Skip to main content

hermes_core/segment/reader/
mod.rs

1//! Async segment reader with lazy loading
2
3mod loader;
4mod types;
5
6pub use types::{SparseIndex, VectorIndex, VectorSearchResult};
7
8/// Memory statistics for a single segment
9#[derive(Debug, Clone, Default)]
10pub struct SegmentMemoryStats {
11    /// Segment ID
12    pub segment_id: u128,
13    /// Number of documents in segment
14    pub num_docs: u32,
15    /// Term dictionary block cache bytes
16    pub term_dict_cache_bytes: usize,
17    /// Document store block cache bytes
18    pub store_cache_bytes: usize,
19    /// Sparse vector index bytes (in-memory posting lists)
20    pub sparse_index_bytes: usize,
21    /// Dense vector index bytes (cluster assignments, quantized codes)
22    pub dense_index_bytes: usize,
23    /// Bloom filter bytes
24    pub bloom_filter_bytes: usize,
25}
26
27impl SegmentMemoryStats {
28    /// Total estimated memory for this segment
29    pub fn total_bytes(&self) -> usize {
30        self.term_dict_cache_bytes
31            + self.store_cache_bytes
32            + self.sparse_index_bytes
33            + self.dense_index_bytes
34            + self.bloom_filter_bytes
35    }
36}
37
38use crate::structures::BlockSparsePostingList;
39
40use std::sync::Arc;
41
42use rustc_hash::FxHashMap;
43
44use crate::directories::{AsyncFileRead, Directory, LazyFileHandle, LazyFileSlice};
45use crate::dsl::{Document, Field, Schema};
46use crate::structures::{
47    AsyncSSTableReader, BlockPostingList, CoarseCentroids, IVFPQIndex, IVFRaBitQIndex, PQCodebook,
48    RaBitQIndex, SSTableStats, TermInfo,
49};
50use crate::{DocId, Error, Result};
51
52use super::store::{AsyncStoreReader, RawStoreBlock};
53use super::types::{SegmentFiles, SegmentId, SegmentMeta};
54
55/// Async segment reader with lazy loading
56///
57/// - Term dictionary: only index loaded, blocks loaded on-demand
58/// - Postings: loaded on-demand per term via HTTP range requests
59/// - Document store: only index loaded, blocks loaded on-demand via HTTP range requests
60pub struct AsyncSegmentReader {
61    meta: SegmentMeta,
62    /// Term dictionary with lazy block loading
63    term_dict: Arc<AsyncSSTableReader<TermInfo>>,
64    /// Postings file handle - fetches ranges on demand
65    postings_handle: LazyFileHandle,
66    /// Document store with lazy block loading
67    store: Arc<AsyncStoreReader>,
68    schema: Arc<Schema>,
69    /// Base doc_id offset for this segment
70    doc_id_offset: DocId,
71    /// Dense vector indexes per field (RaBitQ or IVF-RaBitQ)
72    vector_indexes: FxHashMap<u32, VectorIndex>,
73    /// Shared coarse centroids for IVF search (loaded once)
74    coarse_centroids: Option<Arc<CoarseCentroids>>,
75    /// Sparse vector indexes per field
76    sparse_indexes: FxHashMap<u32, SparseIndex>,
77    /// Position file handle for phrase queries (lazy loading)
78    positions_handle: Option<LazyFileHandle>,
79}
80
81impl AsyncSegmentReader {
82    /// Open a segment with lazy loading
83    pub async fn open<D: Directory>(
84        dir: &D,
85        segment_id: SegmentId,
86        schema: Arc<Schema>,
87        doc_id_offset: DocId,
88        cache_blocks: usize,
89    ) -> Result<Self> {
90        let files = SegmentFiles::new(segment_id.0);
91
92        // Read metadata (small, always loaded)
93        let meta_slice = dir.open_read(&files.meta).await?;
94        let meta_bytes = meta_slice.read_bytes().await?;
95        let meta = SegmentMeta::deserialize(meta_bytes.as_slice())?;
96        debug_assert_eq!(meta.id, segment_id.0);
97
98        // Open term dictionary with lazy loading (fetches ranges on demand)
