Skip to main content

hermes_core/structures/
simd.rs

1//! Shared SIMD-accelerated functions for posting list compression
2//!
3//! This module provides platform-optimized implementations for common operations:
4//! - **Unpacking**: Convert packed 8/16/32-bit values to u32 arrays
5//! - **Delta decoding**: Prefix sum for converting deltas to absolute values
6//! - **Add one**: Increment all values in an array (for TF decoding)
7//!
8//! Supports:
9//! - **NEON** on aarch64 (Apple Silicon, ARM servers)
10//! - **SSE/SSE4.1** on x86_64 (Intel/AMD)
11//! - **Scalar fallback** for other architectures
12
13// ============================================================================
14// NEON intrinsics for aarch64 (Apple Silicon, ARM servers)
15// ============================================================================
16
17#[cfg(target_arch = "aarch64")]
18#[allow(unsafe_op_in_unsafe_fn)]
19mod neon {
20    use std::arch::aarch64::*;
21
22    /// SIMD unpack for 8-bit values using NEON
23    #[target_feature(enable = "neon")]
24    pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
25        let chunks = count / 16;
26        let remainder = count % 16;
27
28        for chunk in 0..chunks {
29            let base = chunk * 16;
30            let in_ptr = input.as_ptr().add(base);
31
32            // Load 16 bytes
33            let bytes = vld1q_u8(in_ptr);
34
35            // Widen u8 -> u16 -> u32
36            let low8 = vget_low_u8(bytes);
37            let high8 = vget_high_u8(bytes);
38
39            let low16 = vmovl_u8(low8);
40            let high16 = vmovl_u8(high8);
41
42            let v0 = vmovl_u16(vget_low_u16(low16));
43            let v1 = vmovl_u16(vget_high_u16(low16));
44            let v2 = vmovl_u16(vget_low_u16(high16));
45            let v3 = vmovl_u16(vget_high_u16(high16));
46
47            let out_ptr = output.as_mut_ptr().add(base);
48            vst1q_u32(out_ptr, v0);
49            vst1q_u32(out_ptr.add(4), v1);
50            vst1q_u32(out_ptr.add(8), v2);
51            vst1q_u32(out_ptr.add(12), v3);
52        }
53
54        // Handle remainder
55        let base = chunks * 16;
56        for i in 0..remainder {
57            output[base + i] = input[base + i] as u32;
58        }
59    }
60
61    /// SIMD unpack for 16-bit values using NEON
62    #[target_feature(enable = "neon")]
63    pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
64        let chunks = count / 8;
65        let remainder = count % 8;
66
67        for chunk in 0..chunks {
68            let base = chunk * 8;
69            let in_ptr = input.as_ptr().add(base * 2) as *const u16;
70
71            let vals = vld1q_u16(in_ptr);
72            let low = vmovl_u16(vget_low_u16(vals));
73            let high = vmovl_u16(vget_high_u16(vals));
74
75            let out_ptr = output.as_mut_ptr().add(base);
76            vst1q_u32(out_ptr, low);
77            vst1q_u32(out_ptr.add(4), high);
78        }
79
80        // Handle remainder
81        let base = chunks * 8;
82        for i in 0..remainder {
83            let idx = (base + i) * 2;
84            output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
85        }
86    }
87
88    /// SIMD unpack for 32-bit values using NEON (fast copy)
89    #[target_feature(enable = "neon")]
90    pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
91        let chunks = count / 4;
92        let remainder = count % 4;
93
94        let in_ptr = input.as_ptr() as *const u32;
95        let out_ptr = output.as_mut_ptr();
96
97        for chunk in 0..chunks {
98            let vals = vld1q_u32(in_ptr.add(chunk * 4));
99            vst1q_u32(out_ptr.add(chunk * 4), vals);
100        }
101
102        // Handle remainder
103        let base = chunks * 4;
104        for i in 0..remainder {
105            let idx = (base + i) * 4;
106            output[base + i] =
107                u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
108        }
109    }
110
111    /// SIMD prefix sum for 4 u32 values using NEON
112    /// Input:  [a, b, c, d]
113    /// Output: [a, a+b, a+b+c, a+b+c+d]
114    #[inline]
115    #[target_feature(enable = "neon")]
116    unsafe fn prefix_sum_4(v: uint32x4_t) -> uint32x4_t {
117        // Step 1: shift by 1 and add
118        // [a, b, c, d] + [0, a, b, c] = [a, a+b, b+c, c+d]
119        let shifted1 = vextq_u32(vdupq_n_u32(0), v, 3);
120        let sum1 = vaddq_u32(v, shifted1);
121
122        // Step 2: shift by 2 and add
123        // [a, a+b, b+c, c+d] + [0, 0, a, a+b] = [a, a+b, a+b+c, a+b+c+d]
124        let shifted2 = vextq_u32(vdupq_n_u32(0), sum1, 2);
125        vaddq_u32(sum1, shifted2)
126    }
127
128    /// SIMD delta decode: convert deltas to absolute doc IDs
129    /// deltas[i] stores (gap - 1), output[i] = first + sum(gaps[0..i])
130    /// Uses NEON SIMD prefix sum for high throughput
131    #[target_feature(enable = "neon")]
132    pub unsafe fn delta_decode(
133        output: &mut [u32],
134        deltas: &[u32],
135        first_doc_id: u32,
136        count: usize,
137    ) {
138        if count == 0 {
139            return;
140        }
141
142        output[0] = first_doc_id;
143        if count == 1 {
144            return;
145        }
146
147        let ones = vdupq_n_u32(1);
148        let mut carry = vdupq_n_u32(first_doc_id);
149
150        let full_groups = (count - 1) / 4;
151        let remainder = (count - 1) % 4;
152
153        for group in 0..full_groups {
154            let base = group * 4;
155
156            // Load 4 deltas and add 1 (since we store gap-1)
157            let d = vld1q_u32(deltas[base..].as_ptr());
158            let gaps = vaddq_u32(d, ones);
159
160            // Compute prefix sum within the 4 elements
161            let prefix = prefix_sum_4(gaps);
162
163            // Add carry (broadcast last element of previous group)
164            let result = vaddq_u32(prefix, carry);
165
166            // Store result
167            vst1q_u32(output[base + 1..].as_mut_ptr(), result);
168
169            // Update carry: broadcast the last element for next iteration
170            carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
171        }
172
173        // Handle remainder
174        let base = full_groups * 4;
175        let mut scalar_carry = vgetq_lane_u32(carry, 0);
176        for j in 0..remainder {
177            scalar_carry = scalar_carry.wrapping_add(deltas[base + j]).wrapping_add(1);
178            output[base + j + 1] = scalar_carry;
179        }
180    }
181
182    /// SIMD add 1 to all values (for TF decoding: stored as tf-1)
183    #[target_feature(enable = "neon")]
184    pub unsafe fn add_one(values: &mut [u32], count: usize) {
185        let ones = vdupq_n_u32(1);
186        let chunks = count / 4;
187        let remainder = count % 4;
188
189        for chunk in 0..chunks {
190            let base = chunk * 4;
191            let ptr = values.as_mut_ptr().add(base);
192            let v = vld1q_u32(ptr);
193            let result = vaddq_u32(v, ones);
194            vst1q_u32(ptr, result);
195        }
196
197        let base = chunks * 4;
198        for i in 0..remainder {
199            values[base + i] += 1;
200        }
201    }
202
203    /// Fused unpack 8-bit + delta decode using NEON
204    /// Processes 4 values at a time, fusing unpack and prefix sum
205    #[target_feature(enable = "neon")]
206    pub unsafe fn unpack_8bit_delta_decode(
207        input: &[u8],
208        output: &mut [u32],
209        first_value: u32,
210        count: usize,
211    ) {
212        output[0] = first_value;
213        if count <= 1 {
214            return;
215        }
216
217        let ones = vdupq_n_u32(1);
218        let mut carry = vdupq_n_u32(first_value);
219
220        let full_groups = (count - 1) / 4;
221        let remainder = (count - 1) % 4;
222
223        for group in 0..full_groups {
224            let base = group * 4;
225
226            // Load 4 bytes and widen to u32
227            let b0 = input[base] as u32;
228            let b1 = input[base + 1] as u32;
229            let b2 = input[base + 2] as u32;
230            let b3 = input[base + 3] as u32;
231            let deltas = [b0, b1, b2, b3];
232            let d = vld1q_u32(deltas.as_ptr());
233
234            // Add 1 (since we store gap-1)
235            let gaps = vaddq_u32(d, ones);
236
237            // Compute prefix sum within the 4 elements
238            let prefix = prefix_sum_4(gaps);
239
240            // Add carry
241            let result = vaddq_u32(prefix, carry);
242
243            // Store result
244            vst1q_u32(output[base + 1..].as_mut_ptr(), result);
245
246            // Update carry
247            carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
248        }
249
250        // Handle remainder
251        let base = full_groups * 4;
252        let mut scalar_carry = vgetq_lane_u32(carry, 0);
253        for j in 0..remainder {
254            scalar_carry = scalar_carry
255                .wrapping_add(input[base + j] as u32)
256                .wrapping_add(1);
257            output[base + j + 1] = scalar_carry;
258        }
259    }
260
261    /// Fused unpack 16-bit + delta decode using NEON
262    #[target_feature(enable = "neon")]
263    pub unsafe fn unpack_16bit_delta_decode(
264        input: &[u8],
265        output: &mut [u32],
266        first_value: u32,
267        count: usize,
268    ) {
269        output[0] = first_value;
270        if count <= 1 {
271            return;
272        }
273
274        let ones = vdupq_n_u32(1);
275        let mut carry = vdupq_n_u32(first_value);
276
277        let full_groups = (count - 1) / 4;
278        let remainder = (count - 1) % 4;
279
280        for group in 0..full_groups {
281            let base = group * 4;
282            let in_ptr = input.as_ptr().add(base * 2) as *const u16;
283
284            // Load 4 u16 values and widen to u32
285            let vals = vld1_u16(in_ptr);
286            let d = vmovl_u16(vals);
287
288            // Add 1 (since we store gap-1)
289            let gaps = vaddq_u32(d, ones);
290
291            // Compute prefix sum within the 4 elements
292            let prefix = prefix_sum_4(gaps);
293
294            // Add carry
295            let result = vaddq_u32(prefix, carry);
296
297            // Store result
298            vst1q_u32(output[base + 1..].as_mut_ptr(), result);
299
300            // Update carry
301            carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
302        }
303
304        // Handle remainder
305        let base = full_groups * 4;
306        let mut scalar_carry = vgetq_lane_u32(carry, 0);
307        for j in 0..remainder {
308            let idx = (base + j) * 2;
309            let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
310            scalar_carry = scalar_carry.wrapping_add(delta).wrapping_add(1);
311            output[base + j + 1] = scalar_carry;
312        }
313    }
314
315    /// Check if NEON is available (always true on aarch64)
316    #[inline]
317    pub fn is_available() -> bool {
318        true
319    }
320}
321
322// ============================================================================
323// SSE intrinsics for x86_64 (Intel/AMD)
324// ============================================================================
325
326#[cfg(target_arch = "x86_64")]
327#[allow(unsafe_op_in_unsafe_fn)]
328mod sse {
329    use std::arch::x86_64::*;
330
331    /// SIMD unpack for 8-bit values using SSE
332    #[target_feature(enable = "sse2", enable = "sse4.1")]
333    pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
334        let chunks = count / 16;
335        let remainder = count % 16;
336
337        for chunk in 0..chunks {
338            let base = chunk * 16;
339            let in_ptr = input.as_ptr().add(base);
340
341            let bytes = _mm_loadu_si128(in_ptr as *const __m128i);
342
343            // Zero extend u8 -> u32 using SSE4.1 pmovzx
344            let v0 = _mm_cvtepu8_epi32(bytes);
345            let v1 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 4));
346            let v2 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 8));
347            let v3 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 12));
348
349            let out_ptr = output.as_mut_ptr().add(base);
350            _mm_storeu_si128(out_ptr as *mut __m128i, v0);
351            _mm_storeu_si128(out_ptr.add(4) as *mut __m128i, v1);
352            _mm_storeu_si128(out_ptr.add(8) as *mut __m128i, v2);
353            _mm_storeu_si128(out_ptr.add(12) as *mut __m128i, v3);
354        }
355
356        let base = chunks * 16;
357        for i in 0..remainder {
358            output[base + i] = input[base + i] as u32;
359        }
360    }
361
362    /// SIMD unpack for 16-bit values using SSE
363    #[target_feature(enable = "sse2", enable = "sse4.1")]
364    pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
365        let chunks = count / 8;
366        let remainder = count % 8;
367
368        for chunk in 0..chunks {
369            let base = chunk * 8;
370            let in_ptr = input.as_ptr().add(base * 2);
371
372            let vals = _mm_loadu_si128(in_ptr as *const __m128i);
373            let low = _mm_cvtepu16_epi32(vals);
374            let high = _mm_cvtepu16_epi32(_mm_srli_si128(vals, 8));
375
376            let out_ptr = output.as_mut_ptr().add(base);
377            _mm_storeu_si128(out_ptr as *mut __m128i, low);
378            _mm_storeu_si128(out_ptr.add(4) as *mut __m128i, high);
379        }
380
381        let base = chunks * 8;
382        for i in 0..remainder {
383            let idx = (base + i) * 2;
384            output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
385        }
386    }
387
388    /// SIMD unpack for 32-bit values using SSE (fast copy)
389    #[target_feature(enable = "sse2")]
390    pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
391        let chunks = count / 4;
392        let remainder = count % 4;
393
394        let in_ptr = input.as_ptr() as *const __m128i;
395        let out_ptr = output.as_mut_ptr() as *mut __m128i;
396
397        for chunk in 0..chunks {
398            let vals = _mm_loadu_si128(in_ptr.add(chunk));
399            _mm_storeu_si128(out_ptr.add(chunk), vals);
400        }
401
402        // Handle remainder
403        let base = chunks * 4;
404        for i in 0..remainder {
405            let idx = (base + i) * 4;
406            output[base + i] =
407                u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
408        }
409    }
410
411    /// SIMD prefix sum for 4 u32 values using SSE
412    /// Input:  [a, b, c, d]
413    /// Output: [a, a+b, a+b+c, a+b+c+d]
414    #[inline]
415    #[target_feature(enable = "sse2")]
416    unsafe fn prefix_sum_4(v: __m128i) -> __m128i {
417        // Step 1: shift by 1 element (4 bytes) and add
418        // [a, b, c, d] + [0, a, b, c] = [a, a+b, b+c, c+d]
419        let shifted1 = _mm_slli_si128(v, 4);
420        let sum1 = _mm_add_epi32(v, shifted1);
421
422        // Step 2: shift by 2 elements (8 bytes) and add
423        // [a, a+b, b+c, c+d] + [0, 0, a, a+b] = [a, a+b, a+b+c, a+b+c+d]
424        let shifted2 = _mm_slli_si128(sum1, 8);
425        _mm_add_epi32(sum1, shifted2)
426    }
427
428    /// SIMD delta decode using SSE with true SIMD prefix sum
429    #[target_feature(enable = "sse2", enable = "sse4.1")]
430    pub unsafe fn delta_decode(
431        output: &mut [u32],
432        deltas: &[u32],
433        first_doc_id: u32,
434        count: usize,
435    ) {
436        if count == 0 {
437            return;
438        }
439
440        output[0] = first_doc_id;
441        if count == 1 {
442            return;
443        }
444
445        let ones = _mm_set1_epi32(1);
446        let mut carry = _mm_set1_epi32(first_doc_id as i32);
447
448        let full_groups = (count - 1) / 4;
449        let remainder = (count - 1) % 4;
450
451        for group in 0..full_groups {
452            let base = group * 4;
453
454            // Load 4 deltas and add 1 (since we store gap-1)
455            let d = _mm_loadu_si128(deltas[base..].as_ptr() as *const __m128i);
456            let gaps = _mm_add_epi32(d, ones);
457
458            // Compute prefix sum within the 4 elements
459            let prefix = prefix_sum_4(gaps);
460
461            // Add carry (broadcast last element of previous group)
462            let result = _mm_add_epi32(prefix, carry);
463
464            // Store result
465            _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
466
467            // Update carry: broadcast the last element for next iteration
468            carry = _mm_shuffle_epi32(result, 0xFF); // broadcast lane 3
469        }
470
471        // Handle remainder
472        let base = full_groups * 4;
473        let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
474        for j in 0..remainder {
475            scalar_carry = scalar_carry.wrapping_add(deltas[base + j]).wrapping_add(1);
