Skip to main content

hermes_core/segment/reader/
mod.rs

1//! Async segment reader with lazy loading
2
3mod loader;
4mod types;
5
6pub use types::{SparseIndex, VectorIndex, VectorSearchResult};
7
8/// Memory statistics for a single segment
9#[derive(Debug, Clone, Default)]
10pub struct SegmentMemoryStats {
11    /// Segment ID
12    pub segment_id: u128,
13    /// Number of documents in segment
14    pub num_docs: u32,
15    /// Term dictionary block cache bytes
16    pub term_dict_cache_bytes: usize,
17    /// Document store block cache bytes
18    pub store_cache_bytes: usize,
19    /// Sparse vector index bytes (in-memory posting lists)
20    pub sparse_index_bytes: usize,
21    /// Dense vector index bytes (cluster assignments, quantized codes)
22    pub dense_index_bytes: usize,
23    /// Bloom filter bytes
24    pub bloom_filter_bytes: usize,
25}
26
27impl SegmentMemoryStats {
28    /// Total estimated memory for this segment
29    pub fn total_bytes(&self) -> usize {
30        self.term_dict_cache_bytes
31            + self.store_cache_bytes
32            + self.sparse_index_bytes
33            + self.dense_index_bytes
34            + self.bloom_filter_bytes
35    }
36}
37
38use crate::structures::BlockSparsePostingList;
39
40use std::sync::Arc;
41
42use rustc_hash::FxHashMap;
43
44use super::vector_data::LazyFlatVectorData;
45use crate::directories::{AsyncFileRead, Directory, LazyFileHandle, LazyFileSlice};
46use crate::dsl::{Document, Field, Schema};
47use crate::structures::{
48    AsyncSSTableReader, BlockPostingList, CoarseCentroids, IVFPQIndex, IVFRaBitQIndex, PQCodebook,
49    RaBitQIndex, SSTableStats, TermInfo,
50};
51use crate::{DocId, Error, Result};
52
53use super::store::{AsyncStoreReader, RawStoreBlock};
54use super::types::{SegmentFiles, SegmentId, SegmentMeta};
55
56/// Async segment reader with lazy loading
57///
58/// - Term dictionary: only index loaded, blocks loaded on-demand
59/// - Postings: loaded on-demand per term via HTTP range requests
60/// - Document store: only index loaded, blocks loaded on-demand via HTTP range requests
61pub struct AsyncSegmentReader {
62    meta: SegmentMeta,
63    /// Term dictionary with lazy block loading
64    term_dict: Arc<AsyncSSTableReader<TermInfo>>,
65    /// Postings file handle - fetches ranges on demand
66    postings_handle: LazyFileHandle,
67    /// Document store with lazy block loading
68    store: Arc<AsyncStoreReader>,
69    schema: Arc<Schema>,
70    /// Base doc_id offset for this segment
71    doc_id_offset: DocId,
72    /// Dense vector indexes per field (RaBitQ or IVF-RaBitQ) — for search
73    vector_indexes: FxHashMap<u32, VectorIndex>,
74    /// Lazy flat vectors per field — for reranking and merge (doc_ids in memory, vectors via mmap)
75    flat_vectors: FxHashMap<u32, LazyFlatVectorData>,
76    /// Shared coarse centroids for IVF search (loaded once)
77    coarse_centroids: Option<Arc<CoarseCentroids>>,
78    /// Sparse vector indexes per field
79    sparse_indexes: FxHashMap<u32, SparseIndex>,
80    /// Position file handle for phrase queries (lazy loading)
81    positions_handle: Option<LazyFileHandle>,
82}
83
84impl AsyncSegmentReader {
85    /// Open a segment with lazy loading
86    pub async fn open<D: Directory>(
87        dir: &D,
88        segment_id: SegmentId,
89        schema: Arc<Schema>,
90        doc_id_offset: DocId,
91        cache_blocks: usize,
92    ) -> Result<Self> {
93        let files = SegmentFiles::new(segment_id.0);
94
95        // Read metadata (small, always loaded)
96        let meta_slice = dir.open_read(&files.meta).await?;
97        let meta_bytes = meta_slice.read_bytes().await?;
98        let meta = SegmentMeta::deserialize(meta_bytes.as_slice())?;
99        debug_assert_eq!(meta.id, segment_id.0);
100
101        // Open term dictionary with lazy loading (fetches ranges on demand)
102        let term_dict_handle = dir.open_lazy(&files.term_dict).await?;
103        let term_dict = AsyncSSTableReader::open(term_dict_handle, cache_blocks).await?;
104
105        // Get postings file handle (lazy - fetches ranges on demand)
106        let postings_handle = dir.open_lazy(&files.postings).await?;
107
108        // Open store with lazy loading
109        let store_handle = dir.open_lazy(&files.store).await?;
110        let store = AsyncStoreReader::open(store_handle, cache_blocks).await?;
111
112        // Load dense vector indexes from unified .vectors file
113        let vectors_data = loader::load_vectors_file(dir, &files, &schema).await?;
