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
759        for (i, out) in output.iter_mut().enumerate().take(count) {
760            let idx = i * 2;
761            *out = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
762        }
763    }
764
765    /// Scalar unpack for 32-bit values
766    #[inline]
767    pub fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
768        for (i, out) in output.iter_mut().enumerate().take(count) {
769            let idx = i * 4;
770            *out = u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
771        }
772    }
773
774    /// Scalar delta decode
775    #[inline]
776    pub fn delta_decode(output: &mut [u32], deltas: &[u32], first_doc_id: u32, count: usize) {
777        if count == 0 {
778            return;
779        }
780
781        output[0] = first_doc_id;
782        let mut carry = first_doc_id;
783
784        for i in 0..count - 1 {
785            carry = carry.wrapping_add(deltas[i]).wrapping_add(1);
786            output[i + 1] = carry;
787        }
788    }
789
790    /// Scalar add 1 to all values
791    #[inline]
792    pub fn add_one(values: &mut [u32], count: usize) {
793        for val in values.iter_mut().take(count) {
794            *val += 1;
795        }
796    }
797}
798
799// ============================================================================
800// Public dispatch functions that select SIMD or scalar at runtime
801// ============================================================================
802
803/// Unpack 8-bit packed values to u32 with SIMD acceleration
804#[inline]
805pub fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
806    #[cfg(target_arch = "aarch64")]
807    {
808        if neon::is_available() {
809            unsafe {
810                neon::unpack_8bit(input, output, count);
811            }
812            return;
813        }
814    }
815
816    #[cfg(target_arch = "x86_64")]
817    {
818        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
819        if avx2::is_available() {
820            unsafe {
821                avx2::unpack_8bit(input, output, count);
822            }
823            return;
824        }
825        if sse::is_available() {
826            unsafe {
827                sse::unpack_8bit(input, output, count);
828            }
829            return;
830        }
831    }
832
833    scalar::unpack_8bit(input, output, count);
834}
835
836/// Unpack 16-bit packed values to u32 with SIMD acceleration
837#[inline]
838pub fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
839    #[cfg(target_arch = "aarch64")]
840    {
841        if neon::is_available() {
842            unsafe {
843                neon::unpack_16bit(input, output, count);
844            }
845            return;
846        }
847    }
848
849    #[cfg(target_arch = "x86_64")]
850    {
851        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
852        if avx2::is_available() {
853            unsafe {
854                avx2::unpack_16bit(input, output, count);
855            }
856            return;
857        }
858        if sse::is_available() {
859            unsafe {
860                sse::unpack_16bit(input, output, count);
861            }
862            return;
863        }
864    }
865
866    scalar::unpack_16bit(input, output, count);
867}
868
869/// Unpack 32-bit packed values to u32 with SIMD acceleration
870#[inline]
871pub fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
872    #[cfg(target_arch = "aarch64")]
873    {
874        if neon::is_available() {
875            unsafe {
876                neon::unpack_32bit(input, output, count);
877            }
878        }
879    }
880
881    #[cfg(target_arch = "x86_64")]
882    {
883        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
884        if avx2::is_available() {
885            unsafe {
886                avx2::unpack_32bit(input, output, count);
887            }
888        } else {
889            // SSE2 is always available on x86_64
890            unsafe {
891                sse::unpack_32bit(input, output, count);
892            }
893        }
894    }
895
896    #[cfg(not(any(target_arch = "aarch64", target_arch = "x86_64")))]
897    {
898        scalar::unpack_32bit(input, output, count);
899    }
900}
901
902/// Delta decode with SIMD acceleration
903///
904/// Converts delta-encoded values to absolute values.
905/// Input: deltas[i] = value[i+1] - value[i] - 1 (gap minus one)
906/// Output: absolute values starting from first_value
907#[inline]
908pub fn delta_decode(output: &mut [u32], deltas: &[u32], first_value: u32, count: usize) {
909    #[cfg(target_arch = "aarch64")]
910    {
911        if neon::is_available() {
912            unsafe {
913                neon::delta_decode(output, deltas, first_value, count);
914            }
915            return;
916        }
917    }
918
919    #[cfg(target_arch = "x86_64")]
920    {
921        if sse::is_available() {
922            unsafe {
923                sse::delta_decode(output, deltas, first_value, count);
924            }
925            return;
926        }
927    }
928
929    scalar::delta_decode(output, deltas, first_value, count);
930}
931
932/// Add 1 to all values with SIMD acceleration
933///
934/// Used for TF decoding where values are stored as (tf - 1)
935#[inline]
936pub fn add_one(values: &mut [u32], count: usize) {
937    #[cfg(target_arch = "aarch64")]
938    {
939        if neon::is_available() {
940            unsafe {
941                neon::add_one(values, count);
942            }
943        }
944    }
945
946    #[cfg(target_arch = "x86_64")]
947    {
948        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
949        if avx2::is_available() {
950            unsafe {
951                avx2::add_one(values, count);
952            }
953        } else {
954            // SSE2 is always available on x86_64
955            unsafe {
956                sse::add_one(values, count);
957            }
958        }
959    }
960
961    #[cfg(not(any(target_arch = "aarch64", target_arch = "x86_64")))]
962    {
963        scalar::add_one(values, count);
964    }
965}
966
967/// Compute the number of bits needed to represent a value
968#[inline]
969pub fn bits_needed(val: u32) -> u8 {
970    if val == 0 {
971        0
972    } else {
973        32 - val.leading_zeros() as u8
974    }
975}
976
977// ============================================================================
978// Rounded bitpacking for truly vectorized encoding/decoding
979// ============================================================================
980//
981// Instead of using arbitrary bit widths (1-32), we round up to SIMD-friendly
982// widths: 0, 8, 16, or 32 bits. This trades ~10-20% more space for much faster
983// decoding since we can use direct SIMD widening instructions (pmovzx) without
984// any bit-shifting or masking.
985//
986// Bit width mapping:
987//   0      -> 0  (all zeros)
988//   1-8    -> 8  (u8)
989//   9-16   -> 16 (u16)
990//   17-32  -> 32 (u32)
991
992/// Rounded bit width type for SIMD-friendly encoding
993#[derive(Debug, Clone, Copy, PartialEq, Eq)]
994#[repr(u8)]
995pub enum RoundedBitWidth {
996    Zero = 0,
997    Bits8 = 8,
998    Bits16 = 16,
999    Bits32 = 32,
1000}
1001
1002impl RoundedBitWidth {
1003    /// Round an exact bit width to the nearest SIMD-friendly width
1004    #[inline]
1005    pub fn from_exact(bits: u8) -> Self {
1006        match bits {
1007            0 => RoundedBitWidth::Zero,
1008            1..=8 => RoundedBitWidth::Bits8,
1009            9..=16 => RoundedBitWidth::Bits16,
1010            _ => RoundedBitWidth::Bits32,
1011        }
1012    }
1013
1014    /// Convert from stored u8 value (must be 0, 8, 16, or 32)
1015    #[inline]
1016    pub fn from_u8(bits: u8) -> Self {
1017        match bits {
1018            0 => RoundedBitWidth::Zero,
1019            8 => RoundedBitWidth::Bits8,
1020            16 => RoundedBitWidth::Bits16,
1021            32 => RoundedBitWidth::Bits32,
1022            _ => RoundedBitWidth::Bits32, // Fallback for invalid values
1023        }
1024    }
1025
1026    /// Get the byte size per value
1027    #[inline]
1028    pub fn bytes_per_value(self) -> usize {
1029        match self {
1030            RoundedBitWidth::Zero => 0,
1031            RoundedBitWidth::Bits8 => 1,
1032            RoundedBitWidth::Bits16 => 2,
1033            RoundedBitWidth::Bits32 => 4,
1034        }
1035    }
1036
1037    /// Get the raw bit width value
1038    #[inline]
1039    pub fn as_u8(self) -> u8 {
1040        self as u8
1041    }
1042}
1043
1044/// Round a bit width to the nearest SIMD-friendly width (0, 8, 16, or 32)
1045#[inline]
1046pub fn round_bit_width(bits: u8) -> u8 {
1047    RoundedBitWidth::from_exact(bits).as_u8()
1048}
1049
1050/// Pack values using rounded bit width (SIMD-friendly)
1051///
1052/// This is much simpler than arbitrary bitpacking since values are byte-aligned.
1053/// Returns the number of bytes written.
1054#[inline]
1055pub fn pack_rounded(values: &[u32], bit_width: RoundedBitWidth, output: &mut [u8]) -> usize {
1056    let count = values.len();
1057    match bit_width {
1058        RoundedBitWidth::Zero => 0,
1059        RoundedBitWidth::Bits8 => {
1060            for (i, &v) in values.iter().enumerate() {
1061                output[i] = v as u8;
1062            }
1063            count
1064        }
1065        RoundedBitWidth::Bits16 => {
1066            for (i, &v) in values.iter().enumerate() {
1067                let bytes = (v as u16).to_le_bytes();
1068                output[i * 2] = bytes[0];
1069                output[i * 2 + 1] = bytes[1];
1070            }
1071            count * 2
1072        }
1073        RoundedBitWidth::Bits32 => {
1074            for (i, &v) in values.iter().enumerate() {
1075                let bytes = v.to_le_bytes();
1076                output[i * 4] = bytes[0];
1077                output[i * 4 + 1] = bytes[1];
1078                output[i * 4 + 2] = bytes[2];
1079                output[i * 4 + 3] = bytes[3];
1080            }
1081            count * 4
1082        }
1083    }
1084}
1085
1086/// Unpack values using rounded bit width with SIMD acceleration
1087///
1088/// This is the fast path - no bit manipulation needed, just widening.
1089#[inline]
1090pub fn unpack_rounded(input: &[u8], bit_width: RoundedBitWidth, output: &mut [u32], count: usize) {
1091    match bit_width {
1092        RoundedBitWidth::Zero => {
1093            for out in output.iter_mut().take(count) {
1094                *out = 0;
1095            }
1096        }
1097        RoundedBitWidth::Bits8 => unpack_8bit(input, output, count),
1098        RoundedBitWidth::Bits16 => unpack_16bit(input, output, count),
1099        RoundedBitWidth::Bits32 => unpack_32bit(input, output, count),
1100    }
1101}
1102
1103/// Fused unpack + delta decode using rounded bit width
1104///
1105/// Combines unpacking and prefix sum in a single pass for better cache utilization.
1106#[inline]
1107pub fn unpack_rounded_delta_decode(
1108    input: &[u8],
1109    bit_width: RoundedBitWidth,
1110    output: &mut [u32],
1111    first_value: u32,
1112    count: usize,
1113) {
1114    match bit_width {
1115        RoundedBitWidth::Zero => {
1116            // All deltas are 0, meaning gaps of 1
1117            let mut val = first_value;
1118            for out in output.iter_mut().take(count) {
1119                *out = val;
1120                val = val.wrapping_add(1);
1121            }
1122        }
1123        RoundedBitWidth::Bits8 => unpack_8bit_delta_decode(input, output, first_value, count),
1124        RoundedBitWidth::Bits16 => unpack_16bit_delta_decode(input, output, first_value, count),
1125        RoundedBitWidth::Bits32 => {
1126            // For 32-bit, unpack then delta decode (no fused version needed)
1127            unpack_32bit(input, output, count);
1128            // Delta decode in place - but we need the deltas separate
1129            // Actually for 32-bit we should just unpack and delta decode separately
1130            if count > 0 {
1131                let mut carry = first_value;
1132                output[0] = first_value;
1133                for item in output.iter_mut().take(count).skip(1) {
1134                    // item currently holds delta (gap-1)
1135                    carry = carry.wrapping_add(*item).wrapping_add(1);
1136                    *item = carry;
1137                }
1138            }
1139        }
1140    }
1141}
1142
1143// ============================================================================
1144// Fused operations for better cache utilization
1145// ============================================================================
1146
1147/// Fused unpack 8-bit + delta decode in a single pass
1148///
1149/// This avoids writing the intermediate unpacked values to memory,
1150/// improving cache utilization for large blocks.
1151#[inline]
1152pub fn unpack_8bit_delta_decode(input: &[u8], output: &mut [u32], first_value: u32, count: usize) {
1153    if count == 0 {
1154        return;
1155    }
1156
1157    output[0] = first_value;
1158    if count == 1 {
1159        return;
1160    }
1161
1162    #[cfg(target_arch = "aarch64")]
1163    {
1164        if neon::is_available() {
1165            unsafe {
1166                neon::unpack_8bit_delta_decode(input, output, first_value, count);
1167            }
1168            return;
1169        }
1170    }
1171
1172    #[cfg(target_arch = "x86_64")]
1173    {
1174        if sse::is_available() {
1175            unsafe {
1176                sse::unpack_8bit_delta_decode(input, output, first_value, count);
1177            }
1178            return;
1179        }
1180    }
1181
1182    // Scalar fallback
1183    let mut carry = first_value;
1184    for i in 0..count - 1 {
1185        carry = carry.wrapping_add(input[i] as u32).wrapping_add(1);
1186        output[i + 1] = carry;
1187    }
1188}
1189
1190/// Fused unpack 16-bit + delta decode in a single pass
1191#[inline]
1192pub fn unpack_16bit_delta_decode(input: &[u8], output: &mut [u32], first_value: u32, count: usize) {
1193    if count == 0 {
1194        return;
1195    }
1196
1197    output[0] = first_value;
1198    if count == 1 {
1199        return;
1200    }
1201
1202    #[cfg(target_arch = "aarch64")]
1203    {
1204        if neon::is_available() {
1205            unsafe {
1206                neon::unpack_16bit_delta_decode(input, output, first_value, count);
1207            }
1208            return;
1209        }
1210    }
1211
1212    #[cfg(target_arch = "x86_64")]
1213    {
1214        if sse::is_available() {
1215            unsafe {
1216                sse::unpack_16bit_delta_decode(input, output, first_value, count);
1217            }
1218            return;
1219        }
1220    }
1221
1222    // Scalar fallback
1223    let mut carry = first_value;
1224    for i in 0..count - 1 {
1225        let idx = i * 2;
1226        let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
1227        carry = carry.wrapping_add(delta).wrapping_add(1);
1228        output[i + 1] = carry;
1229    }
1230}
1231
1232/// Fused unpack + delta decode for arbitrary bit widths
1233///
1234/// Combines unpacking and prefix sum in a single pass, avoiding intermediate buffer.
1235/// Uses SIMD-accelerated paths for 8/16-bit widths, scalar for others.