476            output[base + j + 1] = scalar_carry;
477        }
478    }
479
480    /// SIMD add 1 to all values using SSE
481    #[target_feature(enable = "sse2")]
482    pub unsafe fn add_one(values: &mut [u32], count: usize) {
483        let ones = _mm_set1_epi32(1);
484        let chunks = count / 4;
485        let remainder = count % 4;
486
487        for chunk in 0..chunks {
488            let base = chunk * 4;
489            let ptr = values.as_mut_ptr().add(base) as *mut __m128i;
490            let v = _mm_loadu_si128(ptr);
491            let result = _mm_add_epi32(v, ones);
492            _mm_storeu_si128(ptr, result);
493        }
494
495        let base = chunks * 4;
496        for i in 0..remainder {
497            values[base + i] += 1;
498        }
499    }
500
501    /// Fused unpack 8-bit + delta decode using SSE
502    #[target_feature(enable = "sse2", enable = "sse4.1")]
503    pub unsafe fn unpack_8bit_delta_decode(
504        input: &[u8],
505        output: &mut [u32],
506        first_value: u32,
507        count: usize,
508    ) {
509        output[0] = first_value;
510        if count <= 1 {
511            return;
512        }
513
514        let ones = _mm_set1_epi32(1);
515        let mut carry = _mm_set1_epi32(first_value as i32);
516
517        let full_groups = (count - 1) / 4;
518        let remainder = (count - 1) % 4;
519
520        for group in 0..full_groups {
521            let base = group * 4;
522
523            // Load 4 bytes (unaligned) and zero-extend to u32
524            let bytes = _mm_cvtsi32_si128(std::ptr::read_unaligned(
525                input.as_ptr().add(base) as *const i32
526            ));
527            let d = _mm_cvtepu8_epi32(bytes);
528
529            // Add 1 (since we store gap-1)
530            let gaps = _mm_add_epi32(d, ones);
531
532            // Compute prefix sum within the 4 elements
533            let prefix = prefix_sum_4(gaps);
534
535            // Add carry
536            let result = _mm_add_epi32(prefix, carry);
537
538            // Store result
539            _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
540
541            // Update carry: broadcast the last element
542            carry = _mm_shuffle_epi32(result, 0xFF);
543        }
544
545        // Handle remainder
546        let base = full_groups * 4;
547        let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
548        for j in 0..remainder {
549            scalar_carry = scalar_carry
550                .wrapping_add(input[base + j] as u32)
551                .wrapping_add(1);
552            output[base + j + 1] = scalar_carry;
553        }
554    }
555
556    /// Fused unpack 16-bit + delta decode using SSE
557    #[target_feature(enable = "sse2", enable = "sse4.1")]
558    pub unsafe fn unpack_16bit_delta_decode(
559        input: &[u8],
560        output: &mut [u32],
561        first_value: u32,
562        count: usize,
563    ) {
564        output[0] = first_value;
565        if count <= 1 {
566            return;
567        }
568
569        let ones = _mm_set1_epi32(1);
570        let mut carry = _mm_set1_epi32(first_value as i32);
571
572        let full_groups = (count - 1) / 4;
573        let remainder = (count - 1) % 4;
574
575        for group in 0..full_groups {
576            let base = group * 4;
577            let in_ptr = input.as_ptr().add(base * 2);
578
579            // Load 8 bytes (4 u16 values, unaligned) and zero-extend to u32
580            let vals = _mm_loadl_epi64(in_ptr as *const __m128i); // loadl_epi64 supports unaligned
581            let d = _mm_cvtepu16_epi32(vals);
582
583            // Add 1 (since we store gap-1)
584            let gaps = _mm_add_epi32(d, ones);
585
586            // Compute prefix sum within the 4 elements
587            let prefix = prefix_sum_4(gaps);
588
589            // Add carry
590            let result = _mm_add_epi32(prefix, carry);
591
592            // Store result
593            _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
594
595            // Update carry: broadcast the last element
596            carry = _mm_shuffle_epi32(result, 0xFF);
597        }
598
599        // Handle remainder
600        let base = full_groups * 4;
601        let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
602        for j in 0..remainder {
603            let idx = (base + j) * 2;
604            let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
605            scalar_carry = scalar_carry.wrapping_add(delta).wrapping_add(1);
606            output[base + j + 1] = scalar_carry;
607        }
608    }
609
610    /// Check if SSE4.1 is available at runtime
611    #[inline]
612    pub fn is_available() -> bool {
613        is_x86_feature_detected!("sse4.1")
614    }
615}
616
617// ============================================================================
618// AVX2 intrinsics for x86_64 (Intel/AMD with 256-bit registers)
619// ============================================================================
620
621#[cfg(target_arch = "x86_64")]
622#[allow(unsafe_op_in_unsafe_fn)]
623mod avx2 {
624    use std::arch::x86_64::*;
625
626    /// AVX2 unpack for 8-bit values (processes 32 bytes at a time)
627    #[target_feature(enable = "avx2")]
628    pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
629        let chunks = count / 32;
630        let remainder = count % 32;
631
632        for chunk in 0..chunks {
633            let base = chunk * 32;
634            let in_ptr = input.as_ptr().add(base);
635
636            // Load 32 bytes (two 128-bit loads, then combine)
637            let bytes_lo = _mm_loadu_si128(in_ptr as *const __m128i);
638            let bytes_hi = _mm_loadu_si128(in_ptr.add(16) as *const __m128i);
639
640            // Zero extend first 16 bytes: u8 -> u32
641            let v0 = _mm256_cvtepu8_epi32(bytes_lo);
642            let v1 = _mm256_cvtepu8_epi32(_mm_srli_si128(bytes_lo, 8));
643            let v2 = _mm256_cvtepu8_epi32(bytes_hi);
644            let v3 = _mm256_cvtepu8_epi32(_mm_srli_si128(bytes_hi, 8));
645
646            let out_ptr = output.as_mut_ptr().add(base);
647            _mm256_storeu_si256(out_ptr as *mut __m256i, v0);
648            _mm256_storeu_si256(out_ptr.add(8) as *mut __m256i, v1);
649            _mm256_storeu_si256(out_ptr.add(16) as *mut __m256i, v2);
650            _mm256_storeu_si256(out_ptr.add(24) as *mut __m256i, v3);
651        }
652
653        // Handle remainder with SSE
654        let base = chunks * 32;
655        for i in 0..remainder {
656            output[base + i] = input[base + i] as u32;
657        }
658    }
659
660    /// AVX2 unpack for 16-bit values (processes 16 values at a time)
661    #[target_feature(enable = "avx2")]
662    pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
663        let chunks = count / 16;
664        let remainder = count % 16;
665
666        for chunk in 0..chunks {
667            let base = chunk * 16;
668            let in_ptr = input.as_ptr().add(base * 2);
669
670            // Load 32 bytes (16 u16 values)
671            let vals_lo = _mm_loadu_si128(in_ptr as *const __m128i);
672            let vals_hi = _mm_loadu_si128(in_ptr.add(16) as *const __m128i);
673
674            // Zero extend u16 -> u32
675            let v0 = _mm256_cvtepu16_epi32(vals_lo);
676            let v1 = _mm256_cvtepu16_epi32(vals_hi);
677
678            let out_ptr = output.as_mut_ptr().add(base);
679            _mm256_storeu_si256(out_ptr as *mut __m256i, v0);
680            _mm256_storeu_si256(out_ptr.add(8) as *mut __m256i, v1);
681        }
682
683        // Handle remainder
684        let base = chunks * 16;
685        for i in 0..remainder {
686            let idx = (base + i) * 2;
687            output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
688        }
689    }
690
691    /// AVX2 unpack for 32-bit values (fast copy, 8 values at a time)
692    #[target_feature(enable = "avx2")]
693    pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
694        let chunks = count / 8;
695        let remainder = count % 8;
696
697        let in_ptr = input.as_ptr() as *const __m256i;
698        let out_ptr = output.as_mut_ptr() as *mut __m256i;
699
700        for chunk in 0..chunks {
701            let vals = _mm256_loadu_si256(in_ptr.add(chunk));
702            _mm256_storeu_si256(out_ptr.add(chunk), vals);
703        }
704
705        // Handle remainder
706        let base = chunks * 8;
707        for i in 0..remainder {
708            let idx = (base + i) * 4;
709            output[base + i] =
710                u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
711        }
712    }
713
714    /// AVX2 add 1 to all values (8 values at a time)
715    #[target_feature(enable = "avx2")]
716    pub unsafe fn add_one(values: &mut [u32], count: usize) {
717        let ones = _mm256_set1_epi32(1);
718        let chunks = count / 8;
719        let remainder = count % 8;
720
721        for chunk in 0..chunks {
722            let base = chunk * 8;
723            let ptr = values.as_mut_ptr().add(base) as *mut __m256i;
724            let v = _mm256_loadu_si256(ptr);
725            let result = _mm256_add_epi32(v, ones);
726            _mm256_storeu_si256(ptr, result);
727        }
728
729        let base = chunks * 8;
730        for i in 0..remainder {
731            values[base + i] += 1;
732        }
733    }
734
735    /// Check if AVX2 is available at runtime
736    #[inline]
737    pub fn is_available() -> bool {
738        is_x86_feature_detected!("avx2")
739    }
740}
741
742// ============================================================================
743// Scalar fallback implementations
744// ============================================================================
745
746#[allow(dead_code)]
747mod scalar {
748    /// Scalar unpack for 8-bit values
749    #[inline]
750    pub fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
751        for i in 0..count {
752            output[i] = input[i] as u32;
753        }
754    }
755
756    /// Scalar unpack for 16-bit values
757    #[inline]
758    pub fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
759        for (i, out) in output.iter_mut().enumerate().take(count) {
760            let idx = i * 2;
761            *out = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
762        }
763    }
764
765    /// Scalar unpack for 32-bit values
766    #[inline]
767    pub fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
768        for (i, out) in output.iter_mut().enumerate().take(count) {
769            let idx = i * 4;
770            *out = u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
771        }
772    }
773
774    /// Scalar delta decode
775    #[inline]
776    pub fn delta_decode(output: &mut [u32], deltas: &[u32], first_doc_id: u32, count: usize) {
777        if count == 0 {
778            return;
779        }
780
781        output[0] = first_doc_id;
782        let mut carry = first_doc_id;
783
784        for i in 0..count - 1 {
785            carry = carry.wrapping_add(deltas[i]).wrapping_add(1);
786            output[i + 1] = carry;
787        }
788    }
789
790    /// Scalar add 1 to all values
791    #[inline]
792    pub fn add_one(values: &mut [u32], count: usize) {
793        for val in values.iter_mut().take(count) {
794            *val += 1;
795        }
796    }
797}
798
799// ============================================================================
800// Public dispatch functions that select SIMD or scalar at runtime
801// ============================================================================
802
803/// Unpack 8-bit packed values to u32 with SIMD acceleration
804#[inline]
805pub fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
806    #[cfg(target_arch = "aarch64")]
807    {
808        if neon::is_available() {
809            unsafe {
810                neon::unpack_8bit(input, output, count);
811            }
812            return;
813        }
814    }
815
816    #[cfg(target_arch = "x86_64")]
817    {
818        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
819        if avx2::is_available() {
820            unsafe {
821                avx2::unpack_8bit(input, output, count);
822            }
823            return;
824        }
825        if sse::is_available() {
826            unsafe {
827                sse::unpack_8bit(input, output, count);
828            }
829            return;
830        }
831    }
832
833    scalar::unpack_8bit(input, output, count);
834}
835
836/// Unpack 16-bit packed values to u32 with SIMD acceleration
837#[inline]
838pub fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
839    #[cfg(target_arch = "aarch64")]
840    {
841        if neon::is_available() {
842            unsafe {
843                neon::unpack_16bit(input, output, count);
844            }
845            return;
846        }
847    }
848
849    #[cfg(target_arch = "x86_64")]
850    {
851        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
852        if avx2::is_available() {
853            unsafe {
854                avx2::unpack_16bit(input, output, count);
855            }
856            return;
857        }
858        if sse::is_available() {
859            unsafe {
860                sse::unpack_16bit(input, output, count);
861            }
862            return;
863        }
864    }
865
866    scalar::unpack_16bit(input, output, count);
867}
868
869/// Unpack 32-bit packed values to u32 with SIMD acceleration
870#[inline]
871pub fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
872    #[cfg(target_arch = "aarch64")]
873    {
874        if neon::is_available() {
875            unsafe {
876                neon::unpack_32bit(input, output, count);
877            }
878        }
879    }
880
881    #[cfg(target_arch = "x86_64")]
882    {
883        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
884        if avx2::is_available() {
885            unsafe {
886                avx2::unpack_32bit(input, output, count);
887            }
888        } else {
889            // SSE2 is always available on x86_64
890            unsafe {
891                sse::unpack_32bit(input, output, count);
892            }
893        }
894    }
895
896    #[cfg(not(any(target_arch = "aarch64", target_arch = "x86_64")))]
897    {
898        scalar::unpack_32bit(input, output, count);
899    }
900}
901
902/// Delta decode with SIMD acceleration
903///
904/// Converts delta-encoded values to absolute values.
905/// Input: deltas[i] = value[i+1] - value[i] - 1 (gap minus one)
906/// Output: absolute values starting from first_value
907#[inline]
908pub fn delta_decode(output: &mut [u32], deltas: &[u32], first_value: u32, count: usize) {
909    #[cfg(target_arch = "aarch64")]
910    {
911        if neon::is_available() {
912            unsafe {
913                neon::delta_decode(output, deltas, first_value, count);
914            }
915            return;
916        }
917    }
918
919    #[cfg(target_arch = "x86_64")]
920    {
921        if sse::is_available() {
922            unsafe {
923                sse::delta_decode(output, deltas, first_value, count);
924            }
925            return;
926        }
927    }
928
929    scalar::delta_decode(output, deltas, first_value, count);
930}
931
932/// Add 1 to all values with SIMD acceleration
933///
934/// Used for TF decoding where values are stored as (tf - 1)
935#[inline]
936pub fn add_one(values: &mut [u32], count: usize) {
937    #[cfg(target_arch = "aarch64")]
938    {
939        if neon::is_available() {
940            unsafe {
941                neon::add_one(values, count);
942            }
943        }
944    }
945
946    #[cfg(target_arch = "x86_64")]
947    {
948        // Prefer AVX2 (256-bit) over SSE (128-bit) when available
949        if avx2::is_available() {
950            unsafe {
951                avx2::add_one(values, count);
952            }
953        } else {
954            // SSE2 is always available on x86_64
955            unsafe {
956                sse::add_one(values, count);
957            }
958        }
959    }
960
961    #[cfg(not(any(target_arch = "aarch64", target_arch = "x86_64")))]
962    {
963        scalar::add_one(values, count);
964    }
965}
966
967/// Compute the number of bits needed to represent a value
968#[inline]
969pub fn bits_needed(val: u32) -> u8 {
970    if val == 0 {
971        0
972    } else {
973        32 - val.leading_zeros() as u8
974    }
975}
976
977// ============================================================================
978// Rounded bitpacking for truly vectorized encoding/decoding
979// ============================================================================
980//
981// Instead of using arbitrary bit widths (1-32), we round up to SIMD-friendly
982// widths: 0, 8, 16, or 32 bits. This trades ~10-20% more space for much faster
983// decoding since we can use direct SIMD widening instructions (pmovzx) without
984// any bit-shifting or masking.
