1use crate::dsl::Field;
4use crate::segment::{SegmentReader, VectorSearchResult};
5use crate::{DocId, Score, TERMINATED};
6
7use super::ScoredPosition;
8use super::traits::{CountFuture, MatchedPositions, Query, Scorer, ScorerFuture};
9
10#[derive(Debug, Clone, Copy, PartialEq)]
12pub enum MultiValueCombiner {
13 Sum,
15 Max,
17 Avg,
19 LogSumExp {
23 temperature: f32,
25 },
26 WeightedTopK {
29 k: usize,
31 decay: f32,
33 },
34}
35
36impl Default for MultiValueCombiner {
37 fn default() -> Self {
38 MultiValueCombiner::LogSumExp { temperature: 1.5 }
41 }
42}
43
44impl MultiValueCombiner {
45 pub fn log_sum_exp() -> Self {
47 Self::LogSumExp { temperature: 1.5 }
48 }
49
50 pub fn log_sum_exp_with_temperature(temperature: f32) -> Self {
52 Self::LogSumExp { temperature }
53 }
54
55 pub fn weighted_top_k() -> Self {
57 Self::WeightedTopK { k: 5, decay: 0.7 }
58 }
59
60 pub fn weighted_top_k_with_params(k: usize, decay: f32) -> Self {
62 Self::WeightedTopK { k, decay }
63 }
64
65 pub fn combine(&self, scores: &[(u32, f32)]) -> f32 {
67 if scores.is_empty() {
68 return 0.0;
69 }
70
71 match self {
72 MultiValueCombiner::Sum => scores.iter().map(|(_, s)| s).sum(),
73 MultiValueCombiner::Max => scores
74 .iter()
75 .map(|(_, s)| *s)
76 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
77 .unwrap_or(0.0),
78 MultiValueCombiner::Avg => {
79 let sum: f32 = scores.iter().map(|(_, s)| s).sum();
80 sum / scores.len() as f32
81 }
82 MultiValueCombiner::LogSumExp { temperature } => {
83 let t = *temperature;
86 let max_score = scores
87 .iter()
88 .map(|(_, s)| *s)
89 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
90 .unwrap_or(0.0);
91
92 let sum_exp: f32 = scores
93 .iter()
94 .map(|(_, s)| (t * (s - max_score)).exp())
95 .sum();
96
97 max_score + sum_exp.ln() / t
98 }
99 MultiValueCombiner::WeightedTopK { k, decay } => {
100 let mut sorted: Vec<f32> = scores.iter().map(|(_, s)| *s).collect();
102 sorted.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal));
103 sorted.truncate(*k);
104
105 let mut weight = 1.0f32;
107 let mut weighted_sum = 0.0f32;
108 let mut weight_total = 0.0f32;
109
110 for score in sorted {
111 weighted_sum += weight * score;
112 weight_total += weight;
113 weight *= decay;
114 }
115
116 if weight_total > 0.0 {
117 weighted_sum / weight_total
118 } else {
119 0.0
120 }
121 }
122 }
123 }
124}
125
126#[derive(Debug, Clone)]
128pub struct DenseVectorQuery {
129 pub field: Field,
131 pub vector: Vec<f32>,
133 pub nprobe: usize,
135 pub rerank_factor: usize,
137 pub combiner: MultiValueCombiner,
139}
140
141impl DenseVectorQuery {
142 pub fn new(field: Field, vector: Vec<f32>) -> Self {
144 Self {
145 field,
146 vector,
147 nprobe: 32,
148 rerank_factor: 3,
149 combiner: MultiValueCombiner::Max,
150 }
151 }
152
153 pub fn with_nprobe(mut self, nprobe: usize) -> Self {
155 self.nprobe = nprobe;
156 self
157 }
158
159 pub fn with_rerank_factor(mut self, factor: usize) -> Self {
161 self.rerank_factor = factor;
162 self
163 }
164
165 pub fn with_combiner(mut self, combiner: MultiValueCombiner) -> Self {
167 self.combiner = combiner;
168 self
169 }
170}
171
172impl Query for DenseVectorQuery {
173 fn scorer<'a>(&self, reader: &'a SegmentReader, limit: usize) -> ScorerFuture<'a> {
174 let field = self.field;
175 let vector = self.vector.clone();
176 let nprobe = self.nprobe;
177 let rerank_factor = self.rerank_factor;
178 let combiner = self.combiner;
179 Box::pin(async move {
180 let results = reader
181 .search_dense_vector(field, &vector, limit, nprobe, rerank_factor, combiner)
182 .await?;
183
184 Ok(Box::new(DenseVectorScorer::new(results, field.0)) as Box<dyn Scorer>)
185 })
186 }
187
188 fn count_estimate<'a>(&self, _reader: &'a SegmentReader) -> CountFuture<'a> {
189 Box::pin(async move { Ok(u32::MAX) })