1236#[inline]
1237pub fn unpack_delta_decode(
1238    input: &[u8],
1239    bit_width: u8,
1240    output: &mut [u32],
1241    first_value: u32,
1242    count: usize,
1243) {
1244    if count == 0 {
1245        return;
1246    }
1247
1248    output[0] = first_value;
1249    if count == 1 {
1250        return;
1251    }
1252
1253    // Fast paths for SIMD-friendly bit widths
1254    match bit_width {
1255        0 => {
1256            // All zeros = consecutive doc IDs (gap of 1)
1257            let mut val = first_value;
1258            for item in output.iter_mut().take(count).skip(1) {
1259                val = val.wrapping_add(1);
1260                *item = val;
1261            }
1262        }
1263        8 => unpack_8bit_delta_decode(input, output, first_value, count),
1264        16 => unpack_16bit_delta_decode(input, output, first_value, count),
1265        32 => {
1266            // 32-bit: unpack inline and delta decode
1267            let mut carry = first_value;
1268            for i in 0..count - 1 {
1269                let idx = i * 4;
1270                let delta = u32::from_le_bytes([
1271                    input[idx],
1272                    input[idx + 1],
1273                    input[idx + 2],
1274                    input[idx + 3],
1275                ]);
1276                carry = carry.wrapping_add(delta).wrapping_add(1);
1277                output[i + 1] = carry;
1278            }
1279        }
1280        _ => {
1281            // Generic bit width: fused unpack + delta decode
1282            let mask = (1u64 << bit_width) - 1;
1283            let bit_width_usize = bit_width as usize;
1284            let mut bit_pos = 0usize;
1285            let input_ptr = input.as_ptr();
1286            let mut carry = first_value;
1287
1288            for i in 0..count - 1 {
1289                let byte_idx = bit_pos >> 3;
1290                let bit_offset = bit_pos & 7;
1291
1292                // SAFETY: Caller guarantees input has enough data
1293                let word = unsafe { (input_ptr.add(byte_idx) as *const u64).read_unaligned() };
1294                let delta = ((word >> bit_offset) & mask) as u32;
1295
1296                carry = carry.wrapping_add(delta).wrapping_add(1);
1297                output[i + 1] = carry;
1298                bit_pos += bit_width_usize;
1299            }
1300        }
1301    }
1302}
1303
1304// ============================================================================
1305// Sparse Vector SIMD Functions
1306// ============================================================================
1307
1308/// Dequantize UInt8 weights to f32 with SIMD acceleration
1309///
1310/// Computes: output[i] = input[i] as f32 * scale + min_val
1311#[inline]
1312pub fn dequantize_uint8(input: &[u8], output: &mut [f32], scale: f32, min_val: f32, count: usize) {
1313    #[cfg(target_arch = "aarch64")]
1314    {
1315        if neon::is_available() {
1316            unsafe {
1317                dequantize_uint8_neon(input, output, scale, min_val, count);
1318            }
1319            return;
1320        }
1321    }
1322
1323    #[cfg(target_arch = "x86_64")]
1324    {
1325        if sse::is_available() {
1326            unsafe {
1327                dequantize_uint8_sse(input, output, scale, min_val, count);
1328            }
1329            return;
1330        }
1331    }
1332
1333    // Scalar fallback
1334    for i in 0..count {
1335        output[i] = input[i] as f32 * scale + min_val;
1336    }
1337}
1338
1339#[cfg(target_arch = "aarch64")]
1340#[target_feature(enable = "neon")]
1341#[allow(unsafe_op_in_unsafe_fn)]
1342unsafe fn dequantize_uint8_neon(
1343    input: &[u8],
1344    output: &mut [f32],
1345    scale: f32,
1346    min_val: f32,
1347    count: usize,
1348) {
1349    use std::arch::aarch64::*;
1350
1351    let scale_v = vdupq_n_f32(scale);
1352    let min_v = vdupq_n_f32(min_val);
1353
1354    let chunks = count / 16;
1355    let remainder = count % 16;
1356
1357    for chunk in 0..chunks {
1358        let base = chunk * 16;
1359        let in_ptr = input.as_ptr().add(base);
1360
1361        // Load 16 bytes
1362        let bytes = vld1q_u8(in_ptr);
1363
1364        // Widen u8 -> u16 -> u32 -> f32
1365        let low8 = vget_low_u8(bytes);
1366        let high8 = vget_high_u8(bytes);
1367
1368        let low16 = vmovl_u8(low8);
1369        let high16 = vmovl_u8(high8);
1370
1371        // Process 4 values at a time
1372        let u32_0 = vmovl_u16(vget_low_u16(low16));
1373        let u32_1 = vmovl_u16(vget_high_u16(low16));
1374        let u32_2 = vmovl_u16(vget_low_u16(high16));
1375        let u32_3 = vmovl_u16(vget_high_u16(high16));
1376
1377        // Convert to f32 and apply scale + min_val
1378        let f32_0 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_0), scale_v);
1379        let f32_1 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_1), scale_v);
1380        let f32_2 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_2), scale_v);
1381        let f32_3 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_3), scale_v);
1382
1383        let out_ptr = output.as_mut_ptr().add(base);
1384        vst1q_f32(out_ptr, f32_0);
1385        vst1q_f32(out_ptr.add(4), f32_1);
1386        vst1q_f32(out_ptr.add(8), f32_2);
1387        vst1q_f32(out_ptr.add(12), f32_3);
1388    }
1389
1390    // Handle remainder
1391    let base = chunks * 16;
1392    for i in 0..remainder {
1393        output[base + i] = input[base + i] as f32 * scale + min_val;
1394    }
1395}
1396
1397#[cfg(target_arch = "x86_64")]
1398#[target_feature(enable = "sse2", enable = "sse4.1")]
1399#[allow(unsafe_op_in_unsafe_fn)]
1400unsafe fn dequantize_uint8_sse(
1401    input: &[u8],
1402    output: &mut [f32],
1403    scale: f32,
1404    min_val: f32,
1405    count: usize,
1406) {
1407    use std::arch::x86_64::*;
1408
1409    let scale_v = _mm_set1_ps(scale);
1410    let min_v = _mm_set1_ps(min_val);
1411
1412    let chunks = count / 4;
1413    let remainder = count % 4;
1414
1415    for chunk in 0..chunks {
1416        let base = chunk * 4;
1417
1418        // Load 4 bytes and zero-extend to 32-bit
1419        let b0 = input[base] as i32;
1420        let b1 = input[base + 1] as i32;
1421        let b2 = input[base + 2] as i32;
1422        let b3 = input[base + 3] as i32;
1423
1424        let ints = _mm_set_epi32(b3, b2, b1, b0);
1425        let floats = _mm_cvtepi32_ps(ints);
1426
1427        // Apply scale and min_val: result = floats * scale + min_val
1428        let scaled = _mm_add_ps(_mm_mul_ps(floats, scale_v), min_v);
1429
1430        _mm_storeu_ps(output.as_mut_ptr().add(base), scaled);
1431    }
1432
1433    // Handle remainder
1434    let base = chunks * 4;
1435    for i in 0..remainder {
1436        output[base + i] = input[base + i] as f32 * scale + min_val;
1437    }
1438}
1439
1440/// Compute dot product of two f32 arrays with SIMD acceleration
1441#[inline]
1442pub fn dot_product_f32(a: &[f32], b: &[f32], count: usize) -> f32 {
1443    #[cfg(target_arch = "aarch64")]
1444    {
1445        if neon::is_available() {
1446            return unsafe { dot_product_f32_neon(a, b, count) };
1447        }
1448    }
1449
1450    #[cfg(target_arch = "x86_64")]
1451    {
1452        if is_x86_feature_detected!("avx2") && is_x86_feature_detected!("fma") {
1453            return unsafe { dot_product_f32_avx2(a, b, count) };
1454        }
1455        if sse::is_available() {
1456            return unsafe { dot_product_f32_sse(a, b, count) };
1457        }
1458    }
1459
1460    // Scalar fallback
1461    let mut sum = 0.0f32;
1462    for i in 0..count {
1463        sum += a[i] * b[i];
1464    }
1465    sum
1466}
1467
1468#[cfg(target_arch = "aarch64")]
1469#[target_feature(enable = "neon")]
1470#[allow(unsafe_op_in_unsafe_fn)]
1471unsafe fn dot_product_f32_neon(a: &[f32], b: &[f32], count: usize) -> f32 {
1472    use std::arch::aarch64::*;
1473
1474    let chunks = count / 4;
1475    let remainder = count % 4;
1476
1477    let mut acc = vdupq_n_f32(0.0);
1478
1479    for chunk in 0..chunks {
1480        let base = chunk * 4;
1481        let va = vld1q_f32(a.as_ptr().add(base));
1482        let vb = vld1q_f32(b.as_ptr().add(base));
1483        acc = vfmaq_f32(acc, va, vb);
1484    }
1485
1486    // Horizontal sum
1487    let mut sum = vaddvq_f32(acc);
1488
1489    // Handle remainder
1490    let base = chunks * 4;
1491    for i in 0..remainder {
1492        sum += a[base + i] * b[base + i];
1493    }
1494
1495    sum
1496}
1497
1498#[cfg(target_arch = "x86_64")]
1499#[target_feature(enable = "avx2", enable = "fma")]
1500#[allow(unsafe_op_in_unsafe_fn)]
1501unsafe fn dot_product_f32_avx2(a: &[f32], b: &[f32], count: usize) -> f32 {
1502    use std::arch::x86_64::*;
1503
1504    let chunks = count / 8;
1505    let remainder = count % 8;
1506
1507    let mut acc = _mm256_setzero_ps();
1508
1509    for chunk in 0..chunks {
1510        let base = chunk * 8;
1511        let va = _mm256_loadu_ps(a.as_ptr().add(base));
1512        let vb = _mm256_loadu_ps(b.as_ptr().add(base));
1513        acc = _mm256_fmadd_ps(va, vb, acc);
1514    }
1515
1516    // Horizontal sum: 256-bit → 128-bit → scalar
1517    let hi = _mm256_extractf128_ps(acc, 1);
1518    let lo = _mm256_castps256_ps128(acc);
1519    let sum128 = _mm_add_ps(lo, hi);
1520    let shuf = _mm_shuffle_ps(sum128, sum128, 0b10_11_00_01);
1521    let sums = _mm_add_ps(sum128, shuf);
1522    let shuf2 = _mm_movehl_ps(sums, sums);
1523    let final_sum = _mm_add_ss(sums, shuf2);
1524
1525    let mut sum = _mm_cvtss_f32(final_sum);
1526
1527    let base = chunks * 8;
1528    for i in 0..remainder {
1529        sum += a[base + i] * b[base + i];
1530    }
1531
1532    sum
1533}
1534
1535#[cfg(target_arch = "x86_64")]
1536#[target_feature(enable = "sse")]
1537#[allow(unsafe_op_in_unsafe_fn)]
1538unsafe fn dot_product_f32_sse(a: &[f32], b: &[f32], count: usize) -> f32 {
1539    use std::arch::x86_64::*;
1540
1541    let chunks = count / 4;
1542    let remainder = count % 4;
1543
1544    let mut acc = _mm_setzero_ps();
1545
1546    for chunk in 0..chunks {
1547        let base = chunk * 4;
1548        let va = _mm_loadu_ps(a.as_ptr().add(base));
1549        let vb = _mm_loadu_ps(b.as_ptr().add(base));
1550        acc = _mm_add_ps(acc, _mm_mul_ps(va, vb));
1551    }
1552
1553    // Horizontal sum: [a, b, c, d] -> a + b + c + d
1554    let shuf = _mm_shuffle_ps(acc, acc, 0b10_11_00_01); // [b, a, d, c]
1555    let sums = _mm_add_ps(acc, shuf); // [a+b, a+b, c+d, c+d]
1556    let shuf2 = _mm_movehl_ps(sums, sums); // [c+d, c+d, ?, ?]
1557    let final_sum = _mm_add_ss(sums, shuf2); // [a+b+c+d, ?, ?, ?]
1558
1559    let mut sum = _mm_cvtss_f32(final_sum);
1560
1561    // Handle remainder
1562    let base = chunks * 4;
1563    for i in 0..remainder {
1564        sum += a[base + i] * b[base + i];
1565    }
1566
1567    sum
1568}
1569
1570/// Find maximum value in f32 array with SIMD acceleration
1571#[inline]
1572pub fn max_f32(values: &[f32], count: usize) -> f32 {
1573    if count == 0 {
1574        return f32::NEG_INFINITY;
1575    }
1576
1577    #[cfg(target_arch = "aarch64")]
1578    {
1579        if neon::is_available() {
1580            return unsafe { max_f32_neon(values, count) };
1581        }
1582    }
1583
1584    #[cfg(target_arch = "x86_64")]
1585    {
1586        if sse::is_available() {
1587            return unsafe { max_f32_sse(values, count) };
1588        }
1589    }
1590
1591    // Scalar fallback
1592    values[..count]
1593        .iter()
1594        .cloned()
1595        .fold(f32::NEG_INFINITY, f32::max)
1596}
1597
1598#[cfg(target_arch = "aarch64")]
1599#[target_feature(enable = "neon")]
1600#[allow(unsafe_op_in_unsafe_fn)]
1601unsafe fn max_f32_neon(values: &[f32], count: usize) -> f32 {
1602    use std::arch::aarch64::*;
1603
1604    let chunks = count / 4;
1605    let remainder = count % 4;
1606
1607    let mut max_v = vdupq_n_f32(f32::NEG_INFINITY);
1608
1609    for chunk in 0..chunks {
1610        let base = chunk * 4;
1611        let v = vld1q_f32(values.as_ptr().add(base));
1612        max_v = vmaxq_f32(max_v, v);
1613    }
1614
1615    // Horizontal max
1616    let mut max_val = vmaxvq_f32(max_v);
1617
1618    // Handle remainder
1619    let base = chunks * 4;
1620    for i in 0..remainder {
1621        max_val = max_val.max(values[base + i]);
1622    }
1623
1624    max_val
1625}
1626
1627#[cfg(target_arch = "x86_64")]
1628#[target_feature(enable = "sse")]
1629#[allow(unsafe_op_in_unsafe_fn)]
1630unsafe fn max_f32_sse(values: &[f32], count: usize) -> f32 {
1631    use std::arch::x86_64::*;
1632
1633    let chunks = count / 4;
1634    let remainder = count % 4;
1635
1636    let mut max_v = _mm_set1_ps(f32::NEG_INFINITY);
1637
1638    for chunk in 0..chunks {
1639        let base = chunk * 4;
1640        let v = _mm_loadu_ps(values.as_ptr().add(base));
1641        max_v = _mm_max_ps(max_v, v);
1642    }
1643
1644    // Horizontal max: [a, b, c, d] -> max(a, b, c, d)
1645    let shuf = _mm_shuffle_ps(max_v, max_v, 0b10_11_00_01); // [b, a, d, c]
1646    let max1 = _mm_max_ps(max_v, shuf); // [max(a,b), max(a,b), max(c,d), max(c,d)]
1647    let shuf2 = _mm_movehl_ps(max1, max1); // [max(c,d), max(c,d), ?, ?]
1648    let final_max = _mm_max_ss(max1, shuf2); // [max(a,b,c,d), ?, ?, ?]