99        let term_dict_handle = dir.open_lazy(&files.term_dict).await?;
100        let term_dict = AsyncSSTableReader::open(term_dict_handle, cache_blocks).await?;
101
102        // Get postings file handle (lazy - fetches ranges on demand)
103        let postings_handle = dir.open_lazy(&files.postings).await?;
104
105        // Open store with lazy loading
106        let store_handle = dir.open_lazy(&files.store).await?;
107        let store = AsyncStoreReader::open(store_handle, cache_blocks).await?;
108
109        // Load dense vector indexes from unified .vectors file
110        let (vector_indexes, coarse_centroids) =
111            loader::load_vectors_file(dir, &files, &schema).await?;
112
113        // Load sparse vector indexes from .sparse file
114        let sparse_indexes = loader::load_sparse_file(dir, &files, meta.num_docs, &schema).await?;
115
116        // Open positions file handle (if exists) - offsets are now in TermInfo
117        let positions_handle = loader::open_positions_file(dir, &files, &schema).await?;
118
119        // Log segment loading stats (compact format: ~24 bytes per active dim in hashmap)
120        let sparse_dims: usize = sparse_indexes.values().map(|s| s.num_dimensions()).sum();
121        let sparse_mem = sparse_dims * 24; // HashMap entry overhead
122        log::debug!(
123            "[segment] loaded {:016x}: docs={}, sparse_dims={}, sparse_mem={:.2} KB, vectors={}",
124            segment_id.0,
125            meta.num_docs,
126            sparse_dims,
127            sparse_mem as f64 / 1024.0,
128            vector_indexes.len()
129        );
130
131        Ok(Self {
132            meta,
133            term_dict: Arc::new(term_dict),
134            postings_handle,
135            store: Arc::new(store),
136            schema,
137            doc_id_offset,
138            vector_indexes,
139            coarse_centroids,
140            sparse_indexes,
141            positions_handle,
142        })
143    }
144
145    pub fn meta(&self) -> &SegmentMeta {
146        &self.meta
147    }
148
149    pub fn num_docs(&self) -> u32 {
150        self.meta.num_docs
151    }
152
153    /// Get average field length for BM25F scoring
154    pub fn avg_field_len(&self, field: Field) -> f32 {
155        self.meta.avg_field_len(field)
156    }
157
158    pub fn doc_id_offset(&self) -> DocId {
159        self.doc_id_offset
160    }
161
162    /// Set the doc_id_offset (used for parallel segment loading)
163    pub fn set_doc_id_offset(&mut self, offset: DocId) {
164        self.doc_id_offset = offset;
165    }
166
167    pub fn schema(&self) -> &Schema {
168        &self.schema
169    }
170
171    /// Get sparse indexes for all fields
172    pub fn sparse_indexes(&self) -> &FxHashMap<u32, SparseIndex> {
173        &self.sparse_indexes
174    }
175
176    /// Get vector indexes for all fields
177    pub fn vector_indexes(&self) -> &FxHashMap<u32, VectorIndex> {
178        &self.vector_indexes
179    }
180
181    /// Get term dictionary stats for debugging
182    pub fn term_dict_stats(&self) -> SSTableStats {
183        self.term_dict.stats()
184    }
185
186    /// Estimate memory usage of this segment reader
187    pub fn memory_stats(&self) -> SegmentMemoryStats {
188        let term_dict_stats = self.term_dict.stats();
189
190        // Term dict cache: num_blocks * avg_block_size (estimate 4KB per cached block)
191        let term_dict_cache_bytes = self.term_dict.cached_blocks() * 4096;
192
193        // Store cache: similar estimate
194        let store_cache_bytes = self.store.cached_blocks() * 4096;