985//
986// Bit width mapping:
987//   0      -> 0  (all zeros)
988//   1-8    -> 8  (u8)
989//   9-16   -> 16 (u16)
990//   17-32  -> 32 (u32)
991
992/// Rounded bit width type for SIMD-friendly encoding
993#[derive(Debug, Clone, Copy, PartialEq, Eq)]
994#[repr(u8)]
995pub enum RoundedBitWidth {
996    Zero = 0,
997    Bits8 = 8,
998    Bits16 = 16,
999    Bits32 = 32,
1000}
1001
1002impl RoundedBitWidth {
1003    /// Round an exact bit width to the nearest SIMD-friendly width
1004    #[inline]
1005    pub fn from_exact(bits: u8) -> Self {
1006        match bits {
1007            0 => RoundedBitWidth::Zero,
1008            1..=8 => RoundedBitWidth::Bits8,
1009            9..=16 => RoundedBitWidth::Bits16,
1010            _ => RoundedBitWidth::Bits32,
1011        }
1012    }
1013
1014    /// Convert from stored u8 value (must be 0, 8, 16, or 32)
1015    #[inline]
1016    pub fn from_u8(bits: u8) -> Self {
1017        match bits {
1018            0 => RoundedBitWidth::Zero,
1019            8 => RoundedBitWidth::Bits8,
1020            16 => RoundedBitWidth::Bits16,
1021            32 => RoundedBitWidth::Bits32,
1022            _ => RoundedBitWidth::Bits32, // Fallback for invalid values
1023        }
1024    }
1025
1026    /// Get the byte size per value
1027    #[inline]
1028    pub fn bytes_per_value(self) -> usize {
1029        match self {
1030            RoundedBitWidth::Zero => 0,
1031            RoundedBitWidth::Bits8 => 1,
1032            RoundedBitWidth::Bits16 => 2,
1033            RoundedBitWidth::Bits32 => 4,
1034        }
1035    }
1036
1037    /// Get the raw bit width value
1038    #[inline]
1039    pub fn as_u8(self) -> u8 {
1040        self as u8
1041    }
1042}
1043
1044/// Round a bit width to the nearest SIMD-friendly width (0, 8, 16, or 32)
1045#[inline]
1046pub fn round_bit_width(bits: u8) -> u8 {
1047    RoundedBitWidth::from_exact(bits).as_u8()
1048}
1049
1050/// Pack values using rounded bit width (SIMD-friendly)
1051///
1052/// This is much simpler than arbitrary bitpacking since values are byte-aligned.
1053/// Returns the number of bytes written.
1054#[inline]
1055pub fn pack_rounded(values: &[u32], bit_width: RoundedBitWidth, output: &mut [u8]) -> usize {
1056    let count = values.len();
1057    match bit_width {
1058        RoundedBitWidth::Zero => 0,
1059        RoundedBitWidth::Bits8 => {
1060            for (i, &v) in values.iter().enumerate() {
1061                output[i] = v as u8;
1062            }
1063            count
1064        }
1065        RoundedBitWidth::Bits16 => {
1066            for (i, &v) in values.iter().enumerate() {
1067                let bytes = (v as u16).to_le_bytes();
1068                output[i * 2] = bytes[0];
1069                output[i * 2 + 1] = bytes[1];
1070            }
1071            count * 2
1072        }
1073        RoundedBitWidth::Bits32 => {
1074            for (i, &v) in values.iter().enumerate() {
1075                let bytes = v.to_le_bytes();
1076                output[i * 4] = bytes[0];
1077                output[i * 4 + 1] = bytes[1];
1078                output[i * 4 + 2] = bytes[2];
1079                output[i * 4 + 3] = bytes[3];
1080            }
1081            count * 4
1082        }
1083    }
1084}
1085
1086/// Unpack values using rounded bit width with SIMD acceleration
1087///
1088/// This is the fast path - no bit manipulation needed, just widening.
1089#[inline]
1090pub fn unpack_rounded(input: &[u8], bit_width: RoundedBitWidth, output: &mut [u32], count: usize) {
1091    match bit_width {
1092        RoundedBitWidth::Zero => {
1093            for out in output.iter_mut().take(count) {
1094                *out = 0;
1095            }
1096        }
1097        RoundedBitWidth::Bits8 => unpack_8bit(input, output, count),
1098        RoundedBitWidth::Bits16 => unpack_16bit(input, output, count),
1099        RoundedBitWidth::Bits32 => unpack_32bit(input, output, count),
1100    }
1101}
1102
1103/// Fused unpack + delta decode using rounded bit width
1104///
1105/// Combines unpacking and prefix sum in a single pass for better cache utilization.
1106#[inline]
1107pub fn unpack_rounded_delta_decode(
1108    input: &[u8],
1109    bit_width: RoundedBitWidth,
1110    output: &mut [u32],
1111    first_value: u32,
1112    count: usize,
1113) {
1114    match bit_width {
1115        RoundedBitWidth::Zero => {
1116            // All deltas are 0, meaning gaps of 1
1117            let mut val = first_value;
1118            for out in output.iter_mut().take(count) {
1119                *out = val;
1120                val = val.wrapping_add(1);
1121            }
1122        }
1123        RoundedBitWidth::Bits8 => unpack_8bit_delta_decode(input, output, first_value, count),
1124        RoundedBitWidth::Bits16 => unpack_16bit_delta_decode(input, output, first_value, count),
1125        RoundedBitWidth::Bits32 => {
1126            // For 32-bit, unpack then delta decode (no fused version needed)
1127            unpack_32bit(input, output, count);
1128            // Delta decode in place - but we need the deltas separate
1129            // Actually for 32-bit we should just unpack and delta decode separately
1130            if count > 0 {
1131                let mut carry = first_value;
1132                output[0] = first_value;
1133                for item in output.iter_mut().take(count).skip(1) {
1134                    // item currently holds delta (gap-1)
1135                    carry = carry.wrapping_add(*item).wrapping_add(1);
1136                    *item = carry;
1137                }
1138            }
1139        }
1140    }
1141}
1142
1143// ============================================================================
1144// Fused operations for better cache utilization
1145// ============================================================================
1146
1147/// Fused unpack 8-bit + delta decode in a single pass
1148///
1149/// This avoids writing the intermediate unpacked values to memory,
1150/// improving cache utilization for large blocks.
1151#[inline]
1152pub fn unpack_8bit_delta_decode(input: &[u8], output: &mut [u32], first_value: u32, count: usize) {
1153    if count == 0 {
1154        return;
1155    }
1156
1157    output[0] = first_value;
1158    if count == 1 {
1159        return;
1160    }
1161
1162    #[cfg(target_arch = "aarch64")]
1163    {
1164        if neon::is_available() {
1165            unsafe {
1166                neon::unpack_8bit_delta_decode(input, output, first_value, count);
1167            }
1168            return;
1169        }
1170    }
1171
1172    #[cfg(target_arch = "x86_64")]
1173    {
1174        if sse::is_available() {
1175            unsafe {
1176                sse::unpack_8bit_delta_decode(input, output, first_value, count);
1177            }
1178            return;
1179        }
1180    }
1181
1182    // Scalar fallback
1183    let mut carry = first_value;
1184    for i in 0..count - 1 {
1185        carry = carry.wrapping_add(input[i] as u32).wrapping_add(1);
1186        output[i + 1] = carry;
1187    }
1188}
1189
1190/// Fused unpack 16-bit + delta decode in a single pass
1191#[inline]
1192pub fn unpack_16bit_delta_decode(input: &[u8], output: &mut [u32], first_value: u32, count: usize) {
1193    if count == 0 {
1194        return;
1195    }
1196
1197    output[0] = first_value;
1198    if count == 1 {
1199        return;
1200    }
1201
1202    #[cfg(target_arch = "aarch64")]
1203    {
1204        if neon::is_available() {
1205            unsafe {
1206                neon::unpack_16bit_delta_decode(input, output, first_value, count);
1207            }
1208            return;
1209        }
1210    }
1211
1212    #[cfg(target_arch = "x86_64")]
1213    {
1214        if sse::is_available() {
1215            unsafe {
1216                sse::unpack_16bit_delta_decode(input, output, first_value, count);
1217            }
1218            return;
1219        }
1220    }
1221
1222    // Scalar fallback
1223    let mut carry = first_value;
1224    for i in 0..count - 1 {
1225        let idx = i * 2;
1226        let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
1227        carry = carry.wrapping_add(delta).wrapping_add(1);
1228        output[i + 1] = carry;
1229    }
1230}
1231
1232/// Fused unpack + delta decode for arbitrary bit widths
1233///
1234/// Combines unpacking and prefix sum in a single pass, avoiding intermediate buffer.
1235/// Uses SIMD-accelerated paths for 8/16-bit widths, scalar for others.
1236#[inline]
1237pub fn unpack_delta_decode(
1238    input: &[u8],
1239    bit_width: u8,
1240    output: &mut [u32],
1241    first_value: u32,
1242    count: usize,
1243) {
1244    if count == 0 {
1245        return;
1246    }
1247
1248    output[0] = first_value;
1249    if count == 1 {
1250        return;
1251    }
1252
1253    // Fast paths for SIMD-friendly bit widths
1254    match bit_width {
1255        0 => {
1256            // All zeros = consecutive doc IDs (gap of 1)
1257            let mut val = first_value;
1258            for item in output.iter_mut().take(count).skip(1) {
1259                val = val.wrapping_add(1);
1260                *item = val;
1261            }
1262        }
1263        8 => unpack_8bit_delta_decode(input, output, first_value, count),
1264        16 => unpack_16bit_delta_decode(input, output, first_value, count),
1265        32 => {
1266            // 32-bit: unpack inline and delta decode
1267            let mut carry = first_value;
1268            for i in 0..count - 1 {
1269                let idx = i * 4;
1270                let delta = u32::from_le_bytes([
1271                    input[idx],
1272                    input[idx + 1],
1273                    input[idx + 2],
1274                    input[idx + 3],
1275                ]);
1276                carry = carry.wrapping_add(delta).wrapping_add(1);
1277                output[i + 1] = carry;
1278            }
1279        }
1280        _ => {
1281            // Generic bit width: fused unpack + delta decode
1282            let mask = (1u64 << bit_width) - 1;
1283            let bit_width_usize = bit_width as usize;
1284            let mut bit_pos = 0usize;
1285            let input_ptr = input.as_ptr();
1286            let mut carry = first_value;
1287
1288            for i in 0..count - 1 {
1289                let byte_idx = bit_pos >> 3;
1290                let bit_offset = bit_pos & 7;
1291
1292                // SAFETY: Caller guarantees input has enough data
1293                let word = unsafe { (input_ptr.add(byte_idx) as *const u64).read_unaligned() };
1294                let delta = ((word >> bit_offset) & mask) as u32;
1295
1296                carry = carry.wrapping_add(delta).wrapping_add(1);
1297                output[i + 1] = carry;
1298                bit_pos += bit_width_usize;
1299            }
1300        }
1301    }
1302}
1303
1304// ============================================================================
1305// Sparse Vector SIMD Functions
1306// ============================================================================
1307
1308/// Dequantize UInt8 weights to f32 with SIMD acceleration
1309///
1310/// Computes: output[i] = input[i] as f32 * scale + min_val
1311#[inline]
1312pub fn dequantize_uint8(input: &[u8], output: &mut [f32], scale: f32, min_val: f32, count: usize) {
1313    #[cfg(target_arch = "aarch64")]
1314    {
1315        if neon::is_available() {
1316            unsafe {
1317                dequantize_uint8_neon(input, output, scale, min_val, count);
1318            }
1319            return;
1320        }
1321    }
1322
1323    #[cfg(target_arch = "x86_64")]
1324    {
1325        if sse::is_available() {
1326            unsafe {
1327                dequantize_uint8_sse(input, output, scale, min_val, count);
1328            }
1329            return;
1330        }
1331    }
1332
1333    // Scalar fallback
1334    for i in 0..count {
1335        output[i] = input[i] as f32 * scale + min_val;
1336    }
1337}
1338
1339#[cfg(target_arch = "aarch64")]
1340#[target_feature(enable = "neon")]
1341#[allow(unsafe_op_in_unsafe_fn)]
1342unsafe fn dequantize_uint8_neon(
1343    input: &[u8],
1344    output: &mut [f32],
1345    scale: f32,
1346    min_val: f32,
1347    count: usize,
1348) {
1349    use std::arch::aarch64::*;
1350
1351    let scale_v = vdupq_n_f32(scale);
1352    let min_v = vdupq_n_f32(min_val);
1353
1354    let chunks = count / 16;
1355    let remainder = count % 16;
1356
1357    for chunk in 0..chunks {
1358        let base = chunk * 16;
1359        let in_ptr = input.as_ptr().add(base);
1360
1361        // Load 16 bytes
1362        let bytes = vld1q_u8(in_ptr);
1363
1364        // Widen u8 -> u16 -> u32 -> f32
1365        let low8 = vget_low_u8(bytes);
1366        let high8 = vget_high_u8(bytes);
1367
1368        let low16 = vmovl_u8(low8);
1369        let high16 = vmovl_u8(high8);
1370
1371        // Process 4 values at a time
1372        let u32_0 = vmovl_u16(vget_low_u16(low16));
1373        let u32_1 = vmovl_u16(vget_high_u16(low16));
1374        let u32_2 = vmovl_u16(vget_low_u16(high16));
1375        let u32_3 = vmovl_u16(vget_high_u16(high16));
1376
1377        // Convert to f32 and apply scale + min_val
1378        let f32_0 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_0), scale_v);
1379        let f32_1 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_1), scale_v);
1380        let f32_2 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_2), scale_v);
1381        let f32_3 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_3), scale_v);
1382
1383        let out_ptr = output.as_mut_ptr().add(base);
1384        vst1q_f32(out_ptr, f32_0);
1385        vst1q_f32(out_ptr.add(4), f32_1);
1386        vst1q_f32(out_ptr.add(8), f32_2);
1387        vst1q_f32(out_ptr.add(12), f32_3);
1388    }
1389
1390    // Handle remainder
1391    let base = chunks * 16;
1392    for i in 0..remainder {
1393        output[base + i] = input[base + i] as f32 * scale + min_val;
1394    }
1395}
1396
1397#[cfg(target_arch = "x86_64")]
1398#[target_feature(enable = "sse2", enable = "sse4.1")]
1399#[allow(unsafe_op_in_unsafe_fn)]
1400unsafe fn dequantize_uint8_sse(
1401    input: &[u8],
1402    output: &mut [f32],
1403    scale: f32,
1404    min_val: f32,
1405    count: usize,
1406) {
1407    use std::arch::x86_64::*;
1408
1409    let scale_v = _mm_set1_ps(scale);
1410    let min_v = _mm_set1_ps(min_val);
1411
1412    let chunks = count / 4;
1413    let remainder = count % 4;
1414
1415    for chunk in 0..chunks {
1416        let base = chunk * 4;
1417
1418        // Load 4 bytes and zero-extend to 32-bit
1419        let b0 = input[base] as i32;
1420        let b1 = input[base + 1] as i32;
1421        let b2 = input[base + 2] as i32;
1422        let b3 = input[base + 3] as i32;
1423
1424        let ints = _mm_set_epi32(b3, b2, b1, b0);
1425        let floats = _mm_cvtepi32_ps(ints);
1426
1427        // Apply scale and min_val: result = floats * scale + min_val
1428        let scaled = _mm_add_ps(_mm_mul_ps(floats, scale_v), min_v);
1429
1430        _mm_storeu_ps(output.as_mut_ptr().add(base), scaled);
1431    }
1432
1433    // Handle remainder
1434    let base = chunks * 4;
1435    for i in 0..remainder {
1436        output[base + i] = input[base + i] as f32 * scale + min_val;
1437    }
1438}
1439
1440/// Compute dot product of two f32 arrays with SIMD acceleration
1441#[inline]
1442pub fn dot_product_f32(a: &[f32], b: &[f32], count: usize) -> f32 {
1443    #[cfg(target_arch = "aarch64")]
1444    {
1445        if neon::is_available() {
1446            return unsafe { dot_product_f32_neon(a, b, count) };
1447        }
1448    }
1449
1450    #[cfg(target_arch = "x86_64")]
1451    {
1452        if is_x86_feature_detected!("avx2") && is_x86_feature_detected!("fma") {
1453            return unsafe { dot_product_f32_avx2(a, b, count) };
1454        }
1455        if sse::is_available() {
1456            return unsafe { dot_product_f32_sse(a, b, count) };
1457        }
1458    }
1459
1460    // Scalar fallback
1461    let mut sum = 0.0f32;
1462    for i in 0..count {
1463        sum += a[i] * b[i];
1464    }
1465    sum
1466}
1467
1468#[cfg(target_arch = "aarch64")]
1469#[target_feature(enable = "neon")]
1470#[allow(unsafe_op_in_unsafe_fn)]
1471unsafe fn dot_product_f32_neon(a: &[f32], b: &[f32], count: usize) -> f32 {
1472    use std::arch::aarch64::*;
1473
1474    let chunks = count / 4;
1475    let remainder = count % 4;
1476
1477    let mut acc = vdupq_n_f32(0.0);
1478
1479    for chunk in 0..chunks {
1480        let base = chunk * 4;
1481        let va = vld1q_f32(a.as_ptr().add(base));
1482        let vb = vld1q_f32(b.as_ptr().add(base));
1483        acc = vfmaq_f32(acc, va, vb);
1484    }
1485
1486    // Horizontal sum
1487    let mut sum = vaddvq_f32(acc);
1488
1489    // Handle remainder
1490    let base = chunks * 4;
1491    for i in 0..remainder {
1492        sum += a[base + i] * b[base + i];
1493    }
1494
1495    sum
1496}
1497
1498#[cfg(target_arch = "x86_64")]
1499#[target_feature(enable = "avx2", enable = "fma")]
1500#[allow(unsafe_op_in_unsafe_fn)]
1501unsafe fn dot_product_f32_avx2(a: &[f32], b: &[f32], count: usize) -> f32 {
1502    use std::arch::x86_64::*;
1503
1504    let chunks = count / 8;
1505    let remainder = count % 8;
1506
1507    let mut acc = _mm256_setzero_ps();
1508
1509    for chunk in 0..chunks {
1510        let base = chunk * 8;
1511        let va = _mm256_loadu_ps(a.as_ptr().add(base));
1512        let vb = _mm256_loadu_ps(b.as_ptr().add(base));
1513        acc = _mm256_fmadd_ps(va, vb, acc);
1514    }
1515
1516    // Horizontal sum: 256-bit → 128-bit → scalar
1517    let hi = _mm256_extractf128_ps(acc, 1);
1518    let lo = _mm256_castps256_ps128(acc);
1519    let sum128 = _mm_add_ps(lo, hi);
1520    let shuf = _mm_shuffle_ps(sum128, sum128, 0b10_11_00_01);
1521    let sums = _mm_add_ps(sum128, shuf);
1522    let shuf2 = _mm_movehl_ps(sums, sums);
1523    let final_sum = _mm_add_ss(sums, shuf2);
1524
1525    let mut sum = _mm_cvtss_f32(final_sum);
1526
1527    let base = chunks * 8;
1528    for i in 0..remainder {
1529        sum += a[base + i] * b[base + i];
1530    }
1531
1532    sum
1533}
1534
1535#[cfg(target_arch = "x86_64")]
1536#[target_feature(enable = "sse")]
1537#[allow(unsafe_op_in_unsafe_fn)]
1538unsafe fn dot_product_f32_sse(a: &[f32], b: &[f32], count: usize) -> f32 {
1539    use std::arch::x86_64::*;
1540
1541    let chunks = count / 4;
1542    let remainder = count % 4;
1543
1544    let mut acc = _mm_setzero_ps();
1545
1546    for chunk in 0..chunks {
1547        let base = chunk * 4;
1548        let va = _mm_loadu_ps(a.as_ptr().add(base));
1549        let vb = _mm_loadu_ps(b.as_ptr().add(base));
1550        acc = _mm_add_ps(acc, _mm_mul_ps(va, vb));
1551    }
1552
1553    // Horizontal sum: [a, b, c, d] -> a + b + c + d
1554    let shuf = _mm_shuffle_ps(acc, acc, 0b10_11_00_01); // [b, a, d, c]
1555    let sums = _mm_add_ps(acc, shuf); // [a+b, a+b, c+d, c+d]
1556    let shuf2 = _mm_movehl_ps(sums, sums); // [c+d, c+d, ?, ?]