1649
1650    let mut max_val = _mm_cvtss_f32(final_max);
1651
1652    // Handle remainder
1653    let base = chunks * 4;
1654    for i in 0..remainder {
1655        max_val = max_val.max(values[base + i]);
1656    }
1657
1658    max_val
1659}
1660
1661// ============================================================================
1662// Batched Cosine Similarity for Dense Vector Search
1663// ============================================================================
1664
1665/// Fused dot-product + self-norm in a single pass (SIMD accelerated).
1666///
1667/// Returns (dot(a, b), dot(b, b)) — i.e. the dot product of a·b and ||b||².
1668/// Loads `b` only once (halves memory bandwidth vs two separate dot products).
1669#[inline]
1670fn fused_dot_norm(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1671    #[cfg(target_arch = "aarch64")]
1672    {
1673        if neon::is_available() {
1674            return unsafe { fused_dot_norm_neon(a, b, count) };
1675        }
1676    }
1677
1678    #[cfg(target_arch = "x86_64")]
1679    {
1680        if is_x86_feature_detected!("avx2") && is_x86_feature_detected!("fma") {
1681            return unsafe { fused_dot_norm_avx2(a, b, count) };
1682        }
1683        if sse::is_available() {
1684            return unsafe { fused_dot_norm_sse(a, b, count) };
1685        }
1686    }
1687
1688    // Scalar fallback
1689    let mut dot = 0.0f32;
1690    let mut norm_b = 0.0f32;
1691    for i in 0..count {
1692        dot += a[i] * b[i];
1693        norm_b += b[i] * b[i];
1694    }
1695    (dot, norm_b)
1696}
1697
1698#[cfg(target_arch = "aarch64")]
1699#[target_feature(enable = "neon")]
1700#[allow(unsafe_op_in_unsafe_fn)]
1701unsafe fn fused_dot_norm_neon(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1702    use std::arch::aarch64::*;
1703
1704    let chunks = count / 4;
1705    let remainder = count % 4;
1706
1707    let mut acc_dot = vdupq_n_f32(0.0);
1708    let mut acc_norm = vdupq_n_f32(0.0);
1709
1710    for chunk in 0..chunks {
1711        let base = chunk * 4;
1712        let va = vld1q_f32(a.as_ptr().add(base));
1713        let vb = vld1q_f32(b.as_ptr().add(base));
1714        acc_dot = vfmaq_f32(acc_dot, va, vb);
1715        acc_norm = vfmaq_f32(acc_norm, vb, vb);
1716    }
1717
1718    let mut dot = vaddvq_f32(acc_dot);
1719    let mut norm = vaddvq_f32(acc_norm);
1720
1721    let base = chunks * 4;
1722    for i in 0..remainder {
1723        dot += a[base + i] * b[base + i];
1724        norm += b[base + i] * b[base + i];
1725    }
1726
1727    (dot, norm)
1728}
1729
1730#[cfg(target_arch = "x86_64")]
1731#[target_feature(enable = "avx2", enable = "fma")]
1732#[allow(unsafe_op_in_unsafe_fn)]
1733unsafe fn fused_dot_norm_avx2(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1734    use std::arch::x86_64::*;
1735
1736    let chunks = count / 8;
1737    let remainder = count % 8;
1738
1739    let mut acc_dot = _mm256_setzero_ps();
1740    let mut acc_norm = _mm256_setzero_ps();
1741
1742    for chunk in 0..chunks {
1743        let base = chunk * 8;
1744        let va = _mm256_loadu_ps(a.as_ptr().add(base));
1745        let vb = _mm256_loadu_ps(b.as_ptr().add(base));
1746        acc_dot = _mm256_fmadd_ps(va, vb, acc_dot);
1747        acc_norm = _mm256_fmadd_ps(vb, vb, acc_norm);
1748    }
1749
1750    // Horizontal sums: 256→128→scalar
1751    let hi_d = _mm256_extractf128_ps(acc_dot, 1);
1752    let lo_d = _mm256_castps256_ps128(acc_dot);
1753    let sum_d = _mm_add_ps(lo_d, hi_d);
1754    let shuf_d = _mm_shuffle_ps(sum_d, sum_d, 0b10_11_00_01);
1755    let sums_d = _mm_add_ps(sum_d, shuf_d);
1756    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
1757    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
1758
1759    let hi_n = _mm256_extractf128_ps(acc_norm, 1);
1760    let lo_n = _mm256_castps256_ps128(acc_norm);
1761    let sum_n = _mm_add_ps(lo_n, hi_n);
1762    let shuf_n = _mm_shuffle_ps(sum_n, sum_n, 0b10_11_00_01);
1763    let sums_n = _mm_add_ps(sum_n, shuf_n);
1764    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
1765    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
1766
1767    let base = chunks * 8;
1768    for i in 0..remainder {
1769        dot += a[base + i] * b[base + i];
1770        norm += b[base + i] * b[base + i];
1771    }
1772
1773    (dot, norm)
1774}
1775
1776#[cfg(target_arch = "x86_64")]
1777#[target_feature(enable = "sse")]
1778#[allow(unsafe_op_in_unsafe_fn)]
1779unsafe fn fused_dot_norm_sse(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1780    use std::arch::x86_64::*;
1781
1782    let chunks = count / 4;
1783    let remainder = count % 4;
1784
1785    let mut acc_dot = _mm_setzero_ps();
1786    let mut acc_norm = _mm_setzero_ps();
1787
1788    for chunk in 0..chunks {
1789        let base = chunk * 4;
1790        let va = _mm_loadu_ps(a.as_ptr().add(base));
1791        let vb = _mm_loadu_ps(b.as_ptr().add(base));
1792        acc_dot = _mm_add_ps(acc_dot, _mm_mul_ps(va, vb));
1793        acc_norm = _mm_add_ps(acc_norm, _mm_mul_ps(vb, vb));
1794    }
1795
1796    // Horizontal sums
1797    let shuf_d = _mm_shuffle_ps(acc_dot, acc_dot, 0b10_11_00_01);
1798    let sums_d = _mm_add_ps(acc_dot, shuf_d);
1799    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
1800    let final_d = _mm_add_ss(sums_d, shuf2_d);
1801    let mut dot = _mm_cvtss_f32(final_d);
1802
1803    let shuf_n = _mm_shuffle_ps(acc_norm, acc_norm, 0b10_11_00_01);
1804    let sums_n = _mm_add_ps(acc_norm, shuf_n);
1805    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
1806    let final_n = _mm_add_ss(sums_n, shuf2_n);
1807    let mut norm = _mm_cvtss_f32(final_n);
1808
1809    let base = chunks * 4;
1810    for i in 0..remainder {
1811        dot += a[base + i] * b[base + i];
1812        norm += b[base + i] * b[base + i];
1813    }
1814
1815    (dot, norm)
1816}
1817
1818/// Fast approximate reciprocal square root: 1/sqrt(x).
1819///
1820/// Uses the IEEE 754 bit trick (Quake III) + one Newton-Raphson iteration
1821/// for ~23-bit precision — sufficient for cosine similarity scoring.
1822/// ~3-5x faster than `1.0 / x.sqrt()` on most architectures.
1823#[inline]
1824fn fast_inv_sqrt(x: f32) -> f32 {
1825    let half = 0.5 * x;
1826    let i = 0x5F37_5A86_u32.wrapping_sub(x.to_bits() >> 1);
1827    let y = f32::from_bits(i);
1828    let y = y * (1.5 - half * y * y); // first Newton-Raphson step
1829    y * (1.5 - half * y * y) // second step: ~23-bit precision
1830}
1831
1832/// Batch cosine similarity: query vs N contiguous vectors.
1833///
1834/// `vectors` is a contiguous buffer of `n * dim` floats (row-major).
1835/// `scores` must have length >= n.
1836///
1837/// Optimizations over calling `cosine_similarity` N times:
1838/// 1. Query norm computed once (not N times)
1839/// 2. Fused dot+norm kernel — each vector loaded once (halves bandwidth)
1840/// 3. No per-call overhead (branch prediction, function calls)
1841/// 4. Fast reciprocal square root (~3-5x faster than 1/sqrt)
1842#[inline]
1843pub fn batch_cosine_scores(query: &[f32], vectors: &[f32], dim: usize, scores: &mut [f32]) {
1844    let n = scores.len();
1845    debug_assert!(vectors.len() >= n * dim);
1846    debug_assert_eq!(query.len(), dim);
1847
1848    if dim == 0 || n == 0 {
1849        return;
1850    }
1851
1852    // Pre-compute query inverse norm once
1853    let norm_q_sq = dot_product_f32(query, query, dim);
1854    if norm_q_sq < f32::EPSILON {
1855        for s in scores.iter_mut() {
1856            *s = 0.0;
1857        }
1858        return;
1859    }
1860    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
1861
1862    for i in 0..n {
1863        let vec = &vectors[i * dim..(i + 1) * dim];
1864        let (dot, norm_v_sq) = fused_dot_norm(query, vec, dim);
1865        if norm_v_sq < f32::EPSILON {
1866            scores[i] = 0.0;
1867        } else {
1868            scores[i] = dot * inv_norm_q * fast_inv_sqrt(norm_v_sq);
1869        }
1870    }
1871}
1872
1873// ============================================================================
1874// f16 (IEEE 754 half-precision) conversion
1875// ============================================================================
1876
1877/// Convert f32 to f16 (IEEE 754 half-precision), stored as u16
1878#[inline]
1879pub fn f32_to_f16(value: f32) -> u16 {
1880    let bits = value.to_bits();
1881    let sign = (bits >> 16) & 0x8000;
1882    let exp = ((bits >> 23) & 0xFF) as i32;
1883    let mantissa = bits & 0x7F_FFFF;
1884
1885    if exp == 255 {
1886        // Inf/NaN
1887        return (sign | 0x7C00 | ((mantissa >> 13) & 0x3FF)) as u16;
1888    }
1889
1890    let exp16 = exp - 127 + 15;
1891
1892    if exp16 >= 31 {
1893        return (sign | 0x7C00) as u16; // overflow → infinity
1894    }
1895
1896    if exp16 <= 0 {
1897        if exp16 < -10 {
1898            return sign as u16; // too small → zero
1899        }
1900        let m = (mantissa | 0x80_0000) >> (1 - exp16);
1901        return (sign | (m >> 13)) as u16;
1902    }
1903
1904    (sign | ((exp16 as u32) << 10) | (mantissa >> 13)) as u16
1905}
1906
1907/// Convert f16 (stored as u16) to f32
1908#[inline]
1909pub fn f16_to_f32(half: u16) -> f32 {
1910    let sign = ((half & 0x8000) as u32) << 16;
1911    let exp = ((half >> 10) & 0x1F) as u32;
1912    let mantissa = (half & 0x3FF) as u32;
1913
1914    if exp == 0 {
1915        if mantissa == 0 {
1916            return f32::from_bits(sign);
1917        }
1918        // Subnormal: normalize
1919        let mut e = 0u32;
1920        let mut m = mantissa;
1921        while (m & 0x400) == 0 {
1922            m <<= 1;
1923            e += 1;
1924        }
1925        return f32::from_bits(sign | ((127 - 15 + 1 - e) << 23) | ((m & 0x3FF) << 13));
1926    }
1927
1928    if exp == 31 {
1929        return f32::from_bits(sign | 0x7F80_0000 | (mantissa << 13));
1930    }
1931
1932    f32::from_bits(sign | ((exp + 127 - 15) << 23) | (mantissa << 13))
1933}
1934
1935// ============================================================================
1936// uint8 scalar quantization for [-1, 1] range
1937// ============================================================================
1938
1939const U8_SCALE: f32 = 127.5;
1940const U8_INV_SCALE: f32 = 1.0 / 127.5;
1941
1942/// Quantize f32 in [-1, 1] to u8 [0, 255]
1943#[inline]
1944pub fn f32_to_u8_saturating(value: f32) -> u8 {
1945    ((value.clamp(-1.0, 1.0) + 1.0) * U8_SCALE) as u8
1946}
1947
1948/// Dequantize u8 [0, 255] to f32 in [-1, 1]
1949#[inline]
1950pub fn u8_to_f32(byte: u8) -> f32 {
1951    byte as f32 * U8_INV_SCALE - 1.0
1952}
1953
1954// ============================================================================
1955// Batch conversion (used during builder write)
1956// ============================================================================
1957
1958/// Batch convert f32 slice to f16 (stored as u16)
1959pub fn batch_f32_to_f16(src: &[f32], dst: &mut [u16]) {
1960    debug_assert_eq!(src.len(), dst.len());
1961    for (s, d) in src.iter().zip(dst.iter_mut()) {
1962        *d = f32_to_f16(*s);
1963    }
1964}
1965
1966/// Batch convert f32 slice to u8 with [-1,1] → [0,255] mapping
1967pub fn batch_f32_to_u8(src: &[f32], dst: &mut [u8]) {
1968    debug_assert_eq!(src.len(), dst.len());
1969    for (s, d) in src.iter().zip(dst.iter_mut()) {
1970        *d = f32_to_u8_saturating(*s);
1971    }
1972}
1973
1974// ============================================================================
1975// NEON-accelerated fused dot+norm for quantized vectors
1976// ============================================================================
1977
1978#[cfg(target_arch = "aarch64")]
1979#[allow(unsafe_op_in_unsafe_fn)]
1980mod neon_quant {
1981    use std::arch::aarch64::*;
1982
1983    /// Fused dot(query_f16, vec_f16) + norm(vec_f16) for f16 vectors on NEON.
1984    ///
1985    /// Both query and vectors are f16 (stored as u16). Uses hardware `vcvt_f32_f16`
1986    /// for SIMD f16→f32 conversion (replaces scalar bit manipulation), processes
1987    /// 8 elements per iteration with f32 accumulation for precision.