114        let vector_indexes = vectors_data.indexes;
115        let flat_vectors = vectors_data.flat_vectors;
116
117        // Load sparse vector indexes from .sparse file
118        let sparse_indexes = loader::load_sparse_file(dir, &files, meta.num_docs, &schema).await?;
119
120        // Open positions file handle (if exists) - offsets are now in TermInfo
121        let positions_handle = loader::open_positions_file(dir, &files, &schema).await?;
122
123        // Log segment loading stats (compact format: ~24 bytes per active dim in hashmap)
124        let sparse_dims: usize = sparse_indexes.values().map(|s| s.num_dimensions()).sum();
125        let sparse_mem = sparse_dims * 24; // HashMap entry overhead
126        log::debug!(
127            "[segment] loaded {:016x}: docs={}, sparse_dims={}, sparse_mem={:.2} KB, dense_flat={}, dense_ann={}",
128            segment_id.0,
129            meta.num_docs,
130            sparse_dims,
131            sparse_mem as f64 / 1024.0,
132            flat_vectors.len(),
133            vector_indexes.len()
134        );
135
136        Ok(Self {
137            meta,
138            term_dict: Arc::new(term_dict),
139            postings_handle,
140            store: Arc::new(store),
141            schema,
142            doc_id_offset,
143            vector_indexes,
144            flat_vectors,
145            coarse_centroids: None,
146            sparse_indexes,
147            positions_handle,
148        })
149    }
150
151    pub fn meta(&self) -> &SegmentMeta {
152        &self.meta
153    }
154
155    pub fn num_docs(&self) -> u32 {
156        self.meta.num_docs
157    }
158
159    /// Get average field length for BM25F scoring
160    pub fn avg_field_len(&self, field: Field) -> f32 {
161        self.meta.avg_field_len(field)
162    }
163
164    pub fn doc_id_offset(&self) -> DocId {
165        self.doc_id_offset
166    }
167
168    /// Set the doc_id_offset (used for parallel segment loading)
169    pub fn set_doc_id_offset(&mut self, offset: DocId) {
170        self.doc_id_offset = offset;
171    }
172
173    pub fn schema(&self) -> &Schema {
174        &self.schema
175    }
176
177    /// Get sparse indexes for all fields
178    pub fn sparse_indexes(&self) -> &FxHashMap<u32, SparseIndex> {
179        &self.sparse_indexes
180    }
181
182    /// Get vector indexes for all fields
183    pub fn vector_indexes(&self) -> &FxHashMap<u32, VectorIndex> {
184        &self.vector_indexes
185    }
186
187    /// Get lazy flat vectors for all fields (for reranking and merge)
188    pub fn flat_vectors(&self) -> &FxHashMap<u32, LazyFlatVectorData> {
189        &self.flat_vectors
190    }
191
192    /// Get term dictionary stats for debugging
193    pub fn term_dict_stats(&self) -> SSTableStats {
194        self.term_dict.stats()
195    }
196
197    /// Estimate memory usage of this segment reader
198    pub fn memory_stats(&self) -> SegmentMemoryStats {
199        let term_dict_stats = self.term_dict.stats();
200
201        // Term dict cache: num_blocks * avg_block_size (estimate 4KB per cached block)
202        let term_dict_cache_bytes = self.term_dict.cached_blocks() * 4096;
203
204        // Store cache: similar estimate
205        let store_cache_bytes = self.store.cached_blocks() * 4096;
206
207        // Sparse index: each dimension has a posting list in memory
208        // Estimate: ~24 bytes per active dimension (HashMap entry overhead)
209        let sparse_index_bytes: usize = self
210            .sparse_indexes
211            .values()
212            .map(|s| s.num_dimensions() * 24)
213            .sum();
214
215        // Dense index: vectors are memory-mapped, but we track index structures
216        // RaBitQ/IVF indexes have cluster assignments in memory
217        let dense_index_bytes: usize = self
218            .vector_indexes
219            .values()
220            .map(|v| v.estimated_memory_bytes())
221            .sum();
222
223        SegmentMemoryStats {
224            segment_id: self.meta.id,
225            num_docs: self.meta.num_docs,
226            term_dict_cache_bytes,
227            store_cache_bytes,
228            sparse_index_bytes,
229            dense_index_bytes,
230            bloom_filter_bytes: term_dict_stats.bloom_filter_size,
231        }
232    }
233
234    /// Get posting list for a term (async - loads on demand)
235    ///
236    /// For small posting lists (1-3 docs), the data is inlined in the term dictionary
237    /// and no additional I/O is needed. For larger lists, reads from .post file.