1557    let final_sum = _mm_add_ss(sums, shuf2); // [a+b+c+d, ?, ?, ?]
1558
1559    let mut sum = _mm_cvtss_f32(final_sum);
1560
1561    // Handle remainder
1562    let base = chunks * 4;
1563    for i in 0..remainder {
1564        sum += a[base + i] * b[base + i];
1565    }
1566
1567    sum
1568}
1569
1570/// Find maximum value in f32 array with SIMD acceleration
1571#[inline]
1572pub fn max_f32(values: &[f32], count: usize) -> f32 {
1573    if count == 0 {
1574        return f32::NEG_INFINITY;
1575    }
1576
1577    #[cfg(target_arch = "aarch64")]
1578    {
1579        if neon::is_available() {
1580            return unsafe { max_f32_neon(values, count) };
1581        }
1582    }
1583
1584    #[cfg(target_arch = "x86_64")]
1585    {
1586        if sse::is_available() {
1587            return unsafe { max_f32_sse(values, count) };
1588        }
1589    }
1590
1591    // Scalar fallback
1592    values[..count]
1593        .iter()
1594        .cloned()
1595        .fold(f32::NEG_INFINITY, f32::max)
1596}
1597
1598#[cfg(target_arch = "aarch64")]
1599#[target_feature(enable = "neon")]
1600#[allow(unsafe_op_in_unsafe_fn)]
1601unsafe fn max_f32_neon(values: &[f32], count: usize) -> f32 {
1602    use std::arch::aarch64::*;
1603
1604    let chunks = count / 4;
1605    let remainder = count % 4;
1606
1607    let mut max_v = vdupq_n_f32(f32::NEG_INFINITY);
1608
1609    for chunk in 0..chunks {
1610        let base = chunk * 4;
1611        let v = vld1q_f32(values.as_ptr().add(base));
1612        max_v = vmaxq_f32(max_v, v);
1613    }
1614
1615    // Horizontal max
1616    let mut max_val = vmaxvq_f32(max_v);
1617
1618    // Handle remainder
1619    let base = chunks * 4;
1620    for i in 0..remainder {
1621        max_val = max_val.max(values[base + i]);
1622    }
1623
1624    max_val
1625}
1626
1627#[cfg(target_arch = "x86_64")]
1628#[target_feature(enable = "sse")]
1629#[allow(unsafe_op_in_unsafe_fn)]
1630unsafe fn max_f32_sse(values: &[f32], count: usize) -> f32 {
1631    use std::arch::x86_64::*;
1632
1633    let chunks = count / 4;
1634    let remainder = count % 4;
1635
1636    let mut max_v = _mm_set1_ps(f32::NEG_INFINITY);
1637
1638    for chunk in 0..chunks {
1639        let base = chunk * 4;
1640        let v = _mm_loadu_ps(values.as_ptr().add(base));
1641        max_v = _mm_max_ps(max_v, v);
1642    }
1643
1644    // Horizontal max: [a, b, c, d] -> max(a, b, c, d)
1645    let shuf = _mm_shuffle_ps(max_v, max_v, 0b10_11_00_01); // [b, a, d, c]
1646    let max1 = _mm_max_ps(max_v, shuf); // [max(a,b), max(a,b), max(c,d), max(c,d)]
1647    let shuf2 = _mm_movehl_ps(max1, max1); // [max(c,d), max(c,d), ?, ?]
1648    let final_max = _mm_max_ss(max1, shuf2); // [max(a,b,c,d), ?, ?, ?]
1649
1650    let mut max_val = _mm_cvtss_f32(final_max);
1651
1652    // Handle remainder
1653    let base = chunks * 4;
1654    for i in 0..remainder {
1655        max_val = max_val.max(values[base + i]);
1656    }
1657
1658    max_val
1659}
1660
1661// ============================================================================
1662// Batched Cosine Similarity for Dense Vector Search
1663// ============================================================================
1664
1665/// Fused dot-product + self-norm in a single pass (SIMD accelerated).
1666///
1667/// Returns (dot(a, b), dot(b, b)) — i.e. the dot product of a·b and ||b||².
1668/// Loads `b` only once (halves memory bandwidth vs two separate dot products).
1669#[inline]
1670fn fused_dot_norm(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1671    #[cfg(target_arch = "aarch64")]
1672    {
1673        if neon::is_available() {
1674            return unsafe { fused_dot_norm_neon(a, b, count) };
1675        }
1676    }
1677
1678    #[cfg(target_arch = "x86_64")]
1679    {
1680        if is_x86_feature_detected!("avx2") && is_x86_feature_detected!("fma") {
1681            return unsafe { fused_dot_norm_avx2(a, b, count) };
1682        }
1683        if sse::is_available() {
1684            return unsafe { fused_dot_norm_sse(a, b, count) };
1685        }
1686    }
1687
1688    // Scalar fallback
1689    let mut dot = 0.0f32;
1690    let mut norm_b = 0.0f32;
1691    for i in 0..count {
1692        dot += a[i] * b[i];
1693        norm_b += b[i] * b[i];
1694    }
1695    (dot, norm_b)
1696}
1697
1698#[cfg(target_arch = "aarch64")]
1699#[target_feature(enable = "neon")]
1700#[allow(unsafe_op_in_unsafe_fn)]
1701unsafe fn fused_dot_norm_neon(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1702    use std::arch::aarch64::*;
1703
1704    let chunks = count / 4;
1705    let remainder = count % 4;
1706
1707    let mut acc_dot = vdupq_n_f32(0.0);
1708    let mut acc_norm = vdupq_n_f32(0.0);
1709
1710    for chunk in 0..chunks {
1711        let base = chunk * 4;
1712        let va = vld1q_f32(a.as_ptr().add(base));
1713        let vb = vld1q_f32(b.as_ptr().add(base));
1714        acc_dot = vfmaq_f32(acc_dot, va, vb);
1715        acc_norm = vfmaq_f32(acc_norm, vb, vb);
1716    }
1717
1718    let mut dot = vaddvq_f32(acc_dot);
1719    let mut norm = vaddvq_f32(acc_norm);
1720
1721    let base = chunks * 4;
1722    for i in 0..remainder {
1723        dot += a[base + i] * b[base + i];
1724        norm += b[base + i] * b[base + i];
1725    }
1726
1727    (dot, norm)
1728}
1729
1730#[cfg(target_arch = "x86_64")]
1731#[target_feature(enable = "avx2", enable = "fma")]
1732#[allow(unsafe_op_in_unsafe_fn)]
1733unsafe fn fused_dot_norm_avx2(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1734    use std::arch::x86_64::*;
1735
1736    let chunks = count / 8;
1737    let remainder = count % 8;
1738
1739    let mut acc_dot = _mm256_setzero_ps();
1740    let mut acc_norm = _mm256_setzero_ps();
1741
1742    for chunk in 0..chunks {
1743        let base = chunk * 8;
1744        let va = _mm256_loadu_ps(a.as_ptr().add(base));
1745        let vb = _mm256_loadu_ps(b.as_ptr().add(base));
1746        acc_dot = _mm256_fmadd_ps(va, vb, acc_dot);
1747        acc_norm = _mm256_fmadd_ps(vb, vb, acc_norm);
1748    }
1749
1750    // Horizontal sums: 256→128→scalar
1751    let hi_d = _mm256_extractf128_ps(acc_dot, 1);
1752    let lo_d = _mm256_castps256_ps128(acc_dot);
1753    let sum_d = _mm_add_ps(lo_d, hi_d);
1754    let shuf_d = _mm_shuffle_ps(sum_d, sum_d, 0b10_11_00_01);
1755    let sums_d = _mm_add_ps(sum_d, shuf_d);
1756    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
1757    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
1758
1759    let hi_n = _mm256_extractf128_ps(acc_norm, 1);
1760    let lo_n = _mm256_castps256_ps128(acc_norm);
1761    let sum_n = _mm_add_ps(lo_n, hi_n);
1762    let shuf_n = _mm_shuffle_ps(sum_n, sum_n, 0b10_11_00_01);
1763    let sums_n = _mm_add_ps(sum_n, shuf_n);
1764    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
1765    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
1766
1767    let base = chunks * 8;
1768    for i in 0..remainder {
1769        dot += a[base + i] * b[base + i];
1770        norm += b[base + i] * b[base + i];
1771    }
1772
1773    (dot, norm)
1774}
1775
1776#[cfg(target_arch = "x86_64")]
1777#[target_feature(enable = "sse")]
1778#[allow(unsafe_op_in_unsafe_fn)]
1779unsafe fn fused_dot_norm_sse(a: &[f32], b: &[f32], count: usize) -> (f32, f32) {
1780    use std::arch::x86_64::*;
1781
1782    let chunks = count / 4;
1783    let remainder = count % 4;
1784
1785    let mut acc_dot = _mm_setzero_ps();
1786    let mut acc_norm = _mm_setzero_ps();
1787
1788    for chunk in 0..chunks {
1789        let base = chunk * 4;
1790        let va = _mm_loadu_ps(a.as_ptr().add(base));
1791        let vb = _mm_loadu_ps(b.as_ptr().add(base));
1792        acc_dot = _mm_add_ps(acc_dot, _mm_mul_ps(va, vb));
1793        acc_norm = _mm_add_ps(acc_norm, _mm_mul_ps(vb, vb));
1794    }
1795
1796    // Horizontal sums
1797    let shuf_d = _mm_shuffle_ps(acc_dot, acc_dot, 0b10_11_00_01);
1798    let sums_d = _mm_add_ps(acc_dot, shuf_d);
1799    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
1800    let final_d = _mm_add_ss(sums_d, shuf2_d);
1801    let mut dot = _mm_cvtss_f32(final_d);
1802
1803    let shuf_n = _mm_shuffle_ps(acc_norm, acc_norm, 0b10_11_00_01);
1804    let sums_n = _mm_add_ps(acc_norm, shuf_n);
1805    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
1806    let final_n = _mm_add_ss(sums_n, shuf2_n);
1807    let mut norm = _mm_cvtss_f32(final_n);
1808
1809    let base = chunks * 4;
1810    for i in 0..remainder {
1811        dot += a[base + i] * b[base + i];
1812        norm += b[base + i] * b[base + i];
1813    }
1814
1815    (dot, norm)
1816}
1817
1818/// Fast approximate reciprocal square root: 1/sqrt(x).
1819///
1820/// Uses the IEEE 754 bit trick (Quake III) + one Newton-Raphson iteration
1821/// for ~23-bit precision — sufficient for cosine similarity scoring.
1822/// ~3-5x faster than `1.0 / x.sqrt()` on most architectures.
1823#[inline]
1824fn fast_inv_sqrt(x: f32) -> f32 {
1825    let half = 0.5 * x;
1826    let i = 0x5F37_5A86_u32.wrapping_sub(x.to_bits() >> 1);
1827    let y = f32::from_bits(i);
1828    let y = y * (1.5 - half * y * y); // first Newton-Raphson step
1829    y * (1.5 - half * y * y) // second step: ~23-bit precision
1830}
1831
1832/// Batch cosine similarity: query vs N contiguous vectors.
1833///
1834/// `vectors` is a contiguous buffer of `n * dim` floats (row-major).
1835/// `scores` must have length >= n.