1988    #[target_feature(enable = "neon")]
1989    pub unsafe fn fused_dot_norm_f16(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
1990        let chunks8 = dim / 8;
1991        let remainder = dim % 8;
1992
1993        let mut acc_dot = vdupq_n_f32(0.0);
1994        let mut acc_norm = vdupq_n_f32(0.0);
1995
1996        for c in 0..chunks8 {
1997            let base = c * 8;
1998
1999            // Load 8 f16 vector values, hardware-convert to 2×4 f32
2000            let v_raw = vld1q_u16(vec_f16.as_ptr().add(base));
2001            let v_lo = vcvt_f32_f16(vreinterpret_f16_u16(vget_low_u16(v_raw)));
2002            let v_hi = vcvt_f32_f16(vreinterpret_f16_u16(vget_high_u16(v_raw)));
2003
2004            // Load 8 f16 query values, hardware-convert to 2×4 f32
2005            let q_raw = vld1q_u16(query_f16.as_ptr().add(base));
2006            let q_lo = vcvt_f32_f16(vreinterpret_f16_u16(vget_low_u16(q_raw)));
2007            let q_hi = vcvt_f32_f16(vreinterpret_f16_u16(vget_high_u16(q_raw)));
2008
2009            acc_dot = vfmaq_f32(acc_dot, q_lo, v_lo);
2010            acc_dot = vfmaq_f32(acc_dot, q_hi, v_hi);
2011            acc_norm = vfmaq_f32(acc_norm, v_lo, v_lo);
2012            acc_norm = vfmaq_f32(acc_norm, v_hi, v_hi);
2013        }
2014
2015        let mut dot = vaddvq_f32(acc_dot);
2016        let mut norm = vaddvq_f32(acc_norm);
2017
2018        let base = chunks8 * 8;
2019        for i in 0..remainder {
2020            let v = super::f16_to_f32(*vec_f16.get_unchecked(base + i));
2021            let q = super::f16_to_f32(*query_f16.get_unchecked(base + i));
2022            dot += q * v;
2023            norm += v * v;
2024        }
2025
2026        (dot, norm)
2027    }
2028
2029    /// Fused dot(query, vec) + norm(vec) for u8 vectors on NEON.
2030    /// Processes 16 u8 values per iteration using NEON widening chain.
2031    #[target_feature(enable = "neon")]
2032    pub unsafe fn fused_dot_norm_u8(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2033        let scale = vdupq_n_f32(super::U8_INV_SCALE);
2034        let offset = vdupq_n_f32(-1.0);
2035
2036        let chunks16 = dim / 16;
2037        let remainder = dim % 16;
2038
2039        let mut acc_dot = vdupq_n_f32(0.0);
2040        let mut acc_norm = vdupq_n_f32(0.0);
2041
2042        for c in 0..chunks16 {
2043            let base = c * 16;
2044
2045            // Load 16 u8 values
2046            let bytes = vld1q_u8(vec_u8.as_ptr().add(base));
2047
2048            // Widen: 16×u8 → 2×8×u16 → 4×4×u32 → 4×4×f32
2049            let lo8 = vget_low_u8(bytes);
2050            let hi8 = vget_high_u8(bytes);
2051            let lo16 = vmovl_u8(lo8);
2052            let hi16 = vmovl_u8(hi8);
2053
2054            let f0 = vaddq_f32(
2055                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(lo16))), scale),
2056                offset,
2057            );
2058            let f1 = vaddq_f32(
2059                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(lo16))), scale),
2060                offset,
2061            );
2062            let f2 = vaddq_f32(
2063                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(hi16))), scale),
2064                offset,
2065            );
2066            let f3 = vaddq_f32(
2067                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(hi16))), scale),
2068                offset,
2069            );
2070
2071            let q0 = vld1q_f32(query.as_ptr().add(base));
2072            let q1 = vld1q_f32(query.as_ptr().add(base + 4));
2073            let q2 = vld1q_f32(query.as_ptr().add(base + 8));
2074            let q3 = vld1q_f32(query.as_ptr().add(base + 12));
2075
2076            acc_dot = vfmaq_f32(acc_dot, q0, f0);
2077            acc_dot = vfmaq_f32(acc_dot, q1, f1);
2078            acc_dot = vfmaq_f32(acc_dot, q2, f2);
2079            acc_dot = vfmaq_f32(acc_dot, q3, f3);
2080
2081            acc_norm = vfmaq_f32(acc_norm, f0, f0);
2082            acc_norm = vfmaq_f32(acc_norm, f1, f1);
2083            acc_norm = vfmaq_f32(acc_norm, f2, f2);
2084            acc_norm = vfmaq_f32(acc_norm, f3, f3);
2085        }
2086
2087        let mut dot = vaddvq_f32(acc_dot);
2088        let mut norm = vaddvq_f32(acc_norm);
2089
2090        let base = chunks16 * 16;
2091        for i in 0..remainder {
2092            let v = super::u8_to_f32(*vec_u8.get_unchecked(base + i));
2093            dot += *query.get_unchecked(base + i) * v;
2094            norm += v * v;
2095        }
2096
2097        (dot, norm)
2098    }
2099
2100    /// Dot product only for f16 vectors on NEON (no norm — for unit_norm vectors).
2101    #[target_feature(enable = "neon")]
2102    pub unsafe fn dot_product_f16(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> f32 {
2103        let chunks8 = dim / 8;
2104        let remainder = dim % 8;
2105
2106        let mut acc = vdupq_n_f32(0.0);
2107
2108        for c in 0..chunks8 {
2109            let base = c * 8;
2110            let v_raw = vld1q_u16(vec_f16.as_ptr().add(base));
2111            let v_lo = vcvt_f32_f16(vreinterpret_f16_u16(vget_low_u16(v_raw)));
2112            let v_hi = vcvt_f32_f16(vreinterpret_f16_u16(vget_high_u16(v_raw)));
2113            let q_raw = vld1q_u16(query_f16.as_ptr().add(base));
2114            let q_lo = vcvt_f32_f16(vreinterpret_f16_u16(vget_low_u16(q_raw)));
2115            let q_hi = vcvt_f32_f16(vreinterpret_f16_u16(vget_high_u16(q_raw)));
2116            acc = vfmaq_f32(acc, q_lo, v_lo);
2117            acc = vfmaq_f32(acc, q_hi, v_hi);
2118        }
2119
2120        let mut dot = vaddvq_f32(acc);
2121        let base = chunks8 * 8;
2122        for i in 0..remainder {
2123            let v = super::f16_to_f32(*vec_f16.get_unchecked(base + i));
2124            let q = super::f16_to_f32(*query_f16.get_unchecked(base + i));
2125            dot += q * v;
2126        }
2127        dot
2128    }
2129
2130    /// Dot product only for u8 vectors on NEON (no norm — for unit_norm vectors).
2131    #[target_feature(enable = "neon")]
2132    pub unsafe fn dot_product_u8(query: &[f32], vec_u8: &[u8], dim: usize) -> f32 {
2133        let scale = vdupq_n_f32(super::U8_INV_SCALE);
2134        let offset = vdupq_n_f32(-1.0);
2135        let chunks16 = dim / 16;
2136        let remainder = dim % 16;
2137
2138        let mut acc = vdupq_n_f32(0.0);
2139
2140        for c in 0..chunks16 {
2141            let base = c * 16;
2142            let bytes = vld1q_u8(vec_u8.as_ptr().add(base));
2143            let lo8 = vget_low_u8(bytes);
2144            let hi8 = vget_high_u8(bytes);
2145            let lo16 = vmovl_u8(lo8);
2146            let hi16 = vmovl_u8(hi8);
2147            let f0 = vaddq_f32(
2148                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(lo16))), scale),
2149                offset,
2150            );
2151            let f1 = vaddq_f32(
2152                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(lo16))), scale),
2153                offset,
2154            );
2155            let f2 = vaddq_f32(
2156                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(hi16))), scale),
2157                offset,
2158            );
2159            let f3 = vaddq_f32(
2160                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(hi16))), scale),
2161                offset,
2162            );
2163            let q0 = vld1q_f32(query.as_ptr().add(base));
2164            let q1 = vld1q_f32(query.as_ptr().add(base + 4));
2165            let q2 = vld1q_f32(query.as_ptr().add(base + 8));
2166            let q3 = vld1q_f32(query.as_ptr().add(base + 12));
2167            acc = vfmaq_f32(acc, q0, f0);
2168            acc = vfmaq_f32(acc, q1, f1);
2169            acc = vfmaq_f32(acc, q2, f2);
2170            acc = vfmaq_f32(acc, q3, f3);
2171        }
2172
2173        let mut dot = vaddvq_f32(acc);
2174        let base = chunks16 * 16;
2175        for i in 0..remainder {
2176            let v = super::u8_to_f32(*vec_u8.get_unchecked(base + i));
2177            dot += *query.get_unchecked(base + i) * v;
2178        }
2179        dot
2180    }
2181}
2182
2183// ============================================================================
2184// Scalar fallback for fused dot+norm on quantized vectors
2185// ============================================================================
2186
2187#[allow(dead_code)]
2188fn fused_dot_norm_f16_scalar(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2189    let mut dot = 0.0f32;
2190    let mut norm = 0.0f32;
2191    for i in 0..dim {
2192        let v = f16_to_f32(vec_f16[i]);
2193        let q = f16_to_f32(query_f16[i]);
2194        dot += q * v;
2195        norm += v * v;
2196    }
2197    (dot, norm)
2198}
2199
2200#[allow(dead_code)]
2201fn fused_dot_norm_u8_scalar(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2202    let mut dot = 0.0f32;
2203    let mut norm = 0.0f32;
2204    for i in 0..dim {
2205        let v = u8_to_f32(vec_u8[i]);
2206        dot += query[i] * v;
2207        norm += v * v;
2208    }
2209    (dot, norm)
2210}
2211
2212#[allow(dead_code)]
2213fn dot_product_f16_scalar(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> f32 {
2214    let mut dot = 0.0f32;
2215    for i in 0..dim {
2216        dot += f16_to_f32(query_f16[i]) * f16_to_f32(vec_f16[i]);
2217    }
2218    dot
2219}
2220
2221#[allow(dead_code)]
2222fn dot_product_u8_scalar(query: &[f32], vec_u8: &[u8], dim: usize) -> f32 {
2223    let mut dot = 0.0f32;
2224    for i in 0..dim {
2225        dot += query[i] * u8_to_f32(vec_u8[i]);
2226    }
2227    dot
2228}
2229
2230// ============================================================================
2231// x86_64 SSE4.1 quantized fused dot+norm
2232// ============================================================================
2233
2234#[cfg(target_arch = "x86_64")]
2235#[target_feature(enable = "sse2", enable = "sse4.1")]
2236#[allow(unsafe_op_in_unsafe_fn)]
2237unsafe fn fused_dot_norm_f16_sse(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2238    use std::arch::x86_64::*;
2239
2240    let chunks = dim / 4;
2241    let remainder = dim % 4;
2242
2243    let mut acc_dot = _mm_setzero_ps();
2244    let mut acc_norm = _mm_setzero_ps();
2245
2246    for chunk in 0..chunks {
2247        let base = chunk * 4;
2248        // Load 4 f16 values and convert to f32 using scalar conversion
2249        let v0 = f16_to_f32(*vec_f16.get_unchecked(base));
2250        let v1 = f16_to_f32(*vec_f16.get_unchecked(base + 1));
2251        let v2 = f16_to_f32(*vec_f16.get_unchecked(base + 2));
2252        let v3 = f16_to_f32(*vec_f16.get_unchecked(base + 3));
2253        let vb = _mm_set_ps(v3, v2, v1, v0);
2254
2255        let q0 = f16_to_f32(*query_f16.get_unchecked(base));
2256        let q1 = f16_to_f32(*query_f16.get_unchecked(base + 1));
2257        let q2 = f16_to_f32(*query_f16.get_unchecked(base + 2));
2258        let q3 = f16_to_f32(*query_f16.get_unchecked(base + 3));
2259        let va = _mm_set_ps(q3, q2, q1, q0);
2260
2261        acc_dot = _mm_add_ps(acc_dot, _mm_mul_ps(va, vb));
2262        acc_norm = _mm_add_ps(acc_norm, _mm_mul_ps(vb, vb));
2263    }
2264
2265    // Horizontal sums
2266    let shuf_d = _mm_shuffle_ps(acc_dot, acc_dot, 0b10_11_00_01);
2267    let sums_d = _mm_add_ps(acc_dot, shuf_d);
2268    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
2269    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
2270
2271    let shuf_n = _mm_shuffle_ps(acc_norm, acc_norm, 0b10_11_00_01);
2272    let sums_n = _mm_add_ps(acc_norm, shuf_n);
2273    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
2274    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
2275
2276    let base = chunks * 4;
2277    for i in 0..remainder {
2278        let v = f16_to_f32(*vec_f16.get_unchecked(base + i));
2279        let q = f16_to_f32(*query_f16.get_unchecked(base + i));
2280        dot += q * v;
2281        norm += v * v;
2282    }
2283
2284    (dot, norm)
2285}
2286
2287#[cfg(target_arch = "x86_64")]
2288#[target_feature(enable = "sse2", enable = "sse4.1")]
2289#[allow(unsafe_op_in_unsafe_fn)]
2290unsafe fn fused_dot_norm_u8_sse(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2291    use std::arch::x86_64::*;
2292
2293    let scale = _mm_set1_ps(U8_INV_SCALE);
2294    let offset = _mm_set1_ps(-1.0);
2295
2296    let chunks = dim / 4;
2297    let remainder = dim % 4;
2298
2299    let mut acc_dot = _mm_setzero_ps();
2300    let mut acc_norm = _mm_setzero_ps();
2301
2302    for chunk in 0..chunks {
2303        let base = chunk * 4;
2304
2305        // Load 4 bytes, zero-extend to i32, convert to f32, dequantize
2306        let bytes = _mm_cvtsi32_si128(std::ptr::read_unaligned(
2307            vec_u8.as_ptr().add(base) as *const i32
2308        ));
2309        let ints = _mm_cvtepu8_epi32(bytes);
2310        let floats = _mm_cvtepi32_ps(ints);
2311        let vb = _mm_add_ps(_mm_mul_ps(floats, scale), offset);
2312
2313        let va = _mm_loadu_ps(query.as_ptr().add(base));
2314
2315        acc_dot = _mm_add_ps(acc_dot, _mm_mul_ps(va, vb));
2316        acc_norm = _mm_add_ps(acc_norm, _mm_mul_ps(vb, vb));
2317    }
2318
2319    // Horizontal sums
2320    let shuf_d = _mm_shuffle_ps(acc_dot, acc_dot, 0b10_11_00_01);
2321    let sums_d = _mm_add_ps(acc_dot, shuf_d);
2322    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
2323    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
2324
2325    let shuf_n = _mm_shuffle_ps(acc_norm, acc_norm, 0b10_11_00_01);
2326    let sums_n = _mm_add_ps(acc_norm, shuf_n);
2327    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
2328    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
2329
2330    let base = chunks * 4;
2331    for i in 0..remainder {
2332        let v = u8_to_f32(*vec_u8.get_unchecked(base + i));
2333        dot += *query.get_unchecked(base + i) * v;
2334        norm += v * v;
2335    }
2336
2337    (dot, norm)
2338}
2339