238    pub async fn get_postings(
239        &self,
240        field: Field,
241        term: &[u8],
242    ) -> Result<Option<BlockPostingList>> {
243        log::debug!(
244            "SegmentReader::get_postings field={} term_len={}",
245            field.0,
246            term.len()
247        );
248
249        // Build key: field_id + term
250        let mut key = Vec::with_capacity(4 + term.len());
251        key.extend_from_slice(&field.0.to_le_bytes());
252        key.extend_from_slice(term);
253
254        // Look up in term dictionary
255        let term_info = match self.term_dict.get(&key).await? {
256            Some(info) => {
257                log::debug!("SegmentReader::get_postings found term_info");
258                info
259            }
260            None => {
261                log::debug!("SegmentReader::get_postings term not found");
262                return Ok(None);
263            }
264        };
265
266        // Check if posting list is inlined
267        if let Some((doc_ids, term_freqs)) = term_info.decode_inline() {
268            // Build BlockPostingList from inline data (no I/O needed!)
269            let mut posting_list = crate::structures::PostingList::with_capacity(doc_ids.len());
270            for (doc_id, tf) in doc_ids.into_iter().zip(term_freqs.into_iter()) {
271                posting_list.push(doc_id, tf);
272            }
273            let block_list = BlockPostingList::from_posting_list(&posting_list)?;
274            return Ok(Some(block_list));
275        }
276
277        // External posting list - read from postings file handle (lazy - HTTP range request)
278        let (posting_offset, posting_len) = term_info.external_info().ok_or_else(|| {
279            Error::Corruption("TermInfo has neither inline nor external data".to_string())
280        })?;
281
282        let start = posting_offset;
283        let end = start + posting_len as u64;
284
285        if end > self.postings_handle.len() {
286            return Err(Error::Corruption(
287                "Posting offset out of bounds".to_string(),
288            ));
289        }
290
291        let posting_bytes = self.postings_handle.read_bytes_range(start..end).await?;
292        let block_list = BlockPostingList::deserialize(&mut posting_bytes.as_slice())?;
293
294        Ok(Some(block_list))
295    }
296
297    /// Get document by local doc_id (async - loads on demand).
298    ///
299    /// Dense vector fields are hydrated from LazyFlatVectorData (not stored in .store).
300    /// Uses binary search on sorted doc_ids for O(log N) lookup.
301    pub async fn doc(&self, local_doc_id: DocId) -> Result<Option<Document>> {
302        let mut doc = match self.store.get(local_doc_id, &self.schema).await {
303            Ok(Some(d)) => d,
304            Ok(None) => return Ok(None),
305            Err(e) => return Err(Error::from(e)),
306        };
307
308        // Hydrate dense vector fields from flat vector data
309        for (&field_id, lazy_flat) in &self.flat_vectors {
310            let (start, entries) = lazy_flat.flat_indexes_for_doc(local_doc_id);
311            for (j, &(_doc_id, _ordinal)) in entries.iter().enumerate() {
312                let flat_idx = start + j;
313                match lazy_flat.get_vector(flat_idx).await {
314                    Ok(vec) => {
315                        doc.add_dense_vector(Field(field_id), vec);
316                    }
317                    Err(e) => {
318                        log::warn!("Failed to hydrate vector field {}: {}", field_id, e);
319                    }
320                }
321            }
322        }
323
324        Ok(Some(doc))
325    }
326
327    /// Prefetch term dictionary blocks for a key range
328    pub async fn prefetch_terms(
329        &self,
330        field: Field,
331        start_term: &[u8],
332        end_term: &[u8],
333    ) -> Result<()> {
334        let mut start_key = Vec::with_capacity(4 + start_term.len());
335        start_key.extend_from_slice(&field.0.to_le_bytes());
336        start_key.extend_from_slice(start_term);
337
338        let mut end_key = Vec::with_capacity(4 + end_term.len());
339        end_key.extend_from_slice(&field.0.to_le_bytes());
340        end_key.extend_from_slice(end_term);
341
342        self.term_dict.prefetch_range(&start_key, &end_key).await?;
343        Ok(())
344    }
345
346    /// Check if store uses dictionary compression (incompatible with raw merging)
347    pub fn store_has_dict(&self) -> bool {
348        self.store.has_dict()
349    }
350
351    /// Get store reference for merge operations
352    pub fn store(&self) -> &super::store::AsyncStoreReader {
353        &self.store
354    }
355
356    /// Get raw store blocks for optimized merging
357    pub fn store_raw_blocks(&self) -> Vec<RawStoreBlock> {
358        self.store.raw_blocks()
359    }
360
361    /// Get store data slice for raw block access
362    pub fn store_data_slice(&self) -> &LazyFileSlice {
363        self.store.data_slice()
364    }
365
366    /// Get all terms from this segment (for merge)
367    pub async fn all_terms(&self) -> Result<Vec<(Vec<u8>, TermInfo)>> {
368        self.term_dict.all_entries().await.map_err(Error::from)
369    }
370
371    /// Get all terms with parsed field and term string (for statistics aggregation)
372    ///
373    /// Returns (field, term_string, doc_freq) for each term in the dictionary.