195
196        // Sparse index: each dimension has a posting list in memory
197        // Estimate: ~24 bytes per active dimension (HashMap entry overhead)
198        let sparse_index_bytes: usize = self
199            .sparse_indexes
200            .values()
201            .map(|s| s.num_dimensions() * 24)
202            .sum();
203
204        // Dense index: vectors are memory-mapped, but we track index structures
205        // RaBitQ/IVF indexes have cluster assignments in memory
206        let dense_index_bytes: usize = self
207            .vector_indexes
208            .values()
209            .map(|v| v.estimated_memory_bytes())
210            .sum();
211
212        SegmentMemoryStats {
213            segment_id: self.meta.id,
214            num_docs: self.meta.num_docs,
215            term_dict_cache_bytes,
216            store_cache_bytes,
217            sparse_index_bytes,
218            dense_index_bytes,
219            bloom_filter_bytes: term_dict_stats.bloom_filter_size,
220        }
221    }
222
223    /// Get posting list for a term (async - loads on demand)
224    ///
225    /// For small posting lists (1-3 docs), the data is inlined in the term dictionary
226    /// and no additional I/O is needed. For larger lists, reads from .post file.
227    pub async fn get_postings(
228        &self,
229        field: Field,
230        term: &[u8],
231    ) -> Result<Option<BlockPostingList>> {
232        log::debug!(
233            "SegmentReader::get_postings field={} term_len={}",
234            field.0,
235            term.len()
236        );
237
238        // Build key: field_id + term
239        let mut key = Vec::with_capacity(4 + term.len());
240        key.extend_from_slice(&field.0.to_le_bytes());
241        key.extend_from_slice(term);
242
243        // Look up in term dictionary
244        let term_info = match self.term_dict.get(&key).await? {
245            Some(info) => {
246                log::debug!("SegmentReader::get_postings found term_info");
247                info
248            }
249            None => {
250                log::debug!("SegmentReader::get_postings term not found");
251                return Ok(None);
252            }
253        };
254
255        // Check if posting list is inlined
256        if let Some((doc_ids, term_freqs)) = term_info.decode_inline() {
257            // Build BlockPostingList from inline data (no I/O needed!)
258            let mut posting_list = crate::structures::PostingList::with_capacity(doc_ids.len());
259            for (doc_id, tf) in doc_ids.into_iter().zip(term_freqs.into_iter()) {
260                posting_list.push(doc_id, tf);
261            }
262            let block_list = BlockPostingList::from_posting_list(&posting_list)?;
263            return Ok(Some(block_list));
264        }
265
266        // External posting list - read from postings file handle (lazy - HTTP range request)
267        let (posting_offset, posting_len) = term_info.external_info().ok_or_else(|| {
268            Error::Corruption("TermInfo has neither inline nor external data".to_string())
269        })?;
270
271        let start = posting_offset;
272        let end = start + posting_len as u64;
273
274        if end > self.postings_handle.len() {
275            return Err(Error::Corruption(
276                "Posting offset out of bounds".to_string(),
277            ));
278        }
279
280        let posting_bytes = self.postings_handle.read_bytes_range(start..end).await?;
281        let block_list = BlockPostingList::deserialize(&mut posting_bytes.as_slice())?;
282
283        Ok(Some(block_list))
284    }
285