2340// ============================================================================
2341// x86_64 F16C + AVX + FMA accelerated f16 scoring
2342// ============================================================================
2343
2344#[cfg(target_arch = "x86_64")]
2345#[target_feature(enable = "avx", enable = "f16c", enable = "fma")]
2346#[allow(unsafe_op_in_unsafe_fn)]
2347unsafe fn fused_dot_norm_f16_f16c(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2348    use std::arch::x86_64::*;
2349
2350    let chunks = dim / 8;
2351    let remainder = dim % 8;
2352
2353    let mut acc_dot = _mm256_setzero_ps();
2354    let mut acc_norm = _mm256_setzero_ps();
2355
2356    for chunk in 0..chunks {
2357        let base = chunk * 8;
2358        // Hardware f16→f32: 8 values at once via F16C
2359        let v_raw = _mm_loadu_si128(vec_f16.as_ptr().add(base) as *const __m128i);
2360        let vb = _mm256_cvtph_ps(v_raw);
2361        let q_raw = _mm_loadu_si128(query_f16.as_ptr().add(base) as *const __m128i);
2362        let qa = _mm256_cvtph_ps(q_raw);
2363        acc_dot = _mm256_fmadd_ps(qa, vb, acc_dot);
2364        acc_norm = _mm256_fmadd_ps(vb, vb, acc_norm);
2365    }
2366
2367    // Horizontal sum 256→128→scalar
2368    let hi_d = _mm256_extractf128_ps(acc_dot, 1);
2369    let lo_d = _mm256_castps256_ps128(acc_dot);
2370    let sum_d = _mm_add_ps(lo_d, hi_d);
2371    let shuf_d = _mm_shuffle_ps(sum_d, sum_d, 0b10_11_00_01);
2372    let sums_d = _mm_add_ps(sum_d, shuf_d);
2373    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
2374    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
2375
2376    let hi_n = _mm256_extractf128_ps(acc_norm, 1);
2377    let lo_n = _mm256_castps256_ps128(acc_norm);
2378    let sum_n = _mm_add_ps(lo_n, hi_n);
2379    let shuf_n = _mm_shuffle_ps(sum_n, sum_n, 0b10_11_00_01);
2380    let sums_n = _mm_add_ps(sum_n, shuf_n);
2381    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
2382    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
2383
2384    let base = chunks * 8;
2385    for i in 0..remainder {
2386        let v = f16_to_f32(*vec_f16.get_unchecked(base + i));
2387        let q = f16_to_f32(*query_f16.get_unchecked(base + i));
2388        dot += q * v;
2389        norm += v * v;
2390    }
2391
2392    (dot, norm)
2393}
2394
2395#[cfg(target_arch = "x86_64")]
2396#[target_feature(enable = "avx", enable = "f16c", enable = "fma")]
2397#[allow(unsafe_op_in_unsafe_fn)]
2398unsafe fn dot_product_f16_f16c(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> f32 {
2399    use std::arch::x86_64::*;
2400
2401    let chunks = dim / 8;
2402    let remainder = dim % 8;
2403    let mut acc = _mm256_setzero_ps();
2404
2405    for chunk in 0..chunks {
2406        let base = chunk * 8;
2407        let v_raw = _mm_loadu_si128(vec_f16.as_ptr().add(base) as *const __m128i);
2408        let vb = _mm256_cvtph_ps(v_raw);
2409        let q_raw = _mm_loadu_si128(query_f16.as_ptr().add(base) as *const __m128i);
2410        let qa = _mm256_cvtph_ps(q_raw);
2411        acc = _mm256_fmadd_ps(qa, vb, acc);
2412    }
2413
2414    let hi = _mm256_extractf128_ps(acc, 1);
2415    let lo = _mm256_castps256_ps128(acc);
2416    let sum = _mm_add_ps(lo, hi);
2417    let shuf = _mm_shuffle_ps(sum, sum, 0b10_11_00_01);
2418    let sums = _mm_add_ps(sum, shuf);
2419    let shuf2 = _mm_movehl_ps(sums, sums);
2420    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums, shuf2));
2421
2422    let base = chunks * 8;
2423    for i in 0..remainder {
2424        let v = f16_to_f32(*vec_f16.get_unchecked(base + i));
2425        let q = f16_to_f32(*query_f16.get_unchecked(base + i));
2426        dot += q * v;
2427    }
2428    dot
2429}
2430
2431#[cfg(target_arch = "x86_64")]
2432#[target_feature(enable = "sse2", enable = "sse4.1")]
2433#[allow(unsafe_op_in_unsafe_fn)]
2434unsafe fn dot_product_u8_sse(query: &[f32], vec_u8: &[u8], dim: usize) -> f32 {
2435    use std::arch::x86_64::*;
2436
2437    let scale = _mm_set1_ps(U8_INV_SCALE);
2438    let offset = _mm_set1_ps(-1.0);
2439    let chunks = dim / 4;
2440    let remainder = dim % 4;
2441    let mut acc = _mm_setzero_ps();
2442
2443    for chunk in 0..chunks {
2444        let base = chunk * 4;
2445        let bytes = _mm_cvtsi32_si128(std::ptr::read_unaligned(
2446            vec_u8.as_ptr().add(base) as *const i32
2447        ));
2448        let ints = _mm_cvtepu8_epi32(bytes);
2449        let floats = _mm_cvtepi32_ps(ints);
2450        let vb = _mm_add_ps(_mm_mul_ps(floats, scale), offset);
2451        let va = _mm_loadu_ps(query.as_ptr().add(base));
2452        acc = _mm_add_ps(acc, _mm_mul_ps(va, vb));
2453    }
2454
2455    let shuf = _mm_shuffle_ps(acc, acc, 0b10_11_00_01);
2456    let sums = _mm_add_ps(acc, shuf);
2457    let shuf2 = _mm_movehl_ps(sums, sums);
2458    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums, shuf2));
2459
2460    let base = chunks * 4;
2461    for i in 0..remainder {
2462        dot += *query.get_unchecked(base + i) * u8_to_f32(*vec_u8.get_unchecked(base + i));
2463    }
2464    dot
2465}
2466
2467// ============================================================================
2468// Platform dispatch
2469// ============================================================================
2470
2471#[inline]
2472fn fused_dot_norm_f16(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2473    #[cfg(target_arch = "aarch64")]
2474    {
2475        return unsafe { neon_quant::fused_dot_norm_f16(query_f16, vec_f16, dim) };
2476    }
2477
2478    #[cfg(target_arch = "x86_64")]
2479    {
2480        if is_x86_feature_detected!("f16c") && is_x86_feature_detected!("fma") {
2481            return unsafe { fused_dot_norm_f16_f16c(query_f16, vec_f16, dim) };
2482        }
2483        if sse::is_available() {
2484            return unsafe { fused_dot_norm_f16_sse(query_f16, vec_f16, dim) };
2485        }
2486    }
2487
2488    #[allow(unreachable_code)]
2489    fused_dot_norm_f16_scalar(query_f16, vec_f16, dim)
2490}
2491
2492#[inline]
2493fn fused_dot_norm_u8(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2494    #[cfg(target_arch = "aarch64")]
2495    {
2496        return unsafe { neon_quant::fused_dot_norm_u8(query, vec_u8, dim) };
2497    }
2498
2499    #[cfg(target_arch = "x86_64")]
2500    {
2501        if sse::is_available() {
2502            return unsafe { fused_dot_norm_u8_sse(query, vec_u8, dim) };
2503        }
2504    }
2505
2506    #[allow(unreachable_code)]
2507    fused_dot_norm_u8_scalar(query, vec_u8, dim)
2508}
2509
2510// ── Dot-product-only dispatch (for unit_norm vectors) ─────────────────────
2511
2512#[inline]
2513fn dot_product_f16_quant(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> f32 {
2514    #[cfg(target_arch = "aarch64")]
2515    {
2516        return unsafe { neon_quant::dot_product_f16(query_f16, vec_f16, dim) };
2517    }
2518
2519    #[cfg(target_arch = "x86_64")]
2520    {
2521        if is_x86_feature_detected!("f16c") && is_x86_feature_detected!("fma") {
2522            return unsafe { dot_product_f16_f16c(query_f16, vec_f16, dim) };
2523        }
2524    }
2525
2526    #[allow(unreachable_code)]
2527    dot_product_f16_scalar(query_f16, vec_f16, dim)
2528}
2529
2530#[inline]
2531fn dot_product_u8_quant(query: &[f32], vec_u8: &[u8], dim: usize) -> f32 {
2532    #[cfg(target_arch = "aarch64")]
2533    {
2534        return unsafe { neon_quant::dot_product_u8(query, vec_u8, dim) };
2535    }
2536
2537    #[cfg(target_arch = "x86_64")]
2538    {
2539        if sse::is_available() {
2540            return unsafe { dot_product_u8_sse(query, vec_u8, dim) };
2541        }
2542    }
2543
2544    #[allow(unreachable_code)]
2545    dot_product_u8_scalar(query, vec_u8, dim)
2546}
2547
2548// ============================================================================
2549// Public batch cosine scoring for quantized vectors
2550// ============================================================================
2551
2552/// Batch cosine similarity: f32 query vs N contiguous f16 vectors.
2553///
2554/// `vectors_raw` is raw bytes: N vectors × dim × 2 bytes (f16 stored as u16).
2555/// Query is quantized to f16 once, then both query and vectors are scored in
2556/// f16 space using hardware SIMD conversion (8 elements/iteration on NEON).
2557/// Memory bandwidth is halved for both query and vector loads.
2558#[inline]
2559pub fn batch_cosine_scores_f16(query: &[f32], vectors_raw: &[u8], dim: usize, scores: &mut [f32]) {
2560    let n = scores.len();
2561    if dim == 0 || n == 0 {
2562        return;
2563    }
2564
2565    // Compute query inverse norm in f32 (full precision, before quantization)
2566    let norm_q_sq = dot_product_f32(query, query, dim);
2567    if norm_q_sq < f32::EPSILON {
2568        for s in scores.iter_mut() {
2569            *s = 0.0;
2570        }
2571        return;
2572    }
2573    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2574
2575    // Quantize query to f16 once (O(dim)), reused for all N vector scorings
2576    let query_f16: Vec<u16> = query.iter().map(|&v| f32_to_f16(v)).collect();
2577
2578    let vec_bytes = dim * 2;
2579    debug_assert!(vectors_raw.len() >= n * vec_bytes);
2580
2581    // Vectors file uses data-first layout with 8-byte padding between fields,
2582    // so mmap slices are always 2-byte aligned for u16 access.
2583    debug_assert!(
2584        (vectors_raw.as_ptr() as usize).is_multiple_of(std::mem::align_of::<u16>()),
2585        "f16 vector data not 2-byte aligned"
2586    );
2587
2588    for i in 0..n {
2589        let raw = &vectors_raw[i * vec_bytes..(i + 1) * vec_bytes];
2590        let f16_slice = unsafe { std::slice::from_raw_parts(raw.as_ptr() as *const u16, dim) };
2591
2592        let (dot, norm_v_sq) = fused_dot_norm_f16(&query_f16, f16_slice, dim);
2593        scores[i] = if norm_v_sq < f32::EPSILON {
2594            0.0
2595        } else {
2596            dot * inv_norm_q * fast_inv_sqrt(norm_v_sq)
2597        };
2598    }
2599}
2600
2601/// Batch cosine similarity: f32 query vs N contiguous u8 vectors.
2602///
2603/// `vectors_raw` is raw bytes: N vectors × dim bytes (u8, mapping [-1,1]→[0,255]).
2604/// Converts u8→f32 using NEON widening chain (16 values/iteration), scores with FMA.
2605/// Memory bandwidth is quartered compared to f32 scoring.
2606#[inline]
2607pub fn batch_cosine_scores_u8(query: &[f32], vectors_raw: &[u8], dim: usize, scores: &mut [f32]) {
2608    let n = scores.len();
2609    if dim == 0 || n == 0 {
2610        return;
2611    }
2612
2613    let norm_q_sq = dot_product_f32(query, query, dim);
2614    if norm_q_sq < f32::EPSILON {
2615        for s in scores.iter_mut() {
2616            *s = 0.0;
2617        }
2618        return;
2619    }
2620    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2621
2622    debug_assert!(vectors_raw.len() >= n * dim);
2623
2624    for i in 0..n {
2625        let u8_slice = &vectors_raw[i * dim..(i + 1) * dim];
2626
2627        let (dot, norm_v_sq) = fused_dot_norm_u8(query, u8_slice, dim);
2628        scores[i] = if norm_v_sq < f32::EPSILON {
2629            0.0
2630        } else {
2631            dot * inv_norm_q * fast_inv_sqrt(norm_v_sq)
2632        };
2633    }
2634}
2635
2636// ============================================================================
2637// Batch dot-product scoring for unit-norm vectors
2638// ============================================================================
2639
2640/// Batch dot-product scoring: f32 query vs N contiguous f32 unit-norm vectors.
2641///
2642/// For pre-normalized vectors (||v|| = 1), cosine = dot(q, v) / ||q||.
2643/// Skips per-vector norm computation — ~40% less work than `batch_cosine_scores`.
2644#[inline]
2645pub fn batch_dot_scores(query: &[f32], vectors: &[f32], dim: usize, scores: &mut [f32]) {
2646    let n = scores.len();
2647    debug_assert!(vectors.len() >= n * dim);
2648    debug_assert_eq!(query.len(), dim);
2649
2650    if dim == 0 || n == 0 {
2651        return;
2652    }
2653
2654    let norm_q_sq = dot_product_f32(query, query, dim);
2655    if norm_q_sq < f32::EPSILON {
2656        for s in scores.iter_mut() {
2657            *s = 0.0;
2658        }
2659        return;
2660    }
2661    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2662
2663    for i in 0..n {
2664        let vec = &vectors[i * dim..(i + 1) * dim];
2665        let dot = dot_product_f32(query, vec, dim);
2666        scores[i] = dot * inv_norm_q;
2667    }
2668}
2669
2670/// Batch dot-product scoring: f32 query vs N contiguous f16 unit-norm vectors.
2671///
2672/// For pre-normalized vectors (||v|| = 1), cosine = dot(q, v) / ||q||.
2673/// Uses F16C/NEON hardware conversion + dot-only kernel.
2674#[inline]
2675pub fn batch_dot_scores_f16(query: &[f32], vectors_raw: &[u8], dim: usize, scores: &mut [f32]) {
2676    let n = scores.len();
2677    if dim == 0 || n == 0 {
2678        return;
2679    }
2680
2681    let norm_q_sq = dot_product_f32(query, query, dim);
2682    if norm_q_sq < f32::EPSILON {
2683        for s in scores.iter_mut() {
2684            *s = 0.0;
2685        }
2686        return;
2687    }
2688    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2689
2690    let query_f16: Vec<u16> = query.iter().map(|&v| f32_to_f16(v)).collect();
2691    let vec_bytes = dim * 2;
2692    debug_assert!(vectors_raw.len() >= n * vec_bytes);
2693    debug_assert!(
2694        (vectors_raw.as_ptr() as usize).is_multiple_of(std::mem::align_of::<u16>()),
2695        "f16 vector data not 2-byte aligned"
2696    );
2697
2698    for i in 0..n {
2699        let raw = &vectors_raw[i * vec_bytes..(i + 1) * vec_bytes];
2700        let f16_slice = unsafe { std::slice::from_raw_parts(raw.as_ptr() as *const u16, dim) };
2701        let dot = dot_product_f16_quant(&query_f16, f16_slice, dim);
2702        scores[i] = dot * inv_norm_q;
2703    }
2704}
2705
2706/// Batch dot-product scoring: f32 query vs N contiguous u8 unit-norm vectors.