374    /// Skips terms that aren't valid UTF-8.
375    pub async fn all_terms_with_stats(&self) -> Result<Vec<(Field, String, u32)>> {
376        let entries = self.term_dict.all_entries().await?;
377        let mut result = Vec::with_capacity(entries.len());
378
379        for (key, term_info) in entries {
380            // Key format: field_id (4 bytes little-endian) + term bytes
381            if key.len() > 4 {
382                let field_id = u32::from_le_bytes([key[0], key[1], key[2], key[3]]);
383                let term_bytes = &key[4..];
384                if let Ok(term_str) = std::str::from_utf8(term_bytes) {
385                    result.push((Field(field_id), term_str.to_string(), term_info.doc_freq()));
386                }
387            }
388        }
389
390        Ok(result)
391    }
392
393    /// Get streaming iterator over term dictionary (for memory-efficient merge)
394    pub fn term_dict_iter(&self) -> crate::structures::AsyncSSTableIterator<'_, TermInfo> {
395        self.term_dict.iter()
396    }
397
398    /// Prefetch all term dictionary blocks in a single bulk I/O call.
399    ///
400    /// Call before merge iteration to eliminate per-block cache misses.
401    pub async fn prefetch_term_dict(&self) -> crate::Result<()> {
402        self.term_dict
403            .prefetch_all_data_bulk()
404            .await
405            .map_err(crate::Error::from)
406    }
407
408    /// Read raw posting bytes at offset
409    pub async fn read_postings(&self, offset: u64, len: u32) -> Result<Vec<u8>> {
410        let start = offset;
411        let end = start + len as u64;
412        let bytes = self.postings_handle.read_bytes_range(start..end).await?;
413        Ok(bytes.to_vec())
414    }
415
416    /// Read raw position bytes at offset (for merge)
417    pub async fn read_position_bytes(&self, offset: u64, len: u32) -> Result<Option<Vec<u8>>> {
418        let handle = match &self.positions_handle {
419            Some(h) => h,
420            None => return Ok(None),
421        };
422        let start = offset;
423        let end = start + len as u64;
424        let bytes = handle.read_bytes_range(start..end).await?;
425        Ok(Some(bytes.to_vec()))
426    }
427
428    /// Check if this segment has a positions file
429    pub fn has_positions_file(&self) -> bool {
430        self.positions_handle.is_some()
431    }
432
433    /// Batch cosine scoring on raw quantized bytes.
434    ///
435    /// Dispatches to the appropriate SIMD scorer based on quantization type.
436    /// Vectors file uses data-first layout (offset 0) with 8-byte padding between
437    /// fields, so mmap slices are always properly aligned for f32/f16/u8 access.
438    fn score_quantized_batch(
439        query: &[f32],
440        raw: &[u8],
441        quant: crate::dsl::DenseVectorQuantization,
442        dim: usize,
443        scores: &mut [f32],
444    ) {
445        match quant {
446            crate::dsl::DenseVectorQuantization::F32 => {
447                let num_floats = scores.len() * dim;
448                debug_assert!(
449                    (raw.as_ptr() as usize).is_multiple_of(std::mem::align_of::<f32>()),
450                    "f32 vector data not 4-byte aligned — vectors file may use legacy format"
451                );
452                let vectors: &[f32] =
453                    unsafe { std::slice::from_raw_parts(raw.as_ptr() as *const f32, num_floats) };
454                crate::structures::simd::batch_cosine_scores(query, vectors, dim, scores);
455            }
456            crate::dsl::DenseVectorQuantization::F16 => {
457                crate::structures::simd::batch_cosine_scores_f16(query, raw, dim, scores);
458            }
459            crate::dsl::DenseVectorQuantization::UInt8 => {
460                crate::structures::simd::batch_cosine_scores_u8(query, raw, dim, scores);
461            }
462        }
463    }
464
465    /// Search dense vectors using RaBitQ
466    ///
467    /// Returns VectorSearchResult with ordinal tracking for multi-value fields.