286    /// Get document by local doc_id (async - loads on demand)
287    pub async fn doc(&self, local_doc_id: DocId) -> Result<Option<Document>> {
288        self.store
289            .get(local_doc_id, &self.schema)
290            .await
291            .map_err(Error::from)
292    }
293
294    /// Prefetch term dictionary blocks for a key range
295    pub async fn prefetch_terms(
296        &self,
297        field: Field,
298        start_term: &[u8],
299        end_term: &[u8],
300    ) -> Result<()> {
301        let mut start_key = Vec::with_capacity(4 + start_term.len());
302        start_key.extend_from_slice(&field.0.to_le_bytes());
303        start_key.extend_from_slice(start_term);
304
305        let mut end_key = Vec::with_capacity(4 + end_term.len());
306        end_key.extend_from_slice(&field.0.to_le_bytes());
307        end_key.extend_from_slice(end_term);
308
309        self.term_dict.prefetch_range(&start_key, &end_key).await?;
310        Ok(())
311    }
312
313    /// Check if store uses dictionary compression (incompatible with raw merging)
314    pub fn store_has_dict(&self) -> bool {
315        self.store.has_dict()
316    }
317
318    /// Get raw store blocks for optimized merging
319    pub fn store_raw_blocks(&self) -> Vec<RawStoreBlock> {
320        self.store.raw_blocks()
321    }
322
323    /// Get store data slice for raw block access
324    pub fn store_data_slice(&self) -> &LazyFileSlice {
325        self.store.data_slice()
326    }
327
328    /// Get all terms from this segment (for merge)
329    pub async fn all_terms(&self) -> Result<Vec<(Vec<u8>, TermInfo)>> {
330        self.term_dict.all_entries().await.map_err(Error::from)
331    }
332
333    /// Get all terms with parsed field and term string (for statistics aggregation)
334    ///
335    /// Returns (field, term_string, doc_freq) for each term in the dictionary.
336    /// Skips terms that aren't valid UTF-8.
337    pub async fn all_terms_with_stats(&self) -> Result<Vec<(Field, String, u32)>> {
338        let entries = self.term_dict.all_entries().await?;
339        let mut result = Vec::with_capacity(entries.len());
340
341        for (key, term_info) in entries {
342            // Key format: field_id (4 bytes little-endian) + term bytes
343            if key.len() > 4 {
344                let field_id = u32::from_le_bytes([key[0], key[1], key[2], key[3]]);
345                let term_bytes = &key[4..];
346                if let Ok(term_str) = std::str::from_utf8(term_bytes) {
347                    result.push((Field(field_id), term_str.to_string(), term_info.doc_freq()));
348                }
349            }
350        }
351
352        Ok(result)
353    }
354
355    /// Get streaming iterator over term dictionary (for memory-efficient merge)
356    pub fn term_dict_iter(&self) -> crate::structures::AsyncSSTableIterator<'_, TermInfo> {
357        self.term_dict.iter()
358    }
359
360    /// Read raw posting bytes at offset
361    pub async fn read_postings(&self, offset: u64, len: u32) -> Result<Vec<u8>> {
362        let start = offset;
363        let end = start + len as u64;
364        let bytes = self.postings_handle.read_bytes_range(start..end).await?;
365        Ok(bytes.to_vec())
366    }
367
368    /// Search dense vectors using RaBitQ
369    ///
370    /// Returns VectorSearchResult with ordinal tracking for multi-value fields.
371    /// The doc_ids are adjusted by doc_id_offset for this segment.
372    /// If mrl_dim is configured, the query vector is automatically trimmed.
373    /// For multi-valued documents, scores are combined using the specified combiner.