2707///
2708/// For pre-normalized vectors (||v|| = 1), cosine = dot(q, v) / ||q||.
2709/// Uses NEON/SSE widening chain for u8→f32 conversion + dot-only kernel.
2710#[inline]
2711pub fn batch_dot_scores_u8(query: &[f32], vectors_raw: &[u8], dim: usize, scores: &mut [f32]) {
2712    let n = scores.len();
2713    if dim == 0 || n == 0 {
2714        return;
2715    }
2716
2717    let norm_q_sq = dot_product_f32(query, query, dim);
2718    if norm_q_sq < f32::EPSILON {
2719        for s in scores.iter_mut() {
2720            *s = 0.0;
2721        }
2722        return;
2723    }
2724    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2725
2726    debug_assert!(vectors_raw.len() >= n * dim);
2727
2728    for i in 0..n {
2729        let u8_slice = &vectors_raw[i * dim..(i + 1) * dim];
2730        let dot = dot_product_u8_quant(query, u8_slice, dim);
2731        scores[i] = dot * inv_norm_q;
2732    }
2733}
2734
2735/// Compute cosine similarity between two f32 vectors with SIMD acceleration
2736///
2737/// Returns dot(a,b) / (||a|| * ||b||), range [-1, 1]
2738/// Returns 0.0 if either vector has zero norm.
2739#[inline]
2740pub fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
2741    debug_assert_eq!(a.len(), b.len());
2742    let count = a.len();
2743
2744    if count == 0 {
2745        return 0.0;
2746    }
2747
2748    let dot = dot_product_f32(a, b, count);
2749    let norm_a = dot_product_f32(a, a, count);
2750    let norm_b = dot_product_f32(b, b, count);
2751
2752    let denom = (norm_a * norm_b).sqrt();
2753    if denom < f32::EPSILON {
2754        return 0.0;
2755    }
2756
2757    dot / denom
2758}
2759
2760/// Compute squared Euclidean distance between two f32 vectors with SIMD acceleration
2761///
2762/// Returns sum((a[i] - b[i])^2) for all i
2763#[inline]
2764pub fn squared_euclidean_distance(a: &[f32], b: &[f32]) -> f32 {
2765    debug_assert_eq!(a.len(), b.len());
2766    let count = a.len();
2767
2768    if count == 0 {
2769        return 0.0;
2770    }
2771
2772    #[cfg(target_arch = "aarch64")]
2773    {
2774        if neon::is_available() {
2775            return unsafe { squared_euclidean_neon(a, b, count) };
2776        }
2777    }
2778
2779    #[cfg(target_arch = "x86_64")]
2780    {
2781        if avx2::is_available() {
2782            return unsafe { squared_euclidean_avx2(a, b, count) };
2783        }
2784        if sse::is_available() {
2785            return unsafe { squared_euclidean_sse(a, b, count) };
2786        }
2787    }
2788
2789    // Scalar fallback
2790    a.iter()
2791        .zip(b.iter())
2792        .map(|(&x, &y)| {
2793            let d = x - y;
2794            d * d
2795        })
2796        .sum()
2797}
2798
2799#[cfg(target_arch = "aarch64")]
2800#[target_feature(enable = "neon")]
2801#[allow(unsafe_op_in_unsafe_fn)]
2802unsafe fn squared_euclidean_neon(a: &[f32], b: &[f32], count: usize) -> f32 {
2803    use std::arch::aarch64::*;
2804
2805    let chunks = count / 4;
2806    let remainder = count % 4;
2807
2808    let mut acc = vdupq_n_f32(0.0);
2809
2810    for chunk in 0..chunks {
2811        let base = chunk * 4;
2812        let va = vld1q_f32(a.as_ptr().add(base));
2813        let vb = vld1q_f32(b.as_ptr().add(base));
2814        let diff = vsubq_f32(va, vb);
2815        acc = vfmaq_f32(acc, diff, diff); // acc += diff * diff (fused multiply-add)
2816    }
2817
2818    // Horizontal sum
2819    let mut sum = vaddvq_f32(acc);
2820
2821    // Handle remainder
2822    let base = chunks * 4;
2823    for i in 0..remainder {
2824        let d = a[base + i] - b[base + i];
2825        sum += d * d;
2826    }
2827
2828    sum
2829}
2830
2831#[cfg(target_arch = "x86_64")]
2832#[target_feature(enable = "sse")]
2833#[allow(unsafe_op_in_unsafe_fn)]
2834unsafe fn squared_euclidean_sse(a: &[f32], b: &[f32], count: usize) -> f32 {
2835    use std::arch::x86_64::*;
2836
2837    let chunks = count / 4;
2838    let remainder = count % 4;
2839
2840    let mut acc = _mm_setzero_ps();
2841
2842    for chunk in 0..chunks {
2843        let base = chunk * 4;
2844        let va = _mm_loadu_ps(a.as_ptr().add(base));
2845        let vb = _mm_loadu_ps(b.as_ptr().add(base));
2846        let diff = _mm_sub_ps(va, vb);
2847        acc = _mm_add_ps(acc, _mm_mul_ps(diff, diff));
2848    }
2849
2850    // Horizontal sum: [a, b, c, d] -> a + b + c + d
2851    let shuf = _mm_shuffle_ps(acc, acc, 0b10_11_00_01); // [b, a, d, c]
2852    let sums = _mm_add_ps(acc, shuf); // [a+b, a+b, c+d, c+d]
2853    let shuf2 = _mm_movehl_ps(sums, sums); // [c+d, c+d, ?, ?]
2854    let final_sum = _mm_add_ss(sums, shuf2); // [a+b+c+d, ?, ?, ?]
2855
2856    let mut sum = _mm_cvtss_f32(final_sum);
2857
2858    // Handle remainder
2859    let base = chunks * 4;
2860    for i in 0..remainder {
2861        let d = a[base + i] - b[base + i];
2862        sum += d * d;
2863    }
2864
2865    sum
2866}
2867
2868#[cfg(target_arch = "x86_64")]
2869#[target_feature(enable = "avx2")]
2870#[allow(unsafe_op_in_unsafe_fn)]
2871unsafe fn squared_euclidean_avx2(a: &[f32], b: &[f32], count: usize) -> f32 {
2872    use std::arch::x86_64::*;
2873
2874    let chunks = count / 8;
2875    let remainder = count % 8;
2876
2877    let mut acc = _mm256_setzero_ps();
2878
2879    for chunk in 0..chunks {
2880        let base = chunk * 8;
2881        let va = _mm256_loadu_ps(a.as_ptr().add(base));
2882        let vb = _mm256_loadu_ps(b.as_ptr().add(base));
2883        let diff = _mm256_sub_ps(va, vb);
2884        acc = _mm256_fmadd_ps(diff, diff, acc); // acc += diff * diff (FMA)
2885    }
2886
2887    // Horizontal sum of 8 floats
2888    // First, add high 128 bits to low 128 bits
2889    let high = _mm256_extractf128_ps(acc, 1);
2890    let low = _mm256_castps256_ps128(acc);
2891    let sum128 = _mm_add_ps(low, high);
2892
2893    // Now sum the 4 floats in sum128
2894    let shuf = _mm_shuffle_ps(sum128, sum128, 0b10_11_00_01);
2895    let sums = _mm_add_ps(sum128, shuf);
2896    let shuf2 = _mm_movehl_ps(sums, sums);
2897    let final_sum = _mm_add_ss(sums, shuf2);
2898
2899    let mut sum = _mm_cvtss_f32(final_sum);
2900
2901    // Handle remainder
2902    let base = chunks * 8;
2903    for i in 0..remainder {
2904        let d = a[base + i] - b[base + i];
2905        sum += d * d;
2906    }
2907
2908    sum
2909}
2910
2911/// Batch compute squared Euclidean distances from one query to multiple vectors
2912///
2913/// Returns distances[i] = squared_euclidean_distance(query, vectors[i])
2914/// This is more efficient than calling squared_euclidean_distance in a loop
2915/// because we can keep the query in registers.
2916#[inline]
2917pub fn batch_squared_euclidean_distances(
2918    query: &[f32],
2919    vectors: &[Vec<f32>],
2920    distances: &mut [f32],
2921) {
2922    debug_assert_eq!(vectors.len(), distances.len());
2923
2924    #[cfg(target_arch = "x86_64")]
2925    {
2926        if avx2::is_available() {
2927            for (i, vec) in vectors.iter().enumerate() {
2928                distances[i] = unsafe { squared_euclidean_avx2(query, vec, query.len()) };
2929            }
2930            return;
2931        }
2932    }
2933
2934    // Fallback to individual calls
2935    for (i, vec) in vectors.iter().enumerate() {
2936        distances[i] = squared_euclidean_distance(query, vec);
2937    }
2938}
2939
2940#[cfg(test)]
2941mod tests {
2942    use super::*;
2943
2944    #[test]
2945    fn test_unpack_8bit() {
2946        let input: Vec<u8> = (0..128).collect();
2947        let mut output = vec![0u32; 128];
2948        unpack_8bit(&input, &mut output, 128);
2949
2950        for (i, &v) in output.iter().enumerate() {
2951            assert_eq!(v, i as u32);
2952        }
2953    }
2954
2955    #[test]
2956    fn test_unpack_16bit() {
2957        let mut input = vec![0u8; 256];
2958        for i in 0..128 {
2959            let val = (i * 100) as u16;
2960            input[i * 2] = val as u8;
2961            input[i * 2 + 1] = (val >> 8) as u8;
2962        }
2963
2964        let mut output = vec![0u32; 128];
2965        unpack_16bit(&input, &mut output, 128);
2966
2967        for (i, &v) in output.iter().enumerate() {
2968            assert_eq!(v, (i * 100) as u32);
2969        }
2970    }
2971
2972    #[test]
2973    fn test_unpack_32bit() {
2974        let mut input = vec![0u8; 512];
2975        for i in 0..128 {
2976            let val = (i * 1000) as u32;
2977            let bytes = val.to_le_bytes();
2978            input[i * 4..i * 4 + 4].copy_from_slice(&bytes);
2979        }
2980
2981        let mut output = vec![0u32; 128];
2982        unpack_32bit(&input, &mut output, 128);
2983
2984        for (i, &v) in output.iter().enumerate() {
2985            assert_eq!(v, (i * 1000) as u32);
2986        }
2987    }
2988
2989    #[test]
2990    fn test_delta_decode() {
2991        // doc_ids: [10, 15, 20, 30, 50]
2992        // gaps: [5, 5, 10, 20]
2993        // deltas (gap-1): [4, 4, 9, 19]
2994        let deltas = vec![4u32, 4, 9, 19];
2995        let mut output = vec![0u32; 5];
2996
2997        delta_decode(&mut output, &deltas, 10, 5);
2998
2999        assert_eq!(output, vec![10, 15, 20, 30, 50]);
3000    }
3001
3002    #[test]
3003    fn test_add_one() {
3004        let mut values = vec![0u32, 1, 2, 3, 4, 5, 6, 7];
3005        add_one(&mut values, 8);
3006
3007        assert_eq!(values, vec![1, 2, 3, 4, 5, 6, 7, 8]);
3008    }
3009
3010    #[test]
3011    fn test_bits_needed() {
3012        assert_eq!(bits_needed(0), 0);
3013        assert_eq!(bits_needed(1), 1);
3014        assert_eq!(bits_needed(2), 2);
3015        assert_eq!(bits_needed(3), 2);
3016        assert_eq!(bits_needed(4), 3);
3017        assert_eq!(bits_needed(255), 8);
3018        assert_eq!(bits_needed(256), 9);
3019        assert_eq!(bits_needed(u32::MAX), 32);
3020    }
3021
3022    #[test]
3023    fn test_unpack_8bit_delta_decode() {
3024        // doc_ids: [10, 15, 20, 30, 50]
3025        // gaps: [5, 5, 10, 20]
3026        // deltas (gap-1): [4, 4, 9, 19] stored as u8
3027        let input: Vec<u8> = vec![4, 4, 9, 19];
3028        let mut output = vec![0u32; 5];
3029
3030        unpack_8bit_delta_decode(&input, &mut output, 10, 5);
3031
3032        assert_eq!(output, vec![10, 15, 20, 30, 50]);
3033    }
3034
3035    #[test]
3036    fn test_unpack_16bit_delta_decode() {
3037        // doc_ids: [100, 600, 1100, 2100, 4100]
3038        // gaps: [500, 500, 1000, 2000]
3039        // deltas (gap-1): [499, 499, 999, 1999] stored as u16
3040        let mut input = vec![0u8; 8];
3041        for (i, &delta) in [499u16, 499, 999, 1999].iter().enumerate() {
3042            input[i * 2] = delta as u8;
3043            input[i * 2 + 1] = (delta >> 8) as u8;
3044        }
3045        let mut output = vec![0u32; 5];
3046
3047        unpack_16bit_delta_decode(&input, &mut output, 100, 5);
3048
3049        assert_eq!(output, vec![100, 600, 1100, 2100, 4100]);
3050    }
3051
3052    #[test]
3053    fn test_fused_vs_separate_8bit() {
3054        // Test that fused and separate operations produce the same result
3055        let input: Vec<u8> = (0..127).collect();
3056        let first_value = 1000u32;
3057        let count = 128;
3058
3059        // Separate: unpack then delta_decode
3060        let mut unpacked = vec![0u32; 128];
3061        unpack_8bit(&input, &mut unpacked, 127);
3062        let mut separate_output = vec![0u32; 128];
3063        delta_decode(&mut separate_output, &unpacked, first_value, count);
3064
3065        // Fused
3066        let mut fused_output = vec![0u32; 128];
3067        unpack_8bit_delta_decode(&input, &mut fused_output, first_value, count);
3068
3069        assert_eq!(separate_output, fused_output);
3070    }
3071
3072    #[test]
3073    fn test_round_bit_width() {
3074        assert_eq!(round_bit_width(0), 0);
3075        assert_eq!(round_bit_width(1), 8);
3076        assert_eq!(round_bit_width(5), 8);
3077        assert_eq!(round_bit_width(8), 8);
3078        assert_eq!(round_bit_width(9), 16);
3079        assert_eq!(round_bit_width(12), 16);
3080        assert_eq!(round_bit_width(16), 16);
3081        assert_eq!(round_bit_width(17), 32);
3082        assert_eq!(round_bit_width(24), 32);
3083        assert_eq!(round_bit_width(32), 32);
3084    }
3085
3086    #[test]
3087    fn test_rounded_bitwidth_from_exact() {
3088        assert_eq!(RoundedBitWidth::from_exact(0), RoundedBitWidth::Zero);
3089        assert_eq!(RoundedBitWidth::from_exact(1), RoundedBitWidth::Bits8);
3090        assert_eq!(RoundedBitWidth::from_exact(8), RoundedBitWidth::Bits8);
3091        assert_eq!(RoundedBitWidth::from_exact(9), RoundedBitWidth::Bits16);
3092        assert_eq!(RoundedBitWidth::from_exact(16), RoundedBitWidth::Bits16);
3093        assert_eq!(RoundedBitWidth::from_exact(17), RoundedBitWidth::Bits32);
3094        assert_eq!(RoundedBitWidth::from_exact(32), RoundedBitWidth::Bits32);
3095    }
3096
3097    #[test]
3098    fn test_pack_unpack_rounded_8bit() {
3099        let values: Vec<u32> = (0..128).map(|i| i % 256).collect();
3100        let mut packed = vec![0u8; 128];
3101
3102        let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits8, &mut packed);
3103        assert_eq!(bytes_written, 128);
3104
3105        let mut unpacked = vec![0u32; 128];
3106        unpack_rounded(&packed, RoundedBitWidth::Bits8, &mut unpacked, 128);
3107
3108        assert_eq!(values, unpacked);
3109    }
3110
3111    #[test]
3112    fn test_pack_unpack_rounded_16bit() {
3113        let values: Vec<u32> = (0..128).map(|i| i * 100).collect();
3114        let mut packed = vec![0u8; 256];
3115
3116        let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits16, &mut packed);
3117        assert_eq!(bytes_written, 256);
3118
3119        let mut unpacked = vec![0u32; 128];
3120        unpack_rounded(&packed, RoundedBitWidth::Bits16, &mut unpacked, 128);
3121
3122        assert_eq!(values, unpacked);
3123    }
3124
3125    #[test]
3126    fn test_pack_unpack_rounded_32bit() {
3127        let values: Vec<u32> = (0..128).map(|i| i * 100000).collect();
3128        let mut packed = vec![0u8; 512];
3129
3130        let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits32, &mut packed);
3131        assert_eq!(bytes_written, 512);
3132
3133        let mut unpacked = vec![0u32; 128];
3134        unpack_rounded(&packed, RoundedBitWidth::Bits32, &mut unpacked, 128);
3135
3136        assert_eq!(values, unpacked);
3137    }
3138
3139    #[test]
3140    fn test_unpack_rounded_delta_decode() {
3141        // Test 8-bit rounded delta decode
3142        // doc_ids: [10, 15, 20, 30, 50]
3143        // gaps: [5, 5, 10, 20]
3144        // deltas (gap-1): [4, 4, 9, 19] stored as u8
3145        let input: Vec<u8> = vec![4, 4, 9, 19];
3146        let mut output = vec![0u32; 5];
3147
3148        unpack_rounded_delta_decode(&input, RoundedBitWidth::Bits8, &mut output, 10, 5);
3149
3150        assert_eq!(output, vec![10, 15, 20, 30, 50]);
3151    }
3152
3153    #[test]