468    /// The doc_ids are adjusted by doc_id_offset for this segment.
469    /// For multi-valued documents, scores are combined using the specified combiner.
470    pub async fn search_dense_vector(
471        &self,
472        field: Field,
473        query: &[f32],
474        k: usize,
475        nprobe: usize,
476        rerank_factor: usize,
477        combiner: crate::query::MultiValueCombiner,
478    ) -> Result<Vec<VectorSearchResult>> {
479        let ann_index = self.vector_indexes.get(&field.0);
480        let lazy_flat = self.flat_vectors.get(&field.0);
481
482        // No vectors at all for this field
483        if ann_index.is_none() && lazy_flat.is_none() {
484            return Ok(Vec::new());
485        }
486
487        /// Batch size for brute-force scoring (4096 vectors × 768 dims × 4 bytes ≈ 12MB)
488        const BRUTE_FORCE_BATCH: usize = 4096;
489
490        // Results are (doc_id, ordinal, score) where score = similarity (higher = better)
491        let mut results: Vec<(u32, u16, f32)> = if let Some(index) = ann_index {
492            // ANN search (RaBitQ, IVF, ScaNN)
493            match index {
494                VectorIndex::RaBitQ(rabitq) => {
495                    let fetch_k = k * rerank_factor.max(1);
496                    rabitq
497                        .search(query, fetch_k, rerank_factor)
498                        .into_iter()
499                        .map(|(doc_id, ordinal, dist)| (doc_id, ordinal, 1.0 / (1.0 + dist)))
500                        .collect()
501                }
502                VectorIndex::IVF { index, codebook } => {
503                    let centroids = self.coarse_centroids.as_ref().ok_or_else(|| {
504                        Error::Schema("IVF index requires coarse centroids".to_string())
505                    })?;
506                    let effective_nprobe = if nprobe > 0 { nprobe } else { 32 };
507                    let fetch_k = k * rerank_factor.max(1);
508                    index
509                        .search(centroids, codebook, query, fetch_k, Some(effective_nprobe))
510                        .into_iter()
511                        .map(|(doc_id, ordinal, dist)| (doc_id, ordinal, 1.0 / (1.0 + dist)))
512                        .collect()
513                }
514                VectorIndex::ScaNN { index, codebook } => {
515                    let centroids = self.coarse_centroids.as_ref().ok_or_else(|| {
516                        Error::Schema("ScaNN index requires coarse centroids".to_string())
517                    })?;
518                    let effective_nprobe = if nprobe > 0 { nprobe } else { 32 };
519                    let fetch_k = k * rerank_factor.max(1);
520                    index
521                        .search(centroids, codebook, query, fetch_k, Some(effective_nprobe))
522                        .into_iter()
523                        .map(|(doc_id, ordinal, dist)| (doc_id, ordinal, 1.0 / (1.0 + dist)))
524                        .collect()
525                }
526            }
527        } else if let Some(lazy_flat) = lazy_flat {
528            // Batched brute-force from lazy flat vectors (native-precision SIMD scoring)
529            // Uses a top-k heap to avoid collecting and sorting all N candidates.
530            let dim = lazy_flat.dim;
531            let n = lazy_flat.num_vectors;
532            let quant = lazy_flat.quantization;
533            let fetch_k = k * rerank_factor.max(1);
534            let mut collector = crate::query::ScoreCollector::new(fetch_k);
535
536            for batch_start in (0..n).step_by(BRUTE_FORCE_BATCH) {
537                let batch_count = BRUTE_FORCE_BATCH.min(n - batch_start);
538                let batch_bytes = lazy_flat
539                    .read_vectors_batch(batch_start, batch_count)
540                    .await
541                    .map_err(crate::Error::Io)?;
542                let raw = batch_bytes.as_slice();
543
544                let mut scores = vec![0f32; batch_count];
545                Self::score_quantized_batch(query, raw, quant, dim, &mut scores);
546
547                for (i, &score) in scores.iter().enumerate().take(batch_count) {
548                    let (doc_id, ordinal) = lazy_flat.get_doc_id(batch_start + i);
549                    collector.insert_with_ordinal(doc_id, score, ordinal);
550                }
551            }
552
553            collector
554                .into_sorted_results()
555                .into_iter()
556                .map(|(doc_id, score, ordinal)| (doc_id, ordinal, score))
557                .collect()
558        } else {
559            return Ok(Vec::new());
560        };
561
562        // Rerank ANN candidates using raw vectors from lazy flat (binary search lookup)
563        // Uses native-precision SIMD scoring on quantized bytes — no dequantization overhead.