1836///
1837/// Optimizations over calling `cosine_similarity` N times:
1838/// 1. Query norm computed once (not N times)
1839/// 2. Fused dot+norm kernel — each vector loaded once (halves bandwidth)
1840/// 3. No per-call overhead (branch prediction, function calls)
1841/// 4. Fast reciprocal square root (~3-5x faster than 1/sqrt)
1842#[inline]
1843pub fn batch_cosine_scores(query: &[f32], vectors: &[f32], dim: usize, scores: &mut [f32]) {
1844    let n = scores.len();
1845    debug_assert!(vectors.len() >= n * dim);
1846    debug_assert_eq!(query.len(), dim);
1847
1848    if dim == 0 || n == 0 {
1849        return;
1850    }
1851
1852    // Pre-compute query inverse norm once
1853    let norm_q_sq = dot_product_f32(query, query, dim);
1854    if norm_q_sq < f32::EPSILON {
1855        for s in scores.iter_mut() {
1856            *s = 0.0;
1857        }
1858        return;
1859    }
1860    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
1861
1862    for i in 0..n {
1863        let vec = &vectors[i * dim..(i + 1) * dim];
1864        let (dot, norm_v_sq) = fused_dot_norm(query, vec, dim);
1865        if norm_v_sq < f32::EPSILON {
1866            scores[i] = 0.0;
1867        } else {
1868            scores[i] = dot * inv_norm_q * fast_inv_sqrt(norm_v_sq);
1869        }
1870    }
1871}
1872
1873// ============================================================================
1874// f16 (IEEE 754 half-precision) conversion
1875// ============================================================================
1876
1877/// Convert f32 to f16 (IEEE 754 half-precision), stored as u16
1878#[inline]
1879pub fn f32_to_f16(value: f32) -> u16 {
1880    let bits = value.to_bits();
1881    let sign = (bits >> 16) & 0x8000;
1882    let exp = ((bits >> 23) & 0xFF) as i32;
1883    let mantissa = bits & 0x7F_FFFF;
1884
1885    if exp == 255 {
1886        // Inf/NaN
1887        return (sign | 0x7C00 | ((mantissa >> 13) & 0x3FF)) as u16;
1888    }
1889
1890    let exp16 = exp - 127 + 15;
1891
1892    if exp16 >= 31 {
1893        return (sign | 0x7C00) as u16; // overflow → infinity
1894    }
1895
1896    if exp16 <= 0 {
1897        if exp16 < -10 {
1898            return sign as u16; // too small → zero
1899        }
1900        let m = (mantissa | 0x80_0000) >> (1 - exp16);
1901        return (sign | (m >> 13)) as u16;
1902    }
1903
1904    (sign | ((exp16 as u32) << 10) | (mantissa >> 13)) as u16
1905}
1906
1907/// Convert f16 (stored as u16) to f32
1908#[inline]
1909pub fn f16_to_f32(half: u16) -> f32 {
1910    let sign = ((half & 0x8000) as u32) << 16;
1911    let exp = ((half >> 10) & 0x1F) as u32;
1912    let mantissa = (half & 0x3FF) as u32;
1913
1914    if exp == 0 {
1915        if mantissa == 0 {
1916            return f32::from_bits(sign);
1917        }
1918        // Subnormal: normalize
1919        let mut e = 0u32;
1920        let mut m = mantissa;
1921        while (m & 0x400) == 0 {
1922            m <<= 1;
1923            e += 1;
1924        }
1925        return f32::from_bits(sign | ((127 - 15 + 1 - e) << 23) | ((m & 0x3FF) << 13));
1926    }
1927
1928    if exp == 31 {
1929        return f32::from_bits(sign | 0x7F80_0000 | (mantissa << 13));
1930    }
1931
1932    f32::from_bits(sign | ((exp + 127 - 15) << 23) | (mantissa << 13))
1933}
1934
1935// ============================================================================
1936// uint8 scalar quantization for [-1, 1] range
1937// ============================================================================
1938
1939const U8_SCALE: f32 = 127.5;
1940const U8_INV_SCALE: f32 = 1.0 / 127.5;
1941
1942/// Quantize f32 in [-1, 1] to u8 [0, 255]
1943#[inline]
1944pub fn f32_to_u8_saturating(value: f32) -> u8 {
1945    ((value.clamp(-1.0, 1.0) + 1.0) * U8_SCALE) as u8
1946}
1947
1948/// Dequantize u8 [0, 255] to f32 in [-1, 1]
1949#[inline]
1950pub fn u8_to_f32(byte: u8) -> f32 {
1951    byte as f32 * U8_INV_SCALE - 1.0
1952}
1953
1954// ============================================================================
1955// Batch conversion (used during builder write)
1956// ============================================================================
1957
1958/// Batch convert f32 slice to f16 (stored as u16)
1959pub fn batch_f32_to_f16(src: &[f32], dst: &mut [u16]) {
1960    debug_assert_eq!(src.len(), dst.len());
1961    for (s, d) in src.iter().zip(dst.iter_mut()) {
1962        *d = f32_to_f16(*s);
1963    }
1964}
1965
1966/// Batch convert f32 slice to u8 with [-1,1] → [0,255] mapping
1967pub fn batch_f32_to_u8(src: &[f32], dst: &mut [u8]) {
1968    debug_assert_eq!(src.len(), dst.len());
1969    for (s, d) in src.iter().zip(dst.iter_mut()) {
1970        *d = f32_to_u8_saturating(*s);
1971    }
1972}
1973
1974// ============================================================================
1975// NEON-accelerated fused dot+norm for quantized vectors
1976// ============================================================================
1977
1978#[cfg(target_arch = "aarch64")]
1979#[allow(unsafe_op_in_unsafe_fn)]
1980mod neon_quant {
1981    use std::arch::aarch64::*;
1982
1983    /// Fused dot(query_f16, vec_f16) + norm(vec_f16) for f16 vectors on NEON.
1984    ///
1985    /// Both query and vectors are f16 (stored as u16). Uses hardware `vcvt_f32_f16`
1986    /// for SIMD f16→f32 conversion (replaces scalar bit manipulation), processes
1987    /// 8 elements per iteration with f32 accumulation for precision.
1988    #[target_feature(enable = "neon")]
1989    pub unsafe fn fused_dot_norm_f16(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
1990        let chunks8 = dim / 8;
1991        let remainder = dim % 8;
1992
1993        let mut acc_dot = vdupq_n_f32(0.0);
1994        let mut acc_norm = vdupq_n_f32(0.0);
1995
1996        for c in 0..chunks8 {
1997            let base = c * 8;
1998
1999            // Load 8 f16 vector values, hardware-convert to 2×4 f32
2000            let v_raw = vld1q_u16(vec_f16.as_ptr().add(base));
2001            let v_lo = vcvt_f32_f16(vreinterpret_f16_u16(vget_low_u16(v_raw)));
2002            let v_hi = vcvt_f32_f16(vreinterpret_f16_u16(vget_high_u16(v_raw)));
2003
2004            // Load 8 f16 query values, hardware-convert to 2×4 f32
2005            let q_raw = vld1q_u16(query_f16.as_ptr().add(base));
2006            let q_lo = vcvt_f32_f16(vreinterpret_f16_u16(vget_low_u16(q_raw)));
2007            let q_hi = vcvt_f32_f16(vreinterpret_f16_u16(vget_high_u16(q_raw)));
2008
2009            acc_dot = vfmaq_f32(acc_dot, q_lo, v_lo);
2010            acc_dot = vfmaq_f32(acc_dot, q_hi, v_hi);
2011            acc_norm = vfmaq_f32(acc_norm, v_lo, v_lo);
2012            acc_norm = vfmaq_f32(acc_norm, v_hi, v_hi);
2013        }
2014
2015        let mut dot = vaddvq_f32(acc_dot);
2016        let mut norm = vaddvq_f32(acc_norm);
2017
2018        let base = chunks8 * 8;
2019        for i in 0..remainder {
2020            let v = super::f16_to_f32(*vec_f16.get_unchecked(base + i));
2021            let q = super::f16_to_f32(*query_f16.get_unchecked(base + i));
2022            dot += q * v;
2023            norm += v * v;
2024        }
2025
2026        (dot, norm)
2027    }
2028
2029    /// Fused dot(query, vec) + norm(vec) for u8 vectors on NEON.
2030    /// Processes 16 u8 values per iteration using NEON widening chain.
2031    #[target_feature(enable = "neon")]
2032    pub unsafe fn fused_dot_norm_u8(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2033        let scale = vdupq_n_f32(super::U8_INV_SCALE);
2034        let offset = vdupq_n_f32(-1.0);
2035
2036        let chunks16 = dim / 16;
2037        let remainder = dim % 16;
2038
2039        let mut acc_dot = vdupq_n_f32(0.0);
2040        let mut acc_norm = vdupq_n_f32(0.0);
2041
2042        for c in 0..chunks16 {
2043            let base = c * 16;
2044
2045            // Load 16 u8 values
2046            let bytes = vld1q_u8(vec_u8.as_ptr().add(base));
2047
2048            // Widen: 16×u8 → 2×8×u16 → 4×4×u32 → 4×4×f32
2049            let lo8 = vget_low_u8(bytes);
2050            let hi8 = vget_high_u8(bytes);
2051            let lo16 = vmovl_u8(lo8);
2052            let hi16 = vmovl_u8(hi8);
2053
2054            let f0 = vaddq_f32(
2055                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(lo16))), scale),
2056                offset,
2057            );
2058            let f1 = vaddq_f32(
2059                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(lo16))), scale),
2060                offset,
2061            );
2062            let f2 = vaddq_f32(
2063                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_low_u16(hi16))), scale),
2064                offset,
2065            );
2066            let f3 = vaddq_f32(
2067                vmulq_f32(vcvtq_f32_u32(vmovl_u16(vget_high_u16(hi16))), scale),
2068                offset,
2069            );
2070
2071            let q0 = vld1q_f32(query.as_ptr().add(base));
2072            let q1 = vld1q_f32(query.as_ptr().add(base + 4));
2073            let q2 = vld1q_f32(query.as_ptr().add(base + 8));
2074            let q3 = vld1q_f32(query.as_ptr().add(base + 12));
2075
2076            acc_dot = vfmaq_f32(acc_dot, q0, f0);
2077            acc_dot = vfmaq_f32(acc_dot, q1, f1);
2078            acc_dot = vfmaq_f32(acc_dot, q2, f2);
2079            acc_dot = vfmaq_f32(acc_dot, q3, f3);
2080
2081            acc_norm = vfmaq_f32(acc_norm, f0, f0);
2082            acc_norm = vfmaq_f32(acc_norm, f1, f1);
2083            acc_norm = vfmaq_f32(acc_norm, f2, f2);
2084            acc_norm = vfmaq_f32(acc_norm, f3, f3);
2085        }
2086
2087        let mut dot = vaddvq_f32(acc_dot);
2088        let mut norm = vaddvq_f32(acc_norm);
2089
2090        let base = chunks16 * 16;
2091        for i in 0..remainder {
2092            let v = super::u8_to_f32(*vec_u8.get_unchecked(base + i));
2093            dot += *query.get_unchecked(base + i) * v;
2094            norm += v * v;
2095        }
2096
2097        (dot, norm)
2098    }
2099}
2100
2101// ============================================================================
2102// Scalar fallback for fused dot+norm on quantized vectors
2103// ============================================================================
2104
2105#[allow(dead_code)]
2106fn fused_dot_norm_f16_scalar(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2107    let mut dot = 0.0f32;
2108    let mut norm = 0.0f32;
2109    for i in 0..dim {
2110        let v = f16_to_f32(vec_f16[i]);
2111        let q = f16_to_f32(query_f16[i]);
2112        dot += q * v;
2113        norm += v * v;
2114    }
2115    (dot, norm)
2116}
2117
2118#[allow(dead_code)]
2119fn fused_dot_norm_u8_scalar(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2120    let mut dot = 0.0f32;
2121    let mut norm = 0.0f32;
2122    for i in 0..dim {
2123        let v = u8_to_f32(vec_u8[i]);
2124        dot += query[i] * v;
2125        norm += v * v;
2126    }
2127    (dot, norm)
2128}
2129
2130// ============================================================================
2131// x86_64 SSE4.1 quantized fused dot+norm
2132// ============================================================================
2133
2134#[cfg(target_arch = "x86_64")]
2135#[target_feature(enable = "sse2", enable = "sse4.1")]
2136#[allow(unsafe_op_in_unsafe_fn)]
2137unsafe fn fused_dot_norm_f16_sse(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2138    use std::arch::x86_64::*;
2139
2140    let chunks = dim / 4;
2141    let remainder = dim % 4;
2142
2143    let mut acc_dot = _mm_setzero_ps();
2144    let mut acc_norm = _mm_setzero_ps();
2145
2146    for chunk in 0..chunks {
2147        let base = chunk * 4;
2148        // Load 4 f16 values and convert to f32 using scalar conversion
2149        let v0 = f16_to_f32(*vec_f16.get_unchecked(base));
2150        let v1 = f16_to_f32(*vec_f16.get_unchecked(base + 1));
2151        let v2 = f16_to_f32(*vec_f16.get_unchecked(base + 2));
2152        let v3 = f16_to_f32(*vec_f16.get_unchecked(base + 3));
2153        let vb = _mm_set_ps(v3, v2, v1, v0);
2154
2155        let q0 = f16_to_f32(*query_f16.get_unchecked(base));
2156        let q1 = f16_to_f32(*query_f16.get_unchecked(base + 1));
2157        let q2 = f16_to_f32(*query_f16.get_unchecked(base + 2));
2158        let q3 = f16_to_f32(*query_f16.get_unchecked(base + 3));
2159        let va = _mm_set_ps(q3, q2, q1, q0);
2160
2161        acc_dot = _mm_add_ps(acc_dot, _mm_mul_ps(va, vb));
2162        acc_norm = _mm_add_ps(acc_norm, _mm_mul_ps(vb, vb));
2163    }
2164
2165    // Horizontal sums
2166    let shuf_d = _mm_shuffle_ps(acc_dot, acc_dot, 0b10_11_00_01);
2167    let sums_d = _mm_add_ps(acc_dot, shuf_d);
2168    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
2169    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
2170
2171    let shuf_n = _mm_shuffle_ps(acc_norm, acc_norm, 0b10_11_00_01);
2172    let sums_n = _mm_add_ps(acc_norm, shuf_n);
2173    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
2174    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
2175
2176    let base = chunks * 4;
2177    for i in 0..remainder {
2178        let v = f16_to_f32(*vec_f16.get_unchecked(base + i));
2179        let q = f16_to_f32(*query_f16.get_unchecked(base + i));
2180        dot += q * v;
2181        norm += v * v;
2182    }
2183
2184    (dot, norm)
2185}
2186
2187#[cfg(target_arch = "x86_64")]
2188#[target_feature(enable = "sse2", enable = "sse4.1")]
2189#[allow(unsafe_op_in_unsafe_fn)]
2190unsafe fn fused_dot_norm_u8_sse(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2191    use std::arch::x86_64::*;
2192
2193    let scale = _mm_set1_ps(U8_INV_SCALE);
2194    let offset = _mm_set1_ps(-1.0);
2195
2196    let chunks = dim / 4;
2197    let remainder = dim % 4;
2198
2199    let mut acc_dot = _mm_setzero_ps();
2200    let mut acc_norm = _mm_setzero_ps();
2201
2202    for chunk in 0..chunks {
2203        let base = chunk * 4;
2204
2205        // Load 4 bytes, zero-extend to i32, convert to f32, dequantize
2206        let bytes = _mm_cvtsi32_si128(std::ptr::read_unaligned(
2207            vec_u8.as_ptr().add(base) as *const i32
2208        ));
2209        let ints = _mm_cvtepu8_epi32(bytes);
2210        let floats = _mm_cvtepi32_ps(ints);
2211        let vb = _mm_add_ps(_mm_mul_ps(floats, scale), offset);
2212
2213        let va = _mm_loadu_ps(query.as_ptr().add(base));
2214
2215        acc_dot = _mm_add_ps(acc_dot, _mm_mul_ps(va, vb));
2216        acc_norm = _mm_add_ps(acc_norm, _mm_mul_ps(vb, vb));
2217    }
2218
2219    // Horizontal sums
2220    let shuf_d = _mm_shuffle_ps(acc_dot, acc_dot, 0b10_11_00_01);
2221    let sums_d = _mm_add_ps(acc_dot, shuf_d);
2222    let shuf2_d = _mm_movehl_ps(sums_d, sums_d);
2223    let mut dot = _mm_cvtss_f32(_mm_add_ss(sums_d, shuf2_d));
2224
2225    let shuf_n = _mm_shuffle_ps(acc_norm, acc_norm, 0b10_11_00_01);
2226    let sums_n = _mm_add_ps(acc_norm, shuf_n);
2227    let shuf2_n = _mm_movehl_ps(sums_n, sums_n);
2228    let mut norm = _mm_cvtss_f32(_mm_add_ss(sums_n, shuf2_n));
2229
2230    let base = chunks * 4;
2231    for i in 0..remainder {
2232        let v = u8_to_f32(*vec_u8.get_unchecked(base + i));
2233        dot += *query.get_unchecked(base + i) * v;
2234        norm += v * v;
2235    }
2236
2237    (dot, norm)
2238}
2239
2240// ============================================================================
2241// Platform dispatch
2242// ============================================================================
2243
2244#[inline]
2245fn fused_dot_norm_f16(query_f16: &[u16], vec_f16: &[u16], dim: usize) -> (f32, f32) {
2246    #[cfg(target_arch = "aarch64")]
2247    {
2248        return unsafe { neon_quant::fused_dot_norm_f16(query_f16, vec_f16, dim) };
2249    }
2250
2251    #[cfg(target_arch = "x86_64")]
2252    {
2253        if sse::is_available() {
2254            return unsafe { fused_dot_norm_f16_sse(query_f16, vec_f16, dim) };
2255        }
2256    }
2257
2258    #[allow(unreachable_code)]
2259    fused_dot_norm_f16_scalar(query_f16, vec_f16, dim)
2260}
2261
2262#[inline]
2263fn fused_dot_norm_u8(query: &[f32], vec_u8: &[u8], dim: usize) -> (f32, f32) {
2264    #[cfg(target_arch = "aarch64")]
2265    {
2266        return unsafe { neon_quant::fused_dot_norm_u8(query, vec_u8, dim) };
2267    }
2268
2269    #[cfg(target_arch = "x86_64")]
2270    {
2271        if sse::is_available() {
2272            return unsafe { fused_dot_norm_u8_sse(query, vec_u8, dim) };
2273        }
2274    }
2275
2276    #[allow(unreachable_code)]
2277    fused_dot_norm_u8_scalar(query, vec_u8, dim)
2278}
2279
2280// ============================================================================
2281// Public batch cosine scoring for quantized vectors
2282// ============================================================================
2283
2284/// Batch cosine similarity: f32 query vs N contiguous f16 vectors.