3154    fn test_unpack_rounded_delta_decode_zero() {
3155        // All zeros means gaps of 1 (consecutive doc IDs)
3156        let input: Vec<u8> = vec![];
3157        let mut output = vec![0u32; 5];
3158
3159        unpack_rounded_delta_decode(&input, RoundedBitWidth::Zero, &mut output, 100, 5);
3160
3161        assert_eq!(output, vec![100, 101, 102, 103, 104]);
3162    }
3163
3164    // ========================================================================
3165    // Sparse Vector SIMD Tests
3166    // ========================================================================
3167
3168    #[test]
3169    fn test_dequantize_uint8() {
3170        let input: Vec<u8> = vec![0, 128, 255, 64, 192];
3171        let mut output = vec![0.0f32; 5];
3172        let scale = 0.1;
3173        let min_val = 1.0;
3174
3175        dequantize_uint8(&input, &mut output, scale, min_val, 5);
3176
3177        // Expected: input[i] * scale + min_val
3178        assert!((output[0] - 1.0).abs() < 1e-6); // 0 * 0.1 + 1.0 = 1.0
3179        assert!((output[1] - 13.8).abs() < 1e-6); // 128 * 0.1 + 1.0 = 13.8
3180        assert!((output[2] - 26.5).abs() < 1e-6); // 255 * 0.1 + 1.0 = 26.5
3181        assert!((output[3] - 7.4).abs() < 1e-6); // 64 * 0.1 + 1.0 = 7.4
3182        assert!((output[4] - 20.2).abs() < 1e-6); // 192 * 0.1 + 1.0 = 20.2
3183    }
3184
3185    #[test]
3186    fn test_dequantize_uint8_large() {
3187        // Test with 128 values (full SIMD block)
3188        let input: Vec<u8> = (0..128).collect();
3189        let mut output = vec![0.0f32; 128];
3190        let scale = 2.0;
3191        let min_val = -10.0;
3192
3193        dequantize_uint8(&input, &mut output, scale, min_val, 128);
3194
3195        for (i, &out) in output.iter().enumerate().take(128) {
3196            let expected = i as f32 * scale + min_val;
3197            assert!(
3198                (out - expected).abs() < 1e-5,
3199                "Mismatch at {}: expected {}, got {}",
3200                i,
3201                expected,
3202                out
3203            );
3204        }
3205    }
3206
3207    #[test]
3208    fn test_dot_product_f32() {
3209        let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0];
3210        let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0];
3211
3212        let result = dot_product_f32(&a, &b, 5);
3213
3214        // Expected: 1*2 + 2*3 + 3*4 + 4*5 + 5*6 = 2 + 6 + 12 + 20 + 30 = 70
3215        assert!((result - 70.0).abs() < 1e-5);
3216    }
3217
3218    #[test]
3219    fn test_dot_product_f32_large() {
3220        // Test with 128 values
3221        let a: Vec<f32> = (0..128).map(|i| i as f32).collect();
3222        let b: Vec<f32> = (0..128).map(|i| (i + 1) as f32).collect();
3223
3224        let result = dot_product_f32(&a, &b, 128);
3225
3226        // Compute expected
3227        let expected: f32 = (0..128).map(|i| (i as f32) * ((i + 1) as f32)).sum();
3228        assert!(
3229            (result - expected).abs() < 1e-3,
3230            "Expected {}, got {}",
3231            expected,
3232            result
3233        );
3234    }
3235
3236    #[test]
3237    fn test_max_f32() {
3238        let values = vec![1.0f32, 5.0, 3.0, 9.0, 2.0, 7.0];
3239        let result = max_f32(&values, 6);
3240        assert!((result - 9.0).abs() < 1e-6);
3241    }
3242
3243    #[test]
3244    fn test_max_f32_large() {
3245        // Test with 128 values, max at position 77
3246        let mut values: Vec<f32> = (0..128).map(|i| i as f32).collect();
3247        values[77] = 1000.0;
3248
3249        let result = max_f32(&values, 128);
3250        assert!((result - 1000.0).abs() < 1e-5);
3251    }
3252
3253    #[test]
3254    fn test_max_f32_negative() {
3255        let values = vec![-5.0f32, -2.0, -10.0, -1.0, -3.0];
3256        let result = max_f32(&values, 5);
3257        assert!((result - (-1.0)).abs() < 1e-6);
3258    }
3259
3260    #[test]
3261    fn test_max_f32_empty() {
3262        let values: Vec<f32> = vec![];
3263        let result = max_f32(&values, 0);
3264        assert_eq!(result, f32::NEG_INFINITY);
3265    }
3266
3267    #[test]
3268    fn test_fused_dot_norm() {
3269        let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
3270        let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
3271        let (dot, norm_b) = fused_dot_norm(&a, &b, a.len());
3272
3273        let expected_dot: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
3274        let expected_norm: f32 = b.iter().map(|x| x * x).sum();
3275        assert!(
3276            (dot - expected_dot).abs() < 1e-5,
3277            "dot: expected {}, got {}",
3278            expected_dot,
3279            dot
3280        );
3281        assert!(
3282            (norm_b - expected_norm).abs() < 1e-5,
3283            "norm: expected {}, got {}",
3284            expected_norm,
3285            norm_b
3286        );
3287    }
3288
3289    #[test]
3290    fn test_fused_dot_norm_large() {
3291        let a: Vec<f32> = (0..768).map(|i| (i as f32) * 0.01).collect();
3292        let b: Vec<f32> = (0..768).map(|i| (i as f32) * 0.02 + 0.5).collect();
3293        let (dot, norm_b) = fused_dot_norm(&a, &b, a.len());
3294
3295        let expected_dot: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
3296        let expected_norm: f32 = b.iter().map(|x| x * x).sum();
3297        assert!(
3298            (dot - expected_dot).abs() < 1.0,
3299            "dot: expected {}, got {}",
3300            expected_dot,
3301            dot
3302        );
3303        assert!(
3304            (norm_b - expected_norm).abs() < 1.0,
3305            "norm: expected {}, got {}",
3306            expected_norm,
3307            norm_b
3308        );
3309    }
3310
3311    #[test]
3312    fn test_batch_cosine_scores() {
3313        // 4 vectors of dim 3
3314        let query = vec![1.0f32, 0.0, 0.0];
3315        let vectors = vec![
3316            1.0, 0.0, 0.0, // identical to query
3317            0.0, 1.0, 0.0, // orthogonal
3318            -1.0, 0.0, 0.0, // opposite
3319            0.5, 0.5, 0.0, // 45 degrees
3320        ];
3321        let mut scores = vec![0f32; 4];
3322        batch_cosine_scores(&query, &vectors, 3, &mut scores);
3323
3324        assert!((scores[0] - 1.0).abs() < 1e-5, "identical: {}", scores[0]);
3325        assert!(scores[1].abs() < 1e-5, "orthogonal: {}", scores[1]);
3326        assert!((scores[2] - (-1.0)).abs() < 1e-5, "opposite: {}", scores[2]);
3327        let expected_45 = 0.5f32 / (0.5f32.powi(2) + 0.5f32.powi(2)).sqrt();
3328        assert!(
3329            (scores[3] - expected_45).abs() < 1e-5,
3330            "45deg: expected {}, got {}",
3331            expected_45,
3332            scores[3]
3333        );
3334    }
3335
3336    #[test]
3337    fn test_batch_cosine_scores_matches_individual() {
3338        let query: Vec<f32> = (0..128).map(|i| (i as f32) * 0.1).collect();
3339        let n = 50;
3340        let dim = 128;
3341        let vectors: Vec<f32> = (0..n * dim).map(|i| ((i * 7 + 3) as f32) * 0.01).collect();
3342
3343        let mut batch_scores = vec![0f32; n];
3344        batch_cosine_scores(&query, &vectors, dim, &mut batch_scores);
3345
3346        for i in 0..n {
3347            let vec_i = &vectors[i * dim..(i + 1) * dim];
3348            let individual = cosine_similarity(&query, vec_i);
3349            assert!(
3350                (batch_scores[i] - individual).abs() < 1e-5,
3351                "vec {}: batch={}, individual={}",
3352                i,
3353                batch_scores[i],
3354                individual
3355            );
3356        }
3357    }
3358
3359    #[test]
3360    fn test_batch_cosine_scores_empty() {
3361        let query = vec![1.0f32, 2.0, 3.0];
3362        let vectors: Vec<f32> = vec![];
3363        let mut scores: Vec<f32> = vec![];
3364        batch_cosine_scores(&query, &vectors, 3, &mut scores);
3365        assert!(scores.is_empty());
3366    }
3367
3368    #[test]
3369    fn test_batch_cosine_scores_zero_query() {
3370        let query = vec![0.0f32, 0.0, 0.0];
3371        let vectors = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
3372        let mut scores = vec![0f32; 2];
3373        batch_cosine_scores(&query, &vectors, 3, &mut scores);
3374        assert_eq!(scores[0], 0.0);
3375        assert_eq!(scores[1], 0.0);
3376    }
3377
3378    #[test]
3379    fn test_squared_euclidean_distance() {
3380        let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
3381        let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
3382        let expected: f32 = a.iter().zip(b.iter()).map(|(x, y)| (x - y).powi(2)).sum();
3383        let result = squared_euclidean_distance(&a, &b);
3384        assert!(
3385            (result - expected).abs() < 1e-5,
3386            "expected {}, got {}",
3387            expected,
3388            result
3389        );
3390    }
3391
3392    #[test]
3393    fn test_squared_euclidean_distance_large() {
3394        let a: Vec<f32> = (0..128).map(|i| i as f32 * 0.1).collect();
3395        let b: Vec<f32> = (0..128).map(|i| (i as f32 * 0.1) + 0.5).collect();
3396        let expected: f32 = a.iter().zip(b.iter()).map(|(x, y)| (x - y).powi(2)).sum();
3397        let result = squared_euclidean_distance(&a, &b);
3398        assert!(
3399            (result - expected).abs() < 1e-3,
3400            "expected {}, got {}",
3401            expected,
3402            result
3403        );
3404    }
3405
3406    // ================================================================
3407    // f16 conversion tests
3408    // ================================================================
3409
3410    #[test]
3411    fn test_f16_roundtrip_normal() {
3412        for &v in &[0.0f32, 1.0, -1.0, 0.5, -0.5, 0.333, 65504.0] {
3413            let h = f32_to_f16(v);
3414            let back = f16_to_f32(h);
3415            let err = (back - v).abs() / v.abs().max(1e-6);
3416            assert!(
3417                err < 0.002,
3418                "f16 roundtrip {v} → {h:#06x} → {back}, rel err {err}"
3419            );
3420        }
3421    }
3422
3423    #[test]
3424    fn test_f16_special() {
3425        // Zero
3426        assert_eq!(f16_to_f32(f32_to_f16(0.0)), 0.0);
3427        // Negative zero
3428        assert_eq!(f32_to_f16(-0.0), 0x8000);
3429        // Infinity
3430        assert!(f16_to_f32(f32_to_f16(f32::INFINITY)).is_infinite());
3431        // NaN
3432        assert!(f16_to_f32(f32_to_f16(f32::NAN)).is_nan());
3433    }
3434
3435    #[test]
3436    fn test_f16_embedding_range() {
3437        // Typical embedding values in [-1, 1]
3438        let values: Vec<f32> = (-100..=100).map(|i| i as f32 / 100.0).collect();
3439        for &v in &values {
3440            let back = f16_to_f32(f32_to_f16(v));
3441            assert!((back - v).abs() < 0.001, "f16 error for {v}: got {back}");
3442        }
3443    }
3444
3445    // ================================================================
3446    // u8 conversion tests
3447    // ================================================================
3448
3449    #[test]
3450    fn test_u8_roundtrip() {
3451        // Boundary values
3452        assert_eq!(f32_to_u8_saturating(-1.0), 0);
3453        assert_eq!(f32_to_u8_saturating(1.0), 255);
3454        assert_eq!(f32_to_u8_saturating(0.0), 127); // ~127.5 truncated
3455
3456        // Saturation
3457        assert_eq!(f32_to_u8_saturating(-2.0), 0);
3458        assert_eq!(f32_to_u8_saturating(2.0), 255);
3459    }
3460
3461    #[test]
3462    fn test_u8_dequantize() {
3463        assert!((u8_to_f32(0) - (-1.0)).abs() < 0.01);
3464        assert!((u8_to_f32(255) - 1.0).abs() < 0.01);
3465        assert!((u8_to_f32(127) - 0.0).abs() < 0.01);
3466    }
3467
3468    // ================================================================
3469    // Batch scoring tests for quantized vectors
3470    // ================================================================
3471
3472    #[test]
3473    fn test_batch_cosine_scores_f16() {
3474        let query = vec![0.6f32, 0.8, 0.0, 0.0];
3475        let dim = 4;
3476        let vecs_f32 = vec![
3477            0.6f32, 0.8, 0.0, 0.0, // identical to query
3478            0.0, 0.0, 0.6, 0.8, // orthogonal
3479        ];
3480
3481        // Quantize to f16
3482        let mut f16_buf = vec![0u16; 8];
3483        batch_f32_to_f16(&vecs_f32, &mut f16_buf);
3484        let raw: &[u8] =
3485            unsafe { std::slice::from_raw_parts(f16_buf.as_ptr() as *const u8, f16_buf.len() * 2) };
3486
3487        let mut scores = vec![0f32; 2];
3488        batch_cosine_scores_f16(&query, raw, dim, &mut scores);
3489
3490        assert!(
3491            (scores[0] - 1.0).abs() < 0.01,
3492            "identical vectors: {}",
3493            scores[0]
3494        );
3495        assert!(scores[1].abs() < 0.01, "orthogonal vectors: {}", scores[1]);
3496    }
3497
3498    #[test]
3499    fn test_batch_cosine_scores_u8() {
3500        let query = vec![0.6f32, 0.8, 0.0, 0.0];
3501        let dim = 4;
3502        let vecs_f32 = vec![
3503            0.6f32, 0.8, 0.0, 0.0, // ~identical to query
3504            -0.6, -0.8, 0.0, 0.0, // opposite
3505        ];
3506
3507        // Quantize to u8
3508        let mut u8_buf = vec![0u8; 8];
3509        batch_f32_to_u8(&vecs_f32, &mut u8_buf);
3510
3511        let mut scores = vec![0f32; 2];
3512        batch_cosine_scores_u8(&query, &u8_buf, dim, &mut scores);
3513
3514        assert!(scores[0] > 0.95, "similar vectors: {}", scores[0]);
3515        assert!(scores[1] < -0.95, "opposite vectors: {}", scores[1]);
3516    }
3517
3518    #[test]
3519    fn test_batch_cosine_scores_f16_large_dim() {
3520        // Test with typical embedding dimension
3521        let dim = 768;
3522        let query: Vec<f32> = (0..dim).map(|i| (i as f32 / dim as f32) - 0.5).collect();
3523        let vec2: Vec<f32> = query.iter().map(|x| x * 0.9 + 0.01).collect();
3524
3525        let mut all_vecs = query.clone();
3526        all_vecs.extend_from_slice(&vec2);
3527
3528        let mut f16_buf = vec![0u16; all_vecs.len()];
3529        batch_f32_to_f16(&all_vecs, &mut f16_buf);
3530        let raw: &[u8] =
3531            unsafe { std::slice::from_raw_parts(f16_buf.as_ptr() as *const u8, f16_buf.len() * 2) };
3532
3533        let mut scores = vec![0f32; 2];
3534        batch_cosine_scores_f16(&query, raw, dim, &mut scores);
3535
3536        // Self-similarity should be ~1.0
3537        assert!((scores[0] - 1.0).abs() < 0.01, "self-sim: {}", scores[0]);
3538        // High similarity with scaled version
3539        assert!(scores[1] > 0.99, "scaled-sim: {}", scores[1]);
3540    }
3541}
3542
3543// ============================================================================
3544// SIMD-accelerated linear scan for sorted u32 slices (within-block seek)
3545// ============================================================================
3546
3547/// Find index of first element >= `target` in a sorted `u32` slice.