564        if ann_index.is_some()
565            && !results.is_empty()
566            && let Some(lazy_flat) = lazy_flat
567        {
568            let dim = lazy_flat.dim;
569            let quant = lazy_flat.quantization;
570            let vbs = lazy_flat.vector_byte_size();
571
572            // Resolve flat indexes for each candidate via binary search
573            let mut resolved: Vec<(usize, usize)> = Vec::new(); // (result_idx, flat_idx)
574            for (ri, c) in results.iter().enumerate() {
575                let (start, entries) = lazy_flat.flat_indexes_for_doc(c.0);
576                for (j, &(_, ord)) in entries.iter().enumerate() {
577                    if ord == c.1 {
578                        resolved.push((ri, start + j));
579                        break;
580                    }
581                }
582            }
583
584            if !resolved.is_empty() {
585                // Sort by flat_idx for sequential mmap access (better page locality)
586                resolved.sort_unstable_by_key(|&(_, flat_idx)| flat_idx);
587
588                // Batch-read raw quantized bytes into contiguous buffer
589                let mut raw_buf = vec![0u8; resolved.len() * vbs];
590                for (buf_idx, &(_, flat_idx)) in resolved.iter().enumerate() {
591                    let _ = lazy_flat
592                        .read_vector_raw_into(
593                            flat_idx,
594                            &mut raw_buf[buf_idx * vbs..(buf_idx + 1) * vbs],
595                        )
596                        .await;
597                }
598
599                // Native-precision batch SIMD cosine scoring
600                let mut scores = vec![0f32; resolved.len()];
601                Self::score_quantized_batch(query, &raw_buf, quant, dim, &mut scores);
602
603                // Write scores back to results
604                for (buf_idx, &(ri, _)) in resolved.iter().enumerate() {
605                    results[ri].2 = scores[buf_idx];
606                }
607            }
608
609            results.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap_or(std::cmp::Ordering::Equal));
610            results.truncate(k * rerank_factor.max(1));
611        }
612
613        // Track ordinals with individual scores for each doc_id
614        // Note: doc_id_offset is NOT applied here - the collector applies it uniformly
615        let mut doc_ordinals: rustc_hash::FxHashMap<DocId, Vec<(u32, f32)>> =
616            rustc_hash::FxHashMap::default();
617        for (doc_id, ordinal, score) in results {
618            let ordinals = doc_ordinals.entry(doc_id as DocId).or_default();
619            ordinals.push((ordinal as u32, score));
620        }
621
622        // Combine scores and build results with ordinal tracking
623        let mut final_results: Vec<VectorSearchResult> = doc_ordinals
624            .into_iter()
625            .map(|(doc_id, ordinals)| {
626                let combined_score = combiner.combine(&ordinals);
627                VectorSearchResult::new(doc_id, combined_score, ordinals)
628            })
629            .collect();
630
631        // Sort by score descending and take top k
632        final_results.sort_by(|a, b| {
633            b.score
634                .partial_cmp(&a.score)
635                .unwrap_or(std::cmp::Ordering::Equal)
636        });
637        final_results.truncate(k);
638
639        Ok(final_results)
640    }
641
642    /// Check if this segment has dense vectors for the given field
643    pub fn has_dense_vector_index(&self, field: Field) -> bool {
644        self.vector_indexes.contains_key(&field.0) || self.flat_vectors.contains_key(&field.0)
645    }
646
647    /// Get the dense vector index for a field (if available)
648    pub fn get_dense_vector_index(&self, field: Field) -> Option<Arc<RaBitQIndex>> {
649        match self.vector_indexes.get(&field.0) {
650            Some(VectorIndex::RaBitQ(idx)) => Some(idx.clone()),
651            _ => None,
652        }
653    }
654
655    /// Get the IVF vector index for a field (if available)
656    pub fn get_ivf_vector_index(
657        &self,
658        field: Field,
659    ) -> Option<(Arc<IVFRaBitQIndex>, Arc<crate::structures::RaBitQCodebook>)> {
660        match self.vector_indexes.get(&field.0) {
661            Some(VectorIndex::IVF { index, codebook }) => Some((index.clone(), codebook.clone())),
662            _ => None,
663        }
664    }
665
666    /// Get coarse centroids (shared across IVF/ScaNN indexes)