2285///
2286/// `vectors_raw` is raw bytes: N vectors × dim × 2 bytes (f16 stored as u16).
2287/// Query is quantized to f16 once, then both query and vectors are scored in
2288/// f16 space using hardware SIMD conversion (8 elements/iteration on NEON).
2289/// Memory bandwidth is halved for both query and vector loads.
2290#[inline]
2291pub fn batch_cosine_scores_f16(query: &[f32], vectors_raw: &[u8], dim: usize, scores: &mut [f32]) {
2292    let n = scores.len();
2293    if dim == 0 || n == 0 {
2294        return;
2295    }
2296
2297    // Compute query inverse norm in f32 (full precision, before quantization)
2298    let norm_q_sq = dot_product_f32(query, query, dim);
2299    if norm_q_sq < f32::EPSILON {
2300        for s in scores.iter_mut() {
2301            *s = 0.0;
2302        }
2303        return;
2304    }
2305    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2306
2307    // Quantize query to f16 once (O(dim)), reused for all N vector scorings
2308    let query_f16: Vec<u16> = query.iter().map(|&v| f32_to_f16(v)).collect();
2309
2310    let vec_bytes = dim * 2;
2311    debug_assert!(vectors_raw.len() >= n * vec_bytes);
2312
2313    // Vectors file uses data-first layout with 8-byte padding between fields,
2314    // so mmap slices are always 2-byte aligned for u16 access.
2315    debug_assert!(
2316        (vectors_raw.as_ptr() as usize).is_multiple_of(std::mem::align_of::<u16>()),
2317        "f16 vector data not 2-byte aligned"
2318    );
2319
2320    for i in 0..n {
2321        let raw = &vectors_raw[i * vec_bytes..(i + 1) * vec_bytes];
2322        let f16_slice = unsafe { std::slice::from_raw_parts(raw.as_ptr() as *const u16, dim) };
2323
2324        let (dot, norm_v_sq) = fused_dot_norm_f16(&query_f16, f16_slice, dim);
2325        scores[i] = if norm_v_sq < f32::EPSILON {
2326            0.0
2327        } else {
2328            dot * inv_norm_q * fast_inv_sqrt(norm_v_sq)
2329        };
2330    }
2331}
2332
2333/// Batch cosine similarity: f32 query vs N contiguous u8 vectors.
2334///
2335/// `vectors_raw` is raw bytes: N vectors × dim bytes (u8, mapping [-1,1]→[0,255]).
2336/// Converts u8→f32 using NEON widening chain (16 values/iteration), scores with FMA.
2337/// Memory bandwidth is quartered compared to f32 scoring.
2338#[inline]
2339pub fn batch_cosine_scores_u8(query: &[f32], vectors_raw: &[u8], dim: usize, scores: &mut [f32]) {
2340    let n = scores.len();
2341    if dim == 0 || n == 0 {
2342        return;
2343    }
2344
2345    let norm_q_sq = dot_product_f32(query, query, dim);
2346    if norm_q_sq < f32::EPSILON {
2347        for s in scores.iter_mut() {
2348            *s = 0.0;
2349        }
2350        return;
2351    }
2352    let inv_norm_q = fast_inv_sqrt(norm_q_sq);
2353
2354    debug_assert!(vectors_raw.len() >= n * dim);
2355
2356    for i in 0..n {
2357        let u8_slice = &vectors_raw[i * dim..(i + 1) * dim];
2358
2359        let (dot, norm_v_sq) = fused_dot_norm_u8(query, u8_slice, dim);
2360        scores[i] = if norm_v_sq < f32::EPSILON {
2361            0.0
2362        } else {
2363            dot * inv_norm_q * fast_inv_sqrt(norm_v_sq)
2364        };
2365    }
2366}
2367
2368/// Compute cosine similarity between two f32 vectors with SIMD acceleration
2369///
2370/// Returns dot(a,b) / (||a|| * ||b||), range [-1, 1]
2371/// Returns 0.0 if either vector has zero norm.
2372#[inline]
2373pub fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
2374    debug_assert_eq!(a.len(), b.len());
2375    let count = a.len();
2376
2377    if count == 0 {
2378        return 0.0;
2379    }
2380
2381    let dot = dot_product_f32(a, b, count);
2382    let norm_a = dot_product_f32(a, a, count);
2383    let norm_b = dot_product_f32(b, b, count);
2384
2385    let denom = (norm_a * norm_b).sqrt();
2386    if denom < f32::EPSILON {
2387        return 0.0;
2388    }
2389
2390    dot / denom
2391}
2392
2393/// Compute squared Euclidean distance between two f32 vectors with SIMD acceleration
2394///
2395/// Returns sum((a[i] - b[i])^2) for all i
2396#[inline]
2397pub fn squared_euclidean_distance(a: &[f32], b: &[f32]) -> f32 {
2398    debug_assert_eq!(a.len(), b.len());
2399    let count = a.len();
2400
2401    if count == 0 {
2402        return 0.0;
2403    }
2404
2405    #[cfg(target_arch = "aarch64")]
2406    {
2407        if neon::is_available() {
2408            return unsafe { squared_euclidean_neon(a, b, count) };
2409        }
2410    }
2411
2412    #[cfg(target_arch = "x86_64")]
2413    {
2414        if avx2::is_available() {
2415            return unsafe { squared_euclidean_avx2(a, b, count) };
2416        }
2417        if sse::is_available() {
2418            return unsafe { squared_euclidean_sse(a, b, count) };
2419        }
2420    }
2421
2422    // Scalar fallback
2423    a.iter()
2424        .zip(b.iter())
2425        .map(|(&x, &y)| {
2426            let d = x - y;
2427            d * d
2428        })
2429        .sum()
2430}
2431
2432#[cfg(target_arch = "aarch64")]
2433#[target_feature(enable = "neon")]
2434#[allow(unsafe_op_in_unsafe_fn)]
2435unsafe fn squared_euclidean_neon(a: &[f32], b: &[f32], count: usize) -> f32 {
2436    use std::arch::aarch64::*;
2437
2438    let chunks = count / 4;
2439    let remainder = count % 4;
2440
2441    let mut acc = vdupq_n_f32(0.0);
2442
2443    for chunk in 0..chunks {
2444        let base = chunk * 4;
2445        let va = vld1q_f32(a.as_ptr().add(base));
2446        let vb = vld1q_f32(b.as_ptr().add(base));
2447        let diff = vsubq_f32(va, vb);
2448        acc = vfmaq_f32(acc, diff, diff); // acc += diff * diff (fused multiply-add)
2449    }
2450
2451    // Horizontal sum
2452    let mut sum = vaddvq_f32(acc);
2453
2454    // Handle remainder
2455    let base = chunks * 4;
2456    for i in 0..remainder {
2457        let d = a[base + i] - b[base + i];
2458        sum += d * d;
2459    }
2460
2461    sum
2462}
2463
2464#[cfg(target_arch = "x86_64")]
2465#[target_feature(enable = "sse")]
2466#[allow(unsafe_op_in_unsafe_fn)]
2467unsafe fn squared_euclidean_sse(a: &[f32], b: &[f32], count: usize) -> f32 {
2468    use std::arch::x86_64::*;
2469
2470    let chunks = count / 4;
2471    let remainder = count % 4;
2472
2473    let mut acc = _mm_setzero_ps();
2474
2475    for chunk in 0..chunks {
2476        let base = chunk * 4;
2477        let va = _mm_loadu_ps(a.as_ptr().add(base));
2478        let vb = _mm_loadu_ps(b.as_ptr().add(base));
2479        let diff = _mm_sub_ps(va, vb);
2480        acc = _mm_add_ps(acc, _mm_mul_ps(diff, diff));
2481    }
2482
2483    // Horizontal sum: [a, b, c, d] -> a + b + c + d
2484    let shuf = _mm_shuffle_ps(acc, acc, 0b10_11_00_01); // [b, a, d, c]
2485    let sums = _mm_add_ps(acc, shuf); // [a+b, a+b, c+d, c+d]
2486    let shuf2 = _mm_movehl_ps(sums, sums); // [c+d, c+d, ?, ?]
2487    let final_sum = _mm_add_ss(sums, shuf2); // [a+b+c+d, ?, ?, ?]
2488
2489    let mut sum = _mm_cvtss_f32(final_sum);
2490
2491    // Handle remainder
2492    let base = chunks * 4;
2493    for i in 0..remainder {
2494        let d = a[base + i] - b[base + i];
2495        sum += d * d;
2496    }
2497
2498    sum
2499}
2500
2501#[cfg(target_arch = "x86_64")]
2502#[target_feature(enable = "avx2")]
2503#[allow(unsafe_op_in_unsafe_fn)]
2504unsafe fn squared_euclidean_avx2(a: &[f32], b: &[f32], count: usize) -> f32 {
2505    use std::arch::x86_64::*;
2506
2507    let chunks = count / 8;
2508    let remainder = count % 8;
2509
2510    let mut acc = _mm256_setzero_ps();
2511
2512    for chunk in 0..chunks {
2513        let base = chunk * 8;
2514        let va = _mm256_loadu_ps(a.as_ptr().add(base));
2515        let vb = _mm256_loadu_ps(b.as_ptr().add(base));
2516        let diff = _mm256_sub_ps(va, vb);
2517        acc = _mm256_fmadd_ps(diff, diff, acc); // acc += diff * diff (FMA)
2518    }
2519
2520    // Horizontal sum of 8 floats
2521    // First, add high 128 bits to low 128 bits
2522    let high = _mm256_extractf128_ps(acc, 1);
2523    let low = _mm256_castps256_ps128(acc);
2524    let sum128 = _mm_add_ps(low, high);
2525
2526    // Now sum the 4 floats in sum128
2527    let shuf = _mm_shuffle_ps(sum128, sum128, 0b10_11_00_01);
2528    let sums = _mm_add_ps(sum128, shuf);
2529    let shuf2 = _mm_movehl_ps(sums, sums);
2530    let final_sum = _mm_add_ss(sums, shuf2);
2531
2532    let mut sum = _mm_cvtss_f32(final_sum);
2533
2534    // Handle remainder
2535    let base = chunks * 8;
2536    for i in 0..remainder {
2537        let d = a[base + i] - b[base + i];
2538        sum += d * d;
2539    }
2540
2541    sum
2542}
2543
2544/// Batch compute squared Euclidean distances from one query to multiple vectors
2545///
2546/// Returns distances[i] = squared_euclidean_distance(query, vectors[i])
2547/// This is more efficient than calling squared_euclidean_distance in a loop
2548/// because we can keep the query in registers.