190 }
191}
192
193struct DenseVectorScorer {
195 results: Vec<VectorSearchResult>,
196 position: usize,
197 field_id: u32,
198}
199
200impl DenseVectorScorer {
201 fn new(results: Vec<VectorSearchResult>, field_id: u32) -> Self {
202 Self {
203 results,
204 position: 0,
205 field_id,
206 }
207 }
208}
209
210impl Scorer for DenseVectorScorer {
211 fn doc(&self) -> DocId {
212 if self.position < self.results.len() {
213 self.results[self.position].doc_id
214 } else {
215 TERMINATED
216 }
217 }
218
219 fn score(&self) -> Score {
220 if self.position < self.results.len() {
221 self.results[self.position].score
222 } else {
223 0.0
224 }
225 }
226
227 fn advance(&mut self) -> DocId {
228 self.position += 1;
229 self.doc()
230 }
231
232 fn seek(&mut self, target: DocId) -> DocId {
233 while self.doc() < target && self.doc() != TERMINATED {
234 self.advance();
235 }
236 self.doc()
237 }
238
239 fn size_hint(&self) -> u32 {
240 (self.results.len() - self.position) as u32
241 }
242
243 fn matched_positions(&self) -> Option<MatchedPositions> {
244 if self.position >= self.results.len() {
245 return None;
246 }
247 let result = &self.results[self.position];
248 let scored_positions: Vec<ScoredPosition> = result
249 .ordinals
250 .iter()
251 .map(|(ordinal, score)| ScoredPosition::new(*ordinal, *score))
252 .collect();
253 Some(vec![(self.field_id, scored_positions)])
254 }
255}
256
257#[derive(Debug, Clone)]
259pub struct SparseVectorQuery {
260 pub field: Field,
262 pub vector: Vec<(u32, f32)>,
264 pub combiner: MultiValueCombiner,
266 pub heap_factor: f32,
269}
270
271impl SparseVectorQuery {
272 pub fn new(field: Field, vector: Vec<(u32, f32)>) -> Self {
279 Self {
280 field,
281 vector,
282 combiner: MultiValueCombiner::LogSumExp { temperature: 0.7 },
283 heap_factor: 1.0,
284 }
285 }
286
287 pub fn with_combiner(mut self, combiner: MultiValueCombiner) -> Self {
289 self.combiner = combiner;
290 self
291 }
292
293 pub fn with_heap_factor(mut self, heap_factor: f32) -> Self {
300 self.heap_factor = heap_factor.clamp(0.0, 1.0);
301 self
302 }
303
304 pub fn from_indices_weights(field: Field, indices: Vec<u32>, weights: Vec<f32>) -> Self {
306 let vector: Vec<(u32, f32)> = indices.into_iter().zip(weights).collect();
307 Self::new(field, vector)
308 }
309
310 #[cfg(feature = "native")]
322 pub fn from_text(
323 field: Field,
324 text: &str,
325 tokenizer_name: &str,
326 weighting: crate::structures::QueryWeighting,
327 sparse_index: Option<&crate::segment::SparseIndex>,
328 ) -> crate::Result<Self> {
329 use crate::structures::QueryWeighting;
330 use crate::tokenizer::tokenizer_cache;
331
332 let tokenizer = tokenizer_cache().get_or_load(tokenizer_name)?;
333 let token_ids = tokenizer.tokenize_unique(text)?;
334
335 let weights: Vec<f32> = match weighting {
336 QueryWeighting::One => vec![1.0f32; token_ids.len()],
337 QueryWeighting::Idf => {
338 if let Some(index) = sparse_index {
339 index.idf_weights(&token_ids)
340 } else {
341 vec![1.0f32; token_ids.len()]
342 }
343 }
344 QueryWeighting::IdfFile => {
345 use crate::tokenizer::idf_weights_cache;
346 if let Some(idf) = idf_weights_cache().get_or_load(tokenizer_name) {
347 token_ids.iter().map(|&id| idf.get(id)).collect()
348 } else {
349 vec![1.0f32; token_ids.len()]
350 }
351 }
352 };
353
354 let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
355 Ok(Self::new(field, vector))
356 }
357
358 #[cfg(feature = "native")]
370 pub fn from_text_with_stats(
371 field: Field,
372 text: &str,
373 tokenizer: &crate::tokenizer::HfTokenizer,
374 weighting: crate::structures::QueryWeighting,
375 global_stats: Option<&super::GlobalStats>,
376 ) -> crate::Result<Self> {
377 use crate::structures::QueryWeighting;
378
379 let token_ids = tokenizer.tokenize_unique(text)?;