3548///
3549/// Equivalent to `slice.partition_point(|&d| d < target)` but uses SIMD to
3550/// scan 4 elements per cycle. Faster than binary search for slices ≤ 256
3551/// elements because it avoids the data-dependency chain inherent in binary
3552/// search (~8-10 cycles/iteration vs ~1-2 cycles/iteration for SIMD scan).
3553///
3554/// Returns `slice.len()` if no element >= `target`.
3555#[inline]
3556pub fn find_first_ge_u32(slice: &[u32], target: u32) -> usize {
3557    #[cfg(target_arch = "aarch64")]
3558    {
3559        if neon::is_available() {
3560            return unsafe { find_first_ge_u32_neon(slice, target) };
3561        }
3562    }
3563
3564    #[cfg(target_arch = "x86_64")]
3565    {
3566        if sse::is_available() {
3567            return unsafe { find_first_ge_u32_sse(slice, target) };
3568        }
3569    }
3570
3571    // Scalar fallback (WASM, other architectures)
3572    slice.partition_point(|&d| d < target)
3573}
3574
3575#[cfg(target_arch = "aarch64")]
3576#[target_feature(enable = "neon")]
3577#[allow(unsafe_op_in_unsafe_fn)]
3578unsafe fn find_first_ge_u32_neon(slice: &[u32], target: u32) -> usize {
3579    use std::arch::aarch64::*;
3580
3581    let n = slice.len();
3582    let ptr = slice.as_ptr();
3583    let target_vec = vdupq_n_u32(target);
3584    // Bit positions for each lane: [1, 2, 4, 8]
3585    let bit_mask: uint32x4_t = core::mem::transmute([1u32, 2u32, 4u32, 8u32]);
3586
3587    let chunks = n / 16;
3588    let mut base = 0usize;
3589
3590    // Process 16 elements per iteration (4 × 4-wide NEON compares)
3591    for _ in 0..chunks {
3592        let v0 = vld1q_u32(ptr.add(base));
3593        let v1 = vld1q_u32(ptr.add(base + 4));
3594        let v2 = vld1q_u32(ptr.add(base + 8));
3595        let v3 = vld1q_u32(ptr.add(base + 12));
3596
3597        let c0 = vcgeq_u32(v0, target_vec);
3598        let c1 = vcgeq_u32(v1, target_vec);
3599        let c2 = vcgeq_u32(v2, target_vec);
3600        let c3 = vcgeq_u32(v3, target_vec);
3601
3602        let m0 = vaddvq_u32(vandq_u32(c0, bit_mask));
3603        if m0 != 0 {
3604            return base + m0.trailing_zeros() as usize;
3605        }
3606        let m1 = vaddvq_u32(vandq_u32(c1, bit_mask));
3607        if m1 != 0 {
3608            return base + 4 + m1.trailing_zeros() as usize;
3609        }
3610        let m2 = vaddvq_u32(vandq_u32(c2, bit_mask));
3611        if m2 != 0 {
3612            return base + 8 + m2.trailing_zeros() as usize;
3613        }
3614        let m3 = vaddvq_u32(vandq_u32(c3, bit_mask));
3615        if m3 != 0 {
3616            return base + 12 + m3.trailing_zeros() as usize;
3617        }
3618        base += 16;
3619    }
3620
3621    // Process remaining 4 elements at a time
3622    while base + 4 <= n {
3623        let vals = vld1q_u32(ptr.add(base));
3624        let cmp = vcgeq_u32(vals, target_vec);
3625        let mask = vaddvq_u32(vandq_u32(cmp, bit_mask));
3626        if mask != 0 {
3627            return base + mask.trailing_zeros() as usize;
3628        }
3629        base += 4;
3630    }
3631
3632    // Scalar remainder (0-3 elements)
3633    while base < n {
3634        if *slice.get_unchecked(base) >= target {
3635            return base;
3636        }
3637        base += 1;
3638    }
3639    n
3640}
3641
3642#[cfg(target_arch = "x86_64")]
3643#[target_feature(enable = "sse2", enable = "sse4.1")]
3644#[allow(unsafe_op_in_unsafe_fn)]
3645unsafe fn find_first_ge_u32_sse(slice: &[u32], target: u32) -> usize {
3646    use std::arch::x86_64::*;
3647
3648    let n = slice.len();
3649    let ptr = slice.as_ptr();
3650
3651    // For unsigned >= comparison: XOR with 0x80000000 converts to signed domain
3652    let sign_flip = _mm_set1_epi32(i32::MIN);
3653    let target_xor = _mm_xor_si128(_mm_set1_epi32(target as i32), sign_flip);
3654
3655    let chunks = n / 16;
3656    let mut base = 0usize;
3657
3658    // Process 16 elements per iteration (4 × 4-wide SSE compares)
3659    for _ in 0..chunks {
3660        let v0 = _mm_xor_si128(_mm_loadu_si128(ptr.add(base) as *const __m128i), sign_flip);
3661        let v1 = _mm_xor_si128(
3662            _mm_loadu_si128(ptr.add(base + 4) as *const __m128i),
3663            sign_flip,
3664        );
3665        let v2 = _mm_xor_si128(
3666            _mm_loadu_si128(ptr.add(base + 8) as *const __m128i),
3667            sign_flip,
3668        );
3669        let v3 = _mm_xor_si128(
3670            _mm_loadu_si128(ptr.add(base + 12) as *const __m128i),
3671            sign_flip,
3672        );
3673
3674        // ge = eq | gt (in signed domain after XOR)
3675        let ge0 = _mm_or_si128(
3676            _mm_cmpeq_epi32(v0, target_xor),
3677            _mm_cmpgt_epi32(v0, target_xor),
3678        );
3679        let m0 = _mm_movemask_ps(_mm_castsi128_ps(ge0)) as u32;
3680        if m0 != 0 {
3681            return base + m0.trailing_zeros() as usize;
3682        }
3683
3684        let ge1 = _mm_or_si128(
3685            _mm_cmpeq_epi32(v1, target_xor),
3686            _mm_cmpgt_epi32(v1, target_xor),
3687        );
3688        let m1 = _mm_movemask_ps(_mm_castsi128_ps(ge1)) as u32;
3689        if m1 != 0 {
3690            return base + 4 + m1.trailing_zeros() as usize;
3691        }
3692
3693        let ge2 = _mm_or_si128(
3694            _mm_cmpeq_epi32(v2, target_xor),
3695            _mm_cmpgt_epi32(v2, target_xor),
3696        );
3697        let m2 = _mm_movemask_ps(_mm_castsi128_ps(ge2)) as u32;
3698        if m2 != 0 {
3699            return base + 8 + m2.trailing_zeros() as usize;
3700        }
3701
3702        let ge3 = _mm_or_si128(
3703            _mm_cmpeq_epi32(v3, target_xor),
3704            _mm_cmpgt_epi32(v3, target_xor),
3705        );
3706        let m3 = _mm_movemask_ps(_mm_castsi128_ps(ge3)) as u32;
3707        if m3 != 0 {
3708            return base + 12 + m3.trailing_zeros() as usize;
3709        }
3710        base += 16;
3711    }
3712
3713    // Process remaining 4 elements at a time
3714    while base + 4 <= n {
3715        let vals = _mm_xor_si128(_mm_loadu_si128(ptr.add(base) as *const __m128i), sign_flip);
3716        let ge = _mm_or_si128(
3717            _mm_cmpeq_epi32(vals, target_xor),
3718            _mm_cmpgt_epi32(vals, target_xor),
3719        );
3720        let mask = _mm_movemask_ps(_mm_castsi128_ps(ge)) as u32;
3721        if mask != 0 {
3722            return base + mask.trailing_zeros() as usize;
3723        }
3724        base += 4;
3725    }
3726
3727    // Scalar remainder (0-3 elements)
3728    while base < n {
3729        if *slice.get_unchecked(base) >= target {
3730            return base;
3731        }
3732        base += 1;
3733    }
3734    n
3735}
3736
3737#[cfg(test)]
3738mod find_first_ge_tests {
3739    use super::find_first_ge_u32;
3740
3741    #[test]
3742    fn test_find_first_ge_basic() {
3743        let data: Vec<u32> = (0..128).map(|i| i * 3).collect(); // [0, 3, 6, ..., 381]
3744        assert_eq!(find_first_ge_u32(&data, 0), 0);
3745        assert_eq!(find_first_ge_u32(&data, 1), 1); // first >= 1 is 3 at idx 1
3746        assert_eq!(find_first_ge_u32(&data, 3), 1);
3747        assert_eq!(find_first_ge_u32(&data, 4), 2); // first >= 4 is 6 at idx 2
3748        assert_eq!(find_first_ge_u32(&data, 381), 127);
3749        assert_eq!(find_first_ge_u32(&data, 382), 128); // past end
3750    }
3751
3752    #[test]
3753    fn test_find_first_ge_matches_partition_point() {
3754        let data: Vec<u32> = vec![1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75];
3755        for target in 0..80 {
3756            let expected = data.partition_point(|&d| d < target);
3757            let actual = find_first_ge_u32(&data, target);
3758            assert_eq!(actual, expected, "target={}", target);
3759        }
3760    }
3761
3762    #[test]
3763    fn test_find_first_ge_small_slices() {
3764        // Empty
3765        assert_eq!(find_first_ge_u32(&[], 5), 0);
3766        // Single element
3767        assert_eq!(find_first_ge_u32(&[10], 5), 0);
3768        assert_eq!(find_first_ge_u32(&[10], 10), 0);
3769        assert_eq!(find_first_ge_u32(&[10], 11), 1);
3770        // Three elements (< SIMD width)
3771        assert_eq!(find_first_ge_u32(&[2, 4, 6], 5), 2);
3772    }
3773
3774    #[test]
3775    fn test_find_first_ge_full_block() {
3776        // Simulate a full 128-entry block
3777        let data: Vec<u32> = (100..228).collect();
3778        assert_eq!(find_first_ge_u32(&data, 100), 0);
3779        assert_eq!(find_first_ge_u32(&data, 150), 50);
3780        assert_eq!(find_first_ge_u32(&data, 227), 127);
3781        assert_eq!(find_first_ge_u32(&data, 228), 128);
3782        assert_eq!(find_first_ge_u32(&data, 99), 0);
3783    }
3784
3785    #[test]
3786    fn test_find_first_ge_u32_max() {
3787        // Test with large u32 values (unsigned correctness)
3788        let data = vec![u32::MAX - 10, u32::MAX - 5, u32::MAX - 1, u32::MAX];
3789        assert_eq!(find_first_ge_u32(&data, u32::MAX - 10), 0);
3790        assert_eq!(find_first_ge_u32(&data, u32::MAX - 7), 1);
3791        assert_eq!(find_first_ge_u32(&data, u32::MAX), 3);
3792    }
3793}