667    pub fn coarse_centroids(&self) -> Option<&Arc<CoarseCentroids>> {
668        self.coarse_centroids.as_ref()
669    }
670
671    /// Set coarse centroids from index-level trained structures
672    pub fn set_coarse_centroids(&mut self, centroids: Arc<CoarseCentroids>) {
673        self.coarse_centroids = Some(centroids);
674    }
675
676    /// Get the ScaNN vector index for a field (if available)
677    pub fn get_scann_vector_index(
678        &self,
679        field: Field,
680    ) -> Option<(Arc<IVFPQIndex>, Arc<PQCodebook>)> {
681        match self.vector_indexes.get(&field.0) {
682            Some(VectorIndex::ScaNN { index, codebook }) => Some((index.clone(), codebook.clone())),
683            _ => None,
684        }
685    }
686
687    /// Get the vector index type for a field
688    pub fn get_vector_index(&self, field: Field) -> Option<&VectorIndex> {
689        self.vector_indexes.get(&field.0)
690    }
691
692    /// Search for similar sparse vectors using dedicated sparse posting lists
693    ///
694    /// Uses shared `WandExecutor` with `SparseTermScorer` for efficient top-k retrieval.
695    /// Optimizations (via WandExecutor):
696    /// 1. **MaxScore pruning**: Dimensions sorted by max contribution
697    /// 2. **Block-Max WAND**: Skips blocks where max contribution < threshold
698    /// 3. **Top-K heap**: Efficient score collection
699    ///
700    /// Returns VectorSearchResult with ordinal tracking for multi-value fields.
701    pub async fn search_sparse_vector(
702        &self,
703        field: Field,
704        vector: &[(u32, f32)],
705        limit: usize,
706        combiner: crate::query::MultiValueCombiner,
707        heap_factor: f32,
708    ) -> Result<Vec<VectorSearchResult>> {
709        use crate::query::{BlockMaxScoreExecutor, BmpExecutor, SparseTermScorer};
710
711        let query_tokens = vector.len();
712
713        // Get sparse index for this field
714        let sparse_index = match self.sparse_indexes.get(&field.0) {
715            Some(idx) => idx,
716            None => {
717                log::debug!(
718                    "Sparse vector search: no index for field {}, returning empty",
719                    field.0
720                );
721                return Ok(Vec::new());
722            }
723        };
724
725        let index_dimensions = sparse_index.num_dimensions();
726
727        // Filter query terms to only those present in the index
728        let mut matched_terms: Vec<(u32, f32)> = Vec::with_capacity(vector.len());
729        let mut missing_tokens = Vec::new();
730
731        for &(dim_id, query_weight) in vector {
732            if sparse_index.has_dimension(dim_id) {
733                matched_terms.push((dim_id, query_weight));
734            } else {
735                missing_tokens.push(dim_id);
736            }
737        }
738
739        log::debug!(
740            "Sparse vector search: query_tokens={}, matched={}, missing={}, index_dimensions={}",
741            query_tokens,
742            matched_terms.len(),
743            missing_tokens.len(),
744            index_dimensions
745        );
746
747        if log::log_enabled!(log::Level::Debug) {
748            let query_details: Vec<_> = vector
749                .iter()
750                .take(30)
751                .map(|(id, w)| format!("{}:{:.3}", id, w))
752                .collect();
753            log::debug!("Query tokens (id:weight): [{}]", query_details.join(", "));
754        }
755
756        if !missing_tokens.is_empty() {
757            log::debug!(
758                "Missing token IDs (not in index): {:?}",
759                missing_tokens.iter().take(20).collect::<Vec<_>>()
760            );
761        }
762
763        if matched_terms.is_empty() {
764            log::debug!("Sparse vector search: no matching tokens, returning empty");
765            return Ok(Vec::new());
766        }
767
768        // Select executor based on number of query terms:
769        // - 12+ terms: BMP (block-at-a-time, lazy block loading, best for SPLADE)
770        // - 1-11 terms: BlockMaxScoreExecutor (unified MaxScore + block-max + conjunction)
771        let num_terms = matched_terms.len();
772        let over_fetch = limit * 2; // Over-fetch for multi-value combining
773        let raw_results = if num_terms > 12 {
774            // BMP: lazy block loading — only skip entries in memory, blocks loaded on-demand
775            BmpExecutor::new(sparse_index, matched_terms, over_fetch, heap_factor)
776                .execute()
777                .await?