380
381 let weights: Vec<f32> = match weighting {
382 QueryWeighting::One => vec![1.0f32; token_ids.len()],
383 QueryWeighting::Idf => {
384 if let Some(stats) = global_stats {
385 stats
387 .sparse_idf_weights(field, &token_ids)
388 .into_iter()
389 .map(|w| w.max(0.0))
390 .collect()
391 } else {
392 vec![1.0f32; token_ids.len()]
393 }
394 }
395 QueryWeighting::IdfFile => {
396 vec![1.0f32; token_ids.len()]
399 }
400 };
401
402 let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
403 Ok(Self::new(field, vector))
404 }
405
406 #[cfg(feature = "native")]
418 pub fn from_text_with_tokenizer_bytes(
419 field: Field,
420 text: &str,
421 tokenizer_bytes: &[u8],
422 weighting: crate::structures::QueryWeighting,
423 global_stats: Option<&super::GlobalStats>,
424 ) -> crate::Result<Self> {
425 use crate::structures::QueryWeighting;
426 use crate::tokenizer::HfTokenizer;
427
428 let tokenizer = HfTokenizer::from_bytes(tokenizer_bytes)?;
429 let token_ids = tokenizer.tokenize_unique(text)?;
430
431 let weights: Vec<f32> = match weighting {
432 QueryWeighting::One => vec![1.0f32; token_ids.len()],
433 QueryWeighting::Idf => {
434 if let Some(stats) = global_stats {
435 stats
437 .sparse_idf_weights(field, &token_ids)
438 .into_iter()
439 .map(|w| w.max(0.0))
440 .collect()
441 } else {
442 vec![1.0f32; token_ids.len()]
443 }
444 }
445 QueryWeighting::IdfFile => {
446 vec![1.0f32; token_ids.len()]
449 }
450 };
451
452 let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
453 Ok(Self::new(field, vector))
454 }
455}
456
457impl Query for SparseVectorQuery {
458 fn scorer<'a>(&self, reader: &'a SegmentReader, limit: usize) -> ScorerFuture<'a> {
459 let field = self.field;
460 let vector = self.vector.clone();
461 let combiner = self.combiner;
462 let heap_factor = self.heap_factor;
463 Box::pin(async move {
464 let results = reader
465 .search_sparse_vector(field, &vector, limit, combiner, heap_factor)
466 .await?;
467
468 Ok(Box::new(SparseVectorScorer::new(results, field.0)) as Box<dyn Scorer>)
469 })
470 }
471
472 fn count_estimate<'a>(&self, _reader: &'a SegmentReader) -> CountFuture<'a> {
473 Box::pin(async move { Ok(u32::MAX) })
474 }
475}
476
477struct SparseVectorScorer {
479 results: Vec<VectorSearchResult>,
480 position: usize,
481 field_id: u32,
482}
483
484impl SparseVectorScorer {
485 fn new(results: Vec<VectorSearchResult>, field_id: u32) -> Self {
486 Self {
487 results,
488 position: 0,
489 field_id,
490 }
491 }
492}
493
494impl Scorer for SparseVectorScorer {
495 fn doc(&self) -> DocId {
496 if self.position < self.results.len() {
497 self.results[self.position].doc_id
498 } else {
499 TERMINATED
500 }
501 }
502
503 fn score(&self) -> Score {
504 if self.position < self.results.len() {
505 self.results[self.position].score
506 } else {
507 0.0
508 }
509 }
510
511 fn advance(&mut self) -> DocId {
512 self.position += 1;
513 self.doc()
514 }
515
516 fn seek(&mut self, target: DocId) -> DocId {
517 while self.doc() < target && self.doc() != TERMINATED {
518 self.advance();
519 }
520 self.doc()
521 }
522
523 fn size_hint(&self) -> u32 {
524 (self.results.len() - self.position) as u32
525 }
526
527 fn matched_positions(&self) -> Option<MatchedPositions> {
528 if self.position >= self.results.len() {
529 return None;
530 }
531 let result = &self.results[self.position];
532 let scored_positions: Vec<ScoredPosition> = result
533 .ordinals
534 .iter()
535 .map(|(ordinal, score)| ScoredPosition::new(*ordinal, *score))
536 .collect();
537 Some(vec![(self.field_id, scored_positions)])
538 }
539}
540
541#[cfg(test)]
542mod tests {
543 use super::*;
544 use crate::dsl::Field;
545
546 #[test]
547 fn test_dense_vector_query_builder() {
548 let query = DenseVectorQuery::new(Field(0), vec![1.0, 2.0, 3.0])
549 .with_nprobe(64)