2549#[inline]
2550pub fn batch_squared_euclidean_distances(
2551    query: &[f32],
2552    vectors: &[Vec<f32>],
2553    distances: &mut [f32],
2554) {
2555    debug_assert_eq!(vectors.len(), distances.len());
2556
2557    #[cfg(target_arch = "x86_64")]
2558    {
2559        if avx2::is_available() {
2560            for (i, vec) in vectors.iter().enumerate() {
2561                distances[i] = unsafe { squared_euclidean_avx2(query, vec, query.len()) };
2562            }
2563            return;
2564        }
2565    }
2566
2567    // Fallback to individual calls
2568    for (i, vec) in vectors.iter().enumerate() {
2569        distances[i] = squared_euclidean_distance(query, vec);
2570    }
2571}
2572
2573#[cfg(test)]
2574mod tests {
2575    use super::*;
2576
2577    #[test]
2578    fn test_unpack_8bit() {
2579        let input: Vec<u8> = (0..128).collect();
2580        let mut output = vec![0u32; 128];
2581        unpack_8bit(&input, &mut output, 128);
2582
2583        for (i, &v) in output.iter().enumerate() {
2584            assert_eq!(v, i as u32);
2585        }
2586    }
2587
2588    #[test]
2589    fn test_unpack_16bit() {
2590        let mut input = vec![0u8; 256];
2591        for i in 0..128 {
2592            let val = (i * 100) as u16;
2593            input[i * 2] = val as u8;
2594            input[i * 2 + 1] = (val >> 8) as u8;
2595        }
2596
2597        let mut output = vec![0u32; 128];
2598        unpack_16bit(&input, &mut output, 128);
2599
2600        for (i, &v) in output.iter().enumerate() {
2601            assert_eq!(v, (i * 100) as u32);
2602        }
2603    }
2604
2605    #[test]
2606    fn test_unpack_32bit() {
2607        let mut input = vec![0u8; 512];
2608        for i in 0..128 {
2609            let val = (i * 1000) as u32;
2610            let bytes = val.to_le_bytes();
2611            input[i * 4..i * 4 + 4].copy_from_slice(&bytes);
2612        }
2613
2614        let mut output = vec![0u32; 128];
2615        unpack_32bit(&input, &mut output, 128);
2616
2617        for (i, &v) in output.iter().enumerate() {
2618            assert_eq!(v, (i * 1000) as u32);
2619        }
2620    }
2621
2622    #[test]
2623    fn test_delta_decode() {
2624        // doc_ids: [10, 15, 20, 30, 50]
2625        // gaps: [5, 5, 10, 20]
2626        // deltas (gap-1): [4, 4, 9, 19]
2627        let deltas = vec![4u32, 4, 9, 19];
2628        let mut output = vec![0u32; 5];
2629
2630        delta_decode(&mut output, &deltas, 10, 5);
2631
2632        assert_eq!(output, vec![10, 15, 20, 30, 50]);
2633    }
2634
2635    #[test]
2636    fn test_add_one() {
2637        let mut values = vec![0u32, 1, 2, 3, 4, 5, 6, 7];
2638        add_one(&mut values, 8);
2639
2640        assert_eq!(values, vec![1, 2, 3, 4, 5, 6, 7, 8]);
2641    }
2642
2643    #[test]
2644    fn test_bits_needed() {
2645        assert_eq!(bits_needed(0), 0);
2646        assert_eq!(bits_needed(1), 1);
2647        assert_eq!(bits_needed(2), 2);
2648        assert_eq!(bits_needed(3), 2);
2649        assert_eq!(bits_needed(4), 3);
2650        assert_eq!(bits_needed(255), 8);
2651        assert_eq!(bits_needed(256), 9);
2652        assert_eq!(bits_needed(u32::MAX), 32);
2653    }
2654
2655    #[test]
2656    fn test_unpack_8bit_delta_decode() {
2657        // doc_ids: [10, 15, 20, 30, 50]
2658        // gaps: [5, 5, 10, 20]
2659        // deltas (gap-1): [4, 4, 9, 19] stored as u8
2660        let input: Vec<u8> = vec![4, 4, 9, 19];
2661        let mut output = vec![0u32; 5];
2662
2663        unpack_8bit_delta_decode(&input, &mut output, 10, 5);
2664
2665        assert_eq!(output, vec![10, 15, 20, 30, 50]);
2666    }
2667
2668    #[test]
2669    fn test_unpack_16bit_delta_decode() {
2670        // doc_ids: [100, 600, 1100, 2100, 4100]
2671        // gaps: [500, 500, 1000, 2000]
2672        // deltas (gap-1): [499, 499, 999, 1999] stored as u16
2673        let mut input = vec![0u8; 8];
2674        for (i, &delta) in [499u16, 499, 999, 1999].iter().enumerate() {
2675            input[i * 2] = delta as u8;
2676            input[i * 2 + 1] = (delta >> 8) as u8;
2677        }
2678        let mut output = vec![0u32; 5];
2679
2680        unpack_16bit_delta_decode(&input, &mut output, 100, 5);
2681
2682        assert_eq!(output, vec![100, 600, 1100, 2100, 4100]);
2683    }
2684
2685    #[test]
2686    fn test_fused_vs_separate_8bit() {
2687        // Test that fused and separate operations produce the same result
2688        let input: Vec<u8> = (0..127).collect();
2689        let first_value = 1000u32;
2690        let count = 128;
2691
2692        // Separate: unpack then delta_decode
2693        let mut unpacked = vec![0u32; 128];
2694        unpack_8bit(&input, &mut unpacked, 127);
2695        let mut separate_output = vec![0u32; 128];
2696        delta_decode(&mut separate_output, &unpacked, first_value, count);
2697
2698        // Fused
2699        let mut fused_output = vec![0u32; 128];
2700        unpack_8bit_delta_decode(&input, &mut fused_output, first_value, count);
2701
2702        assert_eq!(separate_output, fused_output);
2703    }
2704
2705    #[test]
2706    fn test_round_bit_width() {
2707        assert_eq!(round_bit_width(0), 0);
2708        assert_eq!(round_bit_width(1), 8);
2709        assert_eq!(round_bit_width(5), 8);
2710        assert_eq!(round_bit_width(8), 8);
2711        assert_eq!(round_bit_width(9), 16);
2712        assert_eq!(round_bit_width(12), 16);
2713        assert_eq!(round_bit_width(16), 16);
2714        assert_eq!(round_bit_width(17), 32);
2715        assert_eq!(round_bit_width(24), 32);
2716        assert_eq!(round_bit_width(32), 32);
2717    }
2718
2719    #[test]
2720    fn test_rounded_bitwidth_from_exact() {
2721        assert_eq!(RoundedBitWidth::from_exact(0), RoundedBitWidth::Zero);
2722        assert_eq!(RoundedBitWidth::from_exact(1), RoundedBitWidth::Bits8);
2723        assert_eq!(RoundedBitWidth::from_exact(8), RoundedBitWidth::Bits8);
2724        assert_eq!(RoundedBitWidth::from_exact(9), RoundedBitWidth::Bits16);
2725        assert_eq!(RoundedBitWidth::from_exact(16), RoundedBitWidth::Bits16);
2726        assert_eq!(RoundedBitWidth::from_exact(17), RoundedBitWidth::Bits32);
2727        assert_eq!(RoundedBitWidth::from_exact(32), RoundedBitWidth::Bits32);
2728    }
2729
2730    #[test]
2731    fn test_pack_unpack_rounded_8bit() {
2732        let values: Vec<u32> = (0..128).map(|i| i % 256).collect();
2733        let mut packed = vec![0u8; 128];
2734
2735        let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits8, &mut packed);
2736        assert_eq!(bytes_written, 128);
2737
2738        let mut unpacked = vec![0u32; 128];
2739        unpack_rounded(&packed, RoundedBitWidth::Bits8, &mut unpacked, 128);
2740
2741        assert_eq!(values, unpacked);
2742    }
2743
2744    #[test]
2745    fn test_pack_unpack_rounded_16bit() {
2746        let values: Vec<u32> = (0..128).map(|i| i * 100).collect();
2747        let mut packed = vec![0u8; 256];
2748
2749        let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits16, &mut packed);
2750        assert_eq!(bytes_written, 256);
2751
2752        let mut unpacked = vec![0u32; 128];
2753        unpack_rounded(&packed, RoundedBitWidth::Bits16, &mut unpacked, 128);
2754
2755        assert_eq!(values, unpacked);
2756    }
2757
2758    #[test]
2759    fn test_pack_unpack_rounded_32bit() {
2760        let values: Vec<u32> = (0..128).map(|i| i * 100000).collect();
2761        let mut packed = vec![0u8; 512];
2762
2763        let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits32, &mut packed);
2764        assert_eq!(bytes_written, 512);
2765
2766        let mut unpacked = vec![0u32; 128];
2767        unpack_rounded(&packed, RoundedBitWidth::Bits32, &mut unpacked, 128);
2768
2769        assert_eq!(values, unpacked);
2770    }
2771
2772    #[test]
2773    fn test_unpack_rounded_delta_decode() {
2774        // Test 8-bit rounded delta decode
2775        // doc_ids: [10, 15, 20, 30, 50]
2776        // gaps: [5, 5, 10, 20]
2777        // deltas (gap-1): [4, 4, 9, 19] stored as u8
2778        let input: Vec<u8> = vec![4, 4, 9, 19];
2779        let mut output = vec![0u32; 5];
2780
2781        unpack_rounded_delta_decode(&input, RoundedBitWidth::Bits8, &mut output, 10, 5);
2782
2783        assert_eq!(output, vec![10, 15, 20, 30, 50]);
2784    }
2785
2786    #[test]
2787    fn test_unpack_rounded_delta_decode_zero() {
2788        // All zeros means gaps of 1 (consecutive doc IDs)
2789        let input: Vec<u8> = vec![];
2790        let mut output = vec![0u32; 5];
2791
2792        unpack_rounded_delta_decode(&input, RoundedBitWidth::Zero, &mut output, 100, 5);
2793
2794        assert_eq!(output, vec![100, 101, 102, 103, 104]);
2795    }
2796
2797    // ========================================================================
2798    // Sparse Vector SIMD Tests
2799    // ========================================================================
2800
2801    #[test]
2802    fn test_dequantize_uint8() {
2803        let input: Vec<u8> = vec![0, 128, 255, 64, 192];
2804        let mut output = vec![0.0f32; 5];
2805        let scale = 0.1;
2806        let min_val = 1.0;
2807
2808        dequantize_uint8(&input, &mut output, scale, min_val, 5);
2809
2810        // Expected: input[i] * scale + min_val
2811        assert!((output[0] - 1.0).abs() < 1e-6); // 0 * 0.1 + 1.0 = 1.0
2812        assert!((output[1] - 13.8).abs() < 1e-6); // 128 * 0.1 + 1.0 = 13.8
2813        assert!((output[2] - 26.5).abs() < 1e-6); // 255 * 0.1 + 1.0 = 26.5
2814        assert!((output[3] - 7.4).abs() < 1e-6); // 64 * 0.1 + 1.0 = 7.4
2815        assert!((output[4] - 20.2).abs() < 1e-6); // 192 * 0.1 + 1.0 = 20.2
2816    }
2817
2818    #[test]
2819    fn test_dequantize_uint8_large() {
2820        // Test with 128 values (full SIMD block)
2821        let input: Vec<u8> = (0..128).collect();
2822        let mut output = vec![0.0f32; 128];
2823        let scale = 2.0;
2824        let min_val = -10.0;
2825
2826        dequantize_uint8(&input, &mut output, scale, min_val, 128);
2827
2828        for (i, &out) in output.iter().enumerate().take(128) {
2829            let expected = i as f32 * scale + min_val;
2830            assert!(
2831                (out - expected).abs() < 1e-5,
2832                "Mismatch at {}: expected {}, got {}",
2833                i,
2834                expected,
2835                out
2836            );
2837        }
2838    }
2839
2840    #[test]
2841    fn test_dot_product_f32() {
2842        let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0];
2843        let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0];
2844
2845        let result = dot_product_f32(&a, &b, 5);
2846
2847        // Expected: 1*2 + 2*3 + 3*4 + 4*5 + 5*6 = 2 + 6 + 12 + 20 + 30 = 70
2848        assert!((result - 70.0).abs() < 1e-5);
2849    }
2850
2851    #[test]
2852    fn test_dot_product_f32_large() {
2853        // Test with 128 values
2854        let a: Vec<f32> = (0..128).map(|i| i as f32).collect();
2855        let b: Vec<f32> = (0..128).map(|i| (i + 1) as f32).collect();
2856
2857        let result = dot_product_f32(&a, &b, 128);
2858
2859        // Compute expected
2860        let expected: f32 = (0..128).map(|i| (i as f32) * ((i + 1) as f32)).sum();
2861        assert!(
2862            (result - expected).abs() < 1e-3,
2863            "Expected {}, got {}",
2864            expected,
2865            result
2866        );
2867    }
2868
2869    #[test]
2870    fn test_max_f32() {
2871        let values = vec![1.0f32, 5.0, 3.0, 9.0, 2.0, 7.0];
2872        let result = max_f32(&values, 6);
2873        assert!((result - 9.0).abs() < 1e-6);
2874    }
2875
2876    #[test]
2877    fn test_max_f32_large() {
2878        // Test with 128 values, max at position 77
2879        let mut values: Vec<f32> = (0..128).map(|i| i as f32).collect();
2880        values[77] = 1000.0;
2881
2882        let result = max_f32(&values, 128);
2883        assert!((result - 1000.0).abs() < 1e-5);
2884    }
2885
2886    #[test]
2887    fn test_max_f32_negative() {
2888        let values = vec![-5.0f32, -2.0, -10.0, -1.0, -3.0];
2889        let result = max_f32(&values, 5);
2890        assert!((result - (-1.0)).abs() < 1e-6);
2891    }
2892
2893    #[test]
2894    fn test_max_f32_empty() {
2895        let values: Vec<f32> = vec![];
2896        let result = max_f32(&values, 0);
2897        assert_eq!(result, f32::NEG_INFINITY);
2898    }
2899
2900    #[test]
2901    fn test_fused_dot_norm() {
2902        let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
2903        let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
2904        let (dot, norm_b) = fused_dot_norm(&a, &b, a.len());
2905
2906        let expected_dot: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
2907        let expected_norm: f32 = b.iter().map(|x| x * x).sum();
2908        assert!(
2909            (dot - expected_dot).abs() < 1e-5,
2910            "dot: expected {}, got {}",
2911            expected_dot,
2912            dot
2913        );
2914        assert!(
2915            (norm_b - expected_norm).abs() < 1e-5,
2916            "norm: expected {}, got {}",
2917            expected_norm,
2918            norm_b
2919        );
2920    }
2921
2922    #[test]
2923    fn test_fused_dot_norm_large() {
2924        let a: Vec<f32> = (0..768).map(|i| (i as f32) * 0.01).collect();
2925        let b: Vec<f32> = (0..768).map(|i| (i as f32) * 0.02 + 0.5).collect();
2926        let (dot, norm_b) = fused_dot_norm(&a, &b, a.len());
2927
2928        let expected_dot: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
2929        let expected_norm: f32 = b.iter().map(|x| x * x).sum();
2930        assert!(
2931            (dot - expected_dot).abs() < 1.0,
2932            "dot: expected {}, got {}",
2933            expected_dot,
2934            dot
2935        );
2936        assert!(
2937            (norm_b - expected_norm).abs() < 1.0,
2938            "norm: expected {}, got {}",
2939            expected_norm,
2940            norm_b
2941        );
2942    }
2943
2944    #[test]
2945    fn test_batch_cosine_scores() {
2946        // 4 vectors of dim 3
2947        let query = vec![1.0f32, 0.0, 0.0];
2948        let vectors = vec![
2949            1.0, 0.0, 0.0, // identical to query
2950            0.0, 1.0, 0.0, // orthogonal
2951            -1.0, 0.0, 0.0, // opposite
2952            0.5, 0.5, 0.0, // 45 degrees
2953        ];
2954        let mut scores = vec![0f32; 4];
2955        batch_cosine_scores(&query, &vectors, 3, &mut scores);
2956
2957        assert!((scores[0] - 1.0).abs() < 1e-5, "identical: {}", scores[0]);
2958        assert!(scores[1].abs() < 1e-5, "orthogonal: {}", scores[1]);
2959        assert!((scores[2] - (-1.0)).abs() < 1e-5, "opposite: {}", scores[2]);
2960        let expected_45 = 0.5f32 / (0.5f32.powi(2) + 0.5f32.powi(2)).sqrt();
2961        assert!(
2962            (scores[3] - expected_45).abs() < 1e-5,
2963            "45deg: expected {}, got {}",
2964            expected_45,
2965            scores[3]
2966        );
2967    }
2968
2969    #[test]
2970    fn test_batch_cosine_scores_matches_individual() {
2971        let query: Vec<f32> = (0..128).map(|i| (i as f32) * 0.1).collect();
2972        let n = 50;
2973        let dim = 128;
2974        let vectors: Vec<f32> = (0..n * dim).map(|i| ((i * 7 + 3) as f32) * 0.01).collect();
2975
2976        let mut batch_scores = vec![0f32; n];
2977        batch_cosine_scores(&query, &vectors, dim, &mut batch_scores);
2978
2979        for i in 0..n {
2980            let vec_i = &vectors[i * dim..(i + 1) * dim];
2981            let individual = cosine_similarity(&query, vec_i);
2982            assert!(
2983                (batch_scores[i] - individual).abs() < 1e-5,
2984                "vec {}: batch={}, individual={}",
2985                i,
2986                batch_scores[i],
2987                individual
2988            );
2989        }
2990    }
2991
2992    #[test]
2993    fn test_batch_cosine_scores_empty() {
2994        let query = vec![1.0f32, 2.0, 3.0];
2995        let vectors: Vec<f32> = vec![];
2996        let mut scores: Vec<f32> = vec![];
2997        batch_cosine_scores(&query, &vectors, 3, &mut scores);