778        } else {
779            // Load posting lists only for the few terms (1-11) used by BlockMaxScore
780            let mut posting_lists: Vec<(u32, f32, Arc<BlockSparsePostingList>)> =
781                Vec::with_capacity(num_terms);
782            for &(dim_id, query_weight) in &matched_terms {
783                if let Some(pl) = sparse_index.get_posting(dim_id).await? {
784                    posting_lists.push((dim_id, query_weight, pl));
785                }
786            }
787            let scorers: Vec<SparseTermScorer> = posting_lists
788                .iter()
789                .map(|(_, query_weight, pl)| SparseTermScorer::from_arc(pl, *query_weight))
790                .collect();
791            if scorers.is_empty() {
792                return Ok(Vec::new());
793            }
794            BlockMaxScoreExecutor::with_heap_factor(scorers, over_fetch, heap_factor).execute()
795        };
796
797        log::trace!(
798            "Sparse WAND returned {} raw results for segment (doc_id_offset={})",
799            raw_results.len(),
800            self.doc_id_offset
801        );
802        if log::log_enabled!(log::Level::Trace) && !raw_results.is_empty() {
803            for r in raw_results.iter().take(5) {
804                log::trace!(
805                    "  Raw result: doc_id={} (global={}), score={:.4}, ordinal={}",
806                    r.doc_id,
807                    r.doc_id + self.doc_id_offset,
808                    r.score,
809                    r.ordinal
810                );
811            }
812        }
813
814        // Track ordinals with individual scores for each doc_id
815        // Now using real ordinals from the posting lists
816        let mut doc_ordinals: rustc_hash::FxHashMap<u32, Vec<(u32, f32)>> =
817            rustc_hash::FxHashMap::default();
818        for r in raw_results {
819            let ordinals = doc_ordinals.entry(r.doc_id).or_default();
820            ordinals.push((r.ordinal as u32, r.score));
821        }
822
823        // Combine scores and build results with ordinal tracking
824        // Note: doc_id_offset is NOT applied here - the collector applies it uniformly
825        let mut results: Vec<VectorSearchResult> = doc_ordinals
826            .into_iter()
827            .map(|(doc_id, ordinals)| {
828                let combined_score = combiner.combine(&ordinals);
829                VectorSearchResult::new(doc_id, combined_score, ordinals)
830            })
831            .collect();
832
833        // Sort by score descending and take top limit
834        results.sort_by(|a, b| {
835            b.score
836                .partial_cmp(&a.score)
837                .unwrap_or(std::cmp::Ordering::Equal)
838        });
839        results.truncate(limit);
840
841        Ok(results)
842    }
843
844    /// Get positions for a term (for phrase queries)
845    ///
846    /// Position offsets are now embedded in TermInfo, so we first look up
847    /// the term to get its TermInfo, then use position_info() to get the offset.
848    pub async fn get_positions(
849        &self,
850        field: Field,
851        term: &[u8],
852    ) -> Result<Option<crate::structures::PositionPostingList>> {
853        use std::io::Cursor;
854
855        // Get positions handle
856        let handle = match &self.positions_handle {
857            Some(h) => h,
858            None => return Ok(None),
859        };
860
861        // Build key: field_id + term
862        let mut key = Vec::with_capacity(4 + term.len());
863        key.extend_from_slice(&field.0.to_le_bytes());
864        key.extend_from_slice(term);
865
866        // Look up term in dictionary to get TermInfo with position offset
867        let term_info = match self.term_dict.get(&key).await? {
868            Some(info) => info,
869            None => return Ok(None),
870        };
871
872        // Get position offset from TermInfo
873        let (offset, length) = match term_info.position_info() {
874            Some((o, l)) => (o, l),
875            None => return Ok(None),
876        };
877
878        // Read the position data
879        let slice = handle.slice(offset..offset + length as u64);
880        let data = slice.read_bytes().await?;
881
882        // Deserialize
883        let mut cursor = Cursor::new(data.as_slice());
884        let pos_list = crate::structures::PositionPostingList::deserialize(&mut cursor)?;
885
886        Ok(Some(pos_list))
887    }
888
889    /// Check if positions are available for a field
890    pub fn has_positions(&self, field: Field) -> bool {
891        // Check schema for position mode on this field
892        if let Some(entry) = self.schema.get_field_entry(field) {
893            entry.positions.is_some()
894        } else {
895            false
896        }
897    }
898}
899
900/// Alias for AsyncSegmentReader
901pub type SegmentReader = AsyncSegmentReader;