550 .with_rerank_factor(5);
551
552 assert_eq!(query.field, Field(0));
553 assert_eq!(query.vector.len(), 3);
554 assert_eq!(query.nprobe, 64);
555 assert_eq!(query.rerank_factor, 5);
556 }
557
558 #[test]
559 fn test_sparse_vector_query_new() {
560 let sparse = vec![(1, 0.5), (5, 0.3), (10, 0.2)];
561 let query = SparseVectorQuery::new(Field(0), sparse.clone());
562
563 assert_eq!(query.field, Field(0));
564 assert_eq!(query.vector, sparse);
565 }
566
567 #[test]
568 fn test_sparse_vector_query_from_indices_weights() {
569 let query =
570 SparseVectorQuery::from_indices_weights(Field(0), vec![1, 5, 10], vec![0.5, 0.3, 0.2]);
571
572 assert_eq!(query.vector, vec![(1, 0.5), (5, 0.3), (10, 0.2)]);
573 }
574
575 #[test]
576 fn test_combiner_sum() {
577 let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
578 let combiner = MultiValueCombiner::Sum;
579 assert!((combiner.combine(&scores) - 6.0).abs() < 1e-6);
580 }
581
582 #[test]
583 fn test_combiner_max() {
584 let scores = vec![(0, 1.0), (1, 3.0), (2, 2.0)];
585 let combiner = MultiValueCombiner::Max;
586 assert!((combiner.combine(&scores) - 3.0).abs() < 1e-6);
587 }
588
589 #[test]
590 fn test_combiner_avg() {
591 let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
592 let combiner = MultiValueCombiner::Avg;
593 assert!((combiner.combine(&scores) - 2.0).abs() < 1e-6);
594 }
595
596 #[test]
597 fn test_combiner_log_sum_exp() {
598 let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
599 let combiner = MultiValueCombiner::log_sum_exp();
600 let result = combiner.combine(&scores);
601 assert!(result >= 3.0);
603 assert!(result <= 3.0 + (3.0_f32).ln() / 1.5);
604 }
605
606 #[test]
607 fn test_combiner_log_sum_exp_approaches_max_with_high_temp() {
608 let scores = vec![(0, 1.0), (1, 5.0), (2, 2.0)];
609 let combiner = MultiValueCombiner::log_sum_exp_with_temperature(10.0);
611 let result = combiner.combine(&scores);
612 assert!((result - 5.0).abs() < 0.5);
614 }
615
616 #[test]
617 fn test_combiner_weighted_top_k() {
618 let scores = vec![(0, 5.0), (1, 3.0), (2, 1.0), (3, 0.5)];
619 let combiner = MultiValueCombiner::weighted_top_k_with_params(3, 0.5);
620 let result = combiner.combine(&scores);
621 assert!((result - 3.857).abs() < 0.01);
626 }
627
628 #[test]
629 fn test_combiner_weighted_top_k_less_than_k() {
630 let scores = vec![(0, 2.0), (1, 1.0)];
631 let combiner = MultiValueCombiner::weighted_top_k_with_params(5, 0.7);
632 let result = combiner.combine(&scores);
633 assert!((result - 1.588).abs() < 0.01);
638 }
639
640 #[test]
641 fn test_combiner_empty_scores() {
642 let scores: Vec<(u32, f32)> = vec![];
643 assert_eq!(MultiValueCombiner::Sum.combine(&scores), 0.0);
644 assert_eq!(MultiValueCombiner::Max.combine(&scores), 0.0);
645 assert_eq!(MultiValueCombiner::Avg.combine(&scores), 0.0);
646 assert_eq!(MultiValueCombiner::log_sum_exp().combine(&scores), 0.0);
647 assert_eq!(MultiValueCombiner::weighted_top_k().combine(&scores), 0.0);
648 }
649
650 #[test]
651 fn test_combiner_single_score() {
652 let scores = vec![(0, 5.0)];
653 assert!((MultiValueCombiner::Sum.combine(&scores) - 5.0).abs() < 1e-6);
655 assert!((MultiValueCombiner::Max.combine(&scores) - 5.0).abs() < 1e-6);
656 assert!((MultiValueCombiner::Avg.combine(&scores) - 5.0).abs() < 1e-6);
657 assert!((MultiValueCombiner::log_sum_exp().combine(&scores) - 5.0).abs() < 1e-6);
658 assert!((MultiValueCombiner::weighted_top_k().combine(&scores) - 5.0).abs() < 1e-6);
659 }
660
661 #[test]
662 fn test_default_combiner_is_log_sum_exp() {
663 let combiner = MultiValueCombiner::default();
664 match combiner {
665 MultiValueCombiner::LogSumExp { temperature } => {
666 assert!((temperature - 1.5).abs() < 1e-6);
667 }
668 _ => panic!("Default combiner should be LogSumExp"),
669 }
670 }
671}