2998        assert!(scores.is_empty());
2999    }
3000
3001    #[test]
3002    fn test_batch_cosine_scores_zero_query() {
3003        let query = vec![0.0f32, 0.0, 0.0];
3004        let vectors = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
3005        let mut scores = vec![0f32; 2];
3006        batch_cosine_scores(&query, &vectors, 3, &mut scores);
3007        assert_eq!(scores[0], 0.0);
3008        assert_eq!(scores[1], 0.0);
3009    }
3010
3011    #[test]
3012    fn test_squared_euclidean_distance() {
3013        let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
3014        let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
3015        let expected: f32 = a.iter().zip(b.iter()).map(|(x, y)| (x - y).powi(2)).sum();
3016        let result = squared_euclidean_distance(&a, &b);
3017        assert!(
3018            (result - expected).abs() < 1e-5,
3019            "expected {}, got {}",
3020            expected,
3021            result
3022        );
3023    }
3024
3025    #[test]
3026    fn test_squared_euclidean_distance_large() {
3027        let a: Vec<f32> = (0..128).map(|i| i as f32 * 0.1).collect();
3028        let b: Vec<f32> = (0..128).map(|i| (i as f32 * 0.1) + 0.5).collect();
3029        let expected: f32 = a.iter().zip(b.iter()).map(|(x, y)| (x - y).powi(2)).sum();
3030        let result = squared_euclidean_distance(&a, &b);
3031        assert!(
3032            (result - expected).abs() < 1e-3,
3033            "expected {}, got {}",
3034            expected,
3035            result
3036        );
3037    }
3038
3039    // ================================================================
3040    // f16 conversion tests
3041    // ================================================================
3042
3043    #[test]
3044    fn test_f16_roundtrip_normal() {
3045        for &v in &[0.0f32, 1.0, -1.0, 0.5, -0.5, 0.333, 65504.0] {
3046            let h = f32_to_f16(v);
3047            let back = f16_to_f32(h);
3048            let err = (back - v).abs() / v.abs().max(1e-6);
3049            assert!(
3050                err < 0.002,
3051                "f16 roundtrip {v} → {h:#06x} → {back}, rel err {err}"
3052            );
3053        }
3054    }
3055
3056    #[test]
3057    fn test_f16_special() {
3058        // Zero
3059        assert_eq!(f16_to_f32(f32_to_f16(0.0)), 0.0);
3060        // Negative zero
3061        assert_eq!(f32_to_f16(-0.0), 0x8000);
3062        // Infinity
3063        assert!(f16_to_f32(f32_to_f16(f32::INFINITY)).is_infinite());
3064        // NaN
3065        assert!(f16_to_f32(f32_to_f16(f32::NAN)).is_nan());
3066    }
3067
3068    #[test]
3069    fn test_f16_embedding_range() {
3070        // Typical embedding values in [-1, 1]
3071        let values: Vec<f32> = (-100..=100).map(|i| i as f32 / 100.0).collect();
3072        for &v in &values {
3073            let back = f16_to_f32(f32_to_f16(v));
3074            assert!((back - v).abs() < 0.001, "f16 error for {v}: got {back}");
3075        }
3076    }
3077
3078    // ================================================================
3079    // u8 conversion tests
3080    // ================================================================
3081
3082    #[test]
3083    fn test_u8_roundtrip() {
3084        // Boundary values
3085        assert_eq!(f32_to_u8_saturating(-1.0), 0);
3086        assert_eq!(f32_to_u8_saturating(1.0), 255);
3087        assert_eq!(f32_to_u8_saturating(0.0), 127); // ~127.5 truncated
3088
3089        // Saturation
3090        assert_eq!(f32_to_u8_saturating(-2.0), 0);
3091        assert_eq!(f32_to_u8_saturating(2.0), 255);
3092    }
3093
3094    #[test]
3095    fn test_u8_dequantize() {
3096        assert!((u8_to_f32(0) - (-1.0)).abs() < 0.01);
3097        assert!((u8_to_f32(255) - 1.0).abs() < 0.01);
3098        assert!((u8_to_f32(127) - 0.0).abs() < 0.01);
3099    }
3100
3101    // ================================================================
3102    // Batch scoring tests for quantized vectors
3103    // ================================================================
3104
3105    #[test]
3106    fn test_batch_cosine_scores_f16() {
3107        let query = vec![0.6f32, 0.8, 0.0, 0.0];
3108        let dim = 4;
3109        let vecs_f32 = vec![
3110            0.6f32, 0.8, 0.0, 0.0, // identical to query
3111            0.0, 0.0, 0.6, 0.8, // orthogonal
3112        ];
3113
3114        // Quantize to f16
3115        let mut f16_buf = vec![0u16; 8];
3116        batch_f32_to_f16(&vecs_f32, &mut f16_buf);
3117        let raw: &[u8] =
3118            unsafe { std::slice::from_raw_parts(f16_buf.as_ptr() as *const u8, f16_buf.len() * 2) };
3119
3120        let mut scores = vec![0f32; 2];
3121        batch_cosine_scores_f16(&query, raw, dim, &mut scores);
3122
3123        assert!(
3124            (scores[0] - 1.0).abs() < 0.01,
3125            "identical vectors: {}",
3126            scores[0]
3127        );
3128        assert!(scores[1].abs() < 0.01, "orthogonal vectors: {}", scores[1]);
3129    }
3130
3131    #[test]
3132    fn test_batch_cosine_scores_u8() {
3133        let query = vec![0.6f32, 0.8, 0.0, 0.0];
3134        let dim = 4;
3135        let vecs_f32 = vec![
3136            0.6f32, 0.8, 0.0, 0.0, // ~identical to query
3137            -0.6, -0.8, 0.0, 0.0, // opposite
3138        ];
3139
3140        // Quantize to u8
3141        let mut u8_buf = vec![0u8; 8];
3142        batch_f32_to_u8(&vecs_f32, &mut u8_buf);
3143
3144        let mut scores = vec![0f32; 2];
3145        batch_cosine_scores_u8(&query, &u8_buf, dim, &mut scores);
3146
3147        assert!(scores[0] > 0.95, "similar vectors: {}", scores[0]);
3148        assert!(scores[1] < -0.95, "opposite vectors: {}", scores[1]);
3149    }
3150
3151    #[test]
3152    fn test_batch_cosine_scores_f16_large_dim() {
3153        // Test with typical embedding dimension
3154        let dim = 768;
3155        let query: Vec<f32> = (0..dim).map(|i| (i as f32 / dim as f32) - 0.5).collect();
3156        let vec2: Vec<f32> = query.iter().map(|x| x * 0.9 + 0.01).collect();
3157
3158        let mut all_vecs = query.clone();
3159        all_vecs.extend_from_slice(&vec2);
3160
3161        let mut f16_buf = vec![0u16; all_vecs.len()];
3162        batch_f32_to_f16(&all_vecs, &mut f16_buf);
3163        let raw: &[u8] =
3164            unsafe { std::slice::from_raw_parts(f16_buf.as_ptr() as *const u8, f16_buf.len() * 2) };
3165
3166        let mut scores = vec![0f32; 2];
3167        batch_cosine_scores_f16(&query, raw, dim, &mut scores);
3168
3169        // Self-similarity should be ~1.0
3170        assert!((scores[0] - 1.0).abs() < 0.01, "self-sim: {}", scores[0]);
3171        // High similarity with scaled version
3172        assert!(scores[1] > 0.99, "scaled-sim: {}", scores[1]);
3173    }
3174}
3175
3176// ============================================================================
3177// SIMD-accelerated linear scan for sorted u32 slices (within-block seek)
3178// ============================================================================
3179
3180/// Find index of first element >= `target` in a sorted `u32` slice.
3181///
3182/// Equivalent to `slice.partition_point(|&d| d < target)` but uses SIMD to
3183/// scan 4 elements per cycle. Faster than binary search for slices ≤ 256
3184/// elements because it avoids the data-dependency chain inherent in binary
3185/// search (~8-10 cycles/iteration vs ~1-2 cycles/iteration for SIMD scan).
3186///
3187/// Returns `slice.len()` if no element >= `target`.
3188#[inline]
3189pub fn find_first_ge_u32(slice: &[u32], target: u32) -> usize {
3190    #[cfg(target_arch = "aarch64")]
3191    {
3192        if neon::is_available() {
3193            return unsafe { find_first_ge_u32_neon(slice, target) };
3194        }
3195    }
3196
3197    #[cfg(target_arch = "x86_64")]
3198    {
3199        if sse::is_available() {
3200            return unsafe { find_first_ge_u32_sse(slice, target) };
3201        }
3202    }
3203
3204    // Scalar fallback (WASM, other architectures)
3205    slice.partition_point(|&d| d < target)
3206}
3207
3208#[cfg(target_arch = "aarch64")]
3209#[target_feature(enable = "neon")]
3210#[allow(unsafe_op_in_unsafe_fn)]
3211unsafe fn find_first_ge_u32_neon(slice: &[u32], target: u32) -> usize {
3212    use std::arch::aarch64::*;
3213
3214    let n = slice.len();
3215    let ptr = slice.as_ptr();
3216    let target_vec = vdupq_n_u32(target);
3217    // Bit positions for each lane: [1, 2, 4, 8]
3218    let bit_mask: uint32x4_t = core::mem::transmute([1u32, 2u32, 4u32, 8u32]);
3219
3220    let chunks = n / 16;
3221    let mut base = 0usize;
3222
3223    // Process 16 elements per iteration (4 × 4-wide NEON compares)
3224    for _ in 0..chunks {
3225        let v0 = vld1q_u32(ptr.add(base));
3226        let v1 = vld1q_u32(ptr.add(base + 4));
3227        let v2 = vld1q_u32(ptr.add(base + 8));
3228        let v3 = vld1q_u32(ptr.add(base + 12));
3229
3230        let c0 = vcgeq_u32(v0, target_vec);
3231        let c1 = vcgeq_u32(v1, target_vec);
3232        let c2 = vcgeq_u32(v2, target_vec);
3233        let c3 = vcgeq_u32(v3, target_vec);
3234
3235        let m0 = vaddvq_u32(vandq_u32(c0, bit_mask));
3236        if m0 != 0 {
3237            return base + m0.trailing_zeros() as usize;
3238        }
3239        let m1 = vaddvq_u32(vandq_u32(c1, bit_mask));
3240        if m1 != 0 {
3241            return base + 4 + m1.trailing_zeros() as usize;
3242        }
3243        let m2 = vaddvq_u32(vandq_u32(c2, bit_mask));
3244        if m2 != 0 {
3245            return base + 8 + m2.trailing_zeros() as usize;
3246        }
3247        let m3 = vaddvq_u32(vandq_u32(c3, bit_mask));
3248        if m3 != 0 {
3249            return base + 12 + m3.trailing_zeros() as usize;
3250        }
3251        base += 16;
3252    }
3253
3254    // Process remaining 4 elements at a time
3255    while base + 4 <= n {
3256        let vals = vld1q_u32(ptr.add(base));
3257        let cmp = vcgeq_u32(vals, target_vec);
3258        let mask = vaddvq_u32(vandq_u32(cmp, bit_mask));
3259        if mask != 0 {
3260            return base + mask.trailing_zeros() as usize;
3261        }
3262        base += 4;
3263    }
3264
3265    // Scalar remainder (0-3 elements)
3266    while base < n {
3267        if *slice.get_unchecked(base) >= target {
3268            return base;
3269        }
3270        base += 1;
3271    }
3272    n
3273}
3274
3275#[cfg(target_arch = "x86_64")]
3276#[target_feature(enable = "sse2", enable = "sse4.1")]
3277#[allow(unsafe_op_in_unsafe_fn)]
3278unsafe fn find_first_ge_u32_sse(slice: &[u32], target: u32) -> usize {
3279    use std::arch::x86_64::*;
3280
3281    let n = slice.len();
3282    let ptr = slice.as_ptr();
3283
3284    // For unsigned >= comparison: XOR with 0x80000000 converts to signed domain
3285    let sign_flip = _mm_set1_epi32(i32::MIN);
3286    let target_xor = _mm_xor_si128(_mm_set1_epi32(target as i32), sign_flip);
3287
3288    let chunks = n / 16;
3289    let mut base = 0usize;
3290
3291    // Process 16 elements per iteration (4 × 4-wide SSE compares)
3292    for _ in 0..chunks {
3293        let v0 = _mm_xor_si128(_mm_loadu_si128(ptr.add(base) as *const __m128i), sign_flip);
3294        let v1 = _mm_xor_si128(
3295            _mm_loadu_si128(ptr.add(base + 4) as *const __m128i),
3296            sign_flip,
3297        );
3298        let v2 = _mm_xor_si128(
3299            _mm_loadu_si128(ptr.add(base + 8) as *const __m128i),
3300            sign_flip,
3301        );
3302        let v3 = _mm_xor_si128(
3303            _mm_loadu_si128(ptr.add(base + 12) as *const __m128i),
3304            sign_flip,
3305        );
3306
3307        // ge = eq | gt (in signed domain after XOR)
3308        let ge0 = _mm_or_si128(
3309            _mm_cmpeq_epi32(v0, target_xor),
3310            _mm_cmpgt_epi32(v0, target_xor),
3311        );
3312        let m0 = _mm_movemask_ps(_mm_castsi128_ps(ge0)) as u32;
3313        if m0 != 0 {
3314            return base + m0.trailing_zeros() as usize;
3315        }
3316
3317        let ge1 = _mm_or_si128(
3318            _mm_cmpeq_epi32(v1, target_xor),
3319            _mm_cmpgt_epi32(v1, target_xor),
3320        );
3321        let m1 = _mm_movemask_ps(_mm_castsi128_ps(ge1)) as u32;
3322        if m1 != 0 {
3323            return base + 4 + m1.trailing_zeros() as usize;
3324        }
3325
3326        let ge2 = _mm_or_si128(
3327            _mm_cmpeq_epi32(v2, target_xor),
3328            _mm_cmpgt_epi32(v2, target_xor),
3329        );
3330        let m2 = _mm_movemask_ps(_mm_castsi128_ps(ge2)) as u32;
3331        if m2 != 0 {
3332            return base + 8 + m2.trailing_zeros() as usize;
3333        }
3334
3335        let ge3 = _mm_or_si128(
3336            _mm_cmpeq_epi32(v3, target_xor),
3337            _mm_cmpgt_epi32(v3, target_xor),
3338        );
3339        let m3 = _mm_movemask_ps(_mm_castsi128_ps(ge3)) as u32;
3340        if m3 != 0 {
3341            return base + 12 + m3.trailing_zeros() as usize;
3342        }
3343        base += 16;
3344    }
3345
3346    // Process remaining 4 elements at a time
3347    while base + 4 <= n {
3348        let vals = _mm_xor_si128(_mm_loadu_si128(ptr.add(base) as *const __m128i), sign_flip);
3349        let ge = _mm_or_si128(
3350            _mm_cmpeq_epi32(vals, target_xor),
3351            _mm_cmpgt_epi32(vals, target_xor),
3352        );
3353        let mask = _mm_movemask_ps(_mm_castsi128_ps(ge)) as u32;
3354        if mask != 0 {
3355            return base + mask.trailing_zeros() as usize;
3356        }
3357        base += 4;
3358    }
3359
3360    // Scalar remainder (0-3 elements)
3361    while base < n {
3362        if *slice.get_unchecked(base) >= target {
3363            return base;
3364        }
3365        base += 1;
3366    }
3367    n
3368}
3369
3370#[cfg(test)]
3371mod find_first_ge_tests {
3372    use super::find_first_ge_u32;
3373
3374    #[test]
3375    fn test_find_first_ge_basic() {
3376        let data: Vec<u32> = (0..128).map(|i| i * 3).collect(); // [0, 3, 6, ..., 381]
3377        assert_eq!(find_first_ge_u32(&data, 0), 0);
3378        assert_eq!(find_first_ge_u32(&data, 1), 1); // first >= 1 is 3 at idx 1
3379        assert_eq!(find_first_ge_u32(&data, 3), 1);
3380        assert_eq!(find_first_ge_u32(&data, 4), 2); // first >= 4 is 6 at idx 2
3381        assert_eq!(find_first_ge_u32(&data, 381), 127);
3382        assert_eq!(find_first_ge_u32(&data, 382), 128); // past end
3383    }
3384
3385    #[test]
3386    fn test_find_first_ge_matches_partition_point() {
3387        let data: Vec<u32> = vec![1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75];
3388        for target in 0..80 {
3389            let expected = data.partition_point(|&d| d < target);
3390            let actual = find_first_ge_u32(&data, target);
3391            assert_eq!(actual, expected, "target={}", target);
3392        }
3393    }
3394
3395    #[test]
3396    fn test_find_first_ge_small_slices() {
3397        // Empty
3398        assert_eq!(find_first_ge_u32(&[], 5), 0);
3399        // Single element
3400        assert_eq!(find_first_ge_u32(&[10], 5), 0);
3401        assert_eq!(find_first_ge_u32(&[10], 10), 0);
3402        assert_eq!(find_first_ge_u32(&[10], 11), 1);
3403        // Three elements (< SIMD width)
3404        assert_eq!(find_first_ge_u32(&[2, 4, 6], 5), 2);
3405    }
3406
3407    #[test]
3408    fn test_find_first_ge_full_block() {
3409        // Simulate a full 128-entry block
3410        let data: Vec<u32> = (100..228).collect();
3411        assert_eq!(find_first_ge_u32(&data, 100), 0);
3412        assert_eq!(find_first_ge_u32(&data, 150), 50);
3413        assert_eq!(find_first_ge_u32(&data, 227), 127);
3414        assert_eq!(find_first_ge_u32(&data, 228), 128);
3415        assert_eq!(find_first_ge_u32(&data, 99), 0);
3416    }
3417
3418    #[test]
3419    fn test_find_first_ge_u32_max() {
3420        // Test with large u32 values (unsigned correctness)
3421        let data = vec![u32::MAX - 10, u32::MAX - 5, u32::MAX - 1, u32::MAX];
3422        assert_eq!(find_first_ge_u32(&data, u32::MAX - 10), 0);
3423        assert_eq!(find_first_ge_u32(&data, u32::MAX - 7), 1);
3424        assert_eq!(find_first_ge_u32(&data, u32::MAX), 3);
3425    }
3426}