374    pub fn search_dense_vector(
375        &self,
376        field: Field,
377        query: &[f32],
378        k: usize,
379        rerank_factor: usize,
380        combiner: crate::query::MultiValueCombiner,
381    ) -> Result<Vec<VectorSearchResult>> {
382        let index = self
383            .vector_indexes
384            .get(&field.0)
385            .ok_or_else(|| Error::Schema(format!("No dense vector index for field {}", field.0)))?;
386
387        // Get mrl_dim from config to trim query vector if needed
388        let mrl_dim = self
389            .schema
390            .get_field_entry(field)
391            .and_then(|e| e.dense_vector_config.as_ref())
392            .and_then(|c| c.mrl_dim);
393
394        // Trim query vector if mrl_dim is set
395        let query_vec: Vec<f32>;
396        let effective_query = if let Some(trim_dim) = mrl_dim {
397            if trim_dim < query.len() {
398                query_vec = query[..trim_dim].to_vec();
399                query_vec.as_slice()
400            } else {
401                query
402            }
403        } else {
404            query
405        };
406
407        // Results include (doc_id, ordinal, distance)
408        let results: Vec<(u32, u16, f32)> = match index {
409            VectorIndex::Flat(flat_data) => {
410                // Brute-force search over raw vectors using SIMD-accelerated distance
411                use crate::structures::simd::squared_euclidean_distance;
412
413                let mut candidates: Vec<(u32, u16, f32)> = flat_data
414                    .vectors
415                    .iter()
416                    .zip(flat_data.doc_ids.iter())
417                    .map(|(vec, &(doc_id, ordinal))| {
418                        let dist = squared_euclidean_distance(effective_query, vec);
419                        (doc_id, ordinal, dist)
420                    })
421                    .collect();
422                candidates
423                    .sort_by(|a, b| a.2.partial_cmp(&b.2).unwrap_or(std::cmp::Ordering::Equal));
424                candidates.truncate(k);
425                candidates
426            }
427            VectorIndex::RaBitQ(rabitq) => rabitq.search(effective_query, k, rerank_factor),
428            VectorIndex::IVF { index, codebook } => {
429                let centroids = self.coarse_centroids.as_ref().ok_or_else(|| {
430                    Error::Schema("IVF index requires coarse centroids".to_string())
431                })?;
432                let nprobe = rerank_factor.max(32); // Use rerank_factor as nprobe hint
433                index
434                    .search(centroids, codebook, effective_query, k, Some(nprobe))
435                    .into_iter()
436                    .map(|(doc_id, dist)| (doc_id, 0u16, dist)) // IVF doesn't track ordinals yet
437                    .collect()
438            }
439            VectorIndex::ScaNN { index, codebook } => {
440                let centroids = self.coarse_centroids.as_ref().ok_or_else(|| {
441                    Error::Schema("ScaNN index requires coarse centroids".to_string())
442                })?;
443                let nprobe = rerank_factor.max(32);
444                index
445                    .search(centroids, codebook, effective_query, k, Some(nprobe))
446                    .into_iter()
447                    .map(|(doc_id, dist)| (doc_id, 0u16, dist)) // ScaNN doesn't track ordinals yet
448                    .collect()
449            }
450        };
451
452        // Convert distance to score (smaller distance = higher score)
453        // Note: doc_id_offset is NOT applied here - the collector applies it uniformly
454        // Track ordinals with individual scores for each doc_id
455        let mut doc_ordinals: rustc_hash::FxHashMap<DocId, Vec<(u32, f32)>> =
456            rustc_hash::FxHashMap::default();
457        for (doc_id, ordinal, dist) in results {
458            let score = 1.0 / (1.0 + dist); // Convert distance to similarity score
459            let ordinals = doc_ordinals.entry(doc_id as DocId).or_default();
460            ordinals.push((ordinal as u32, score));
461        }
462
463        // Combine scores and build results with ordinal tracking
464        let mut final_results: Vec<VectorSearchResult> = doc_ordinals
465            .into_iter()
466            .map(|(doc_id, ordinals)| {
467                let combined_score = combiner.combine(&ordinals);
468                VectorSearchResult::new(doc_id, combined_score, ordinals)
469            })
470            .collect();
471
472        // Sort by score descending and take top k
473        final_results.sort_by(|a, b| {
474            b.score
475                .partial_cmp(&a.score)
476                .unwrap_or(std::cmp::Ordering::Equal)
477        });
478        final_results.truncate(k);
479
480        Ok(final_results)
481    }
482
483    /// Check if this segment has a dense vector index for the given field
484    pub fn has_dense_vector_index(&self, field: Field) -> bool {
485        self.vector_indexes.contains_key(&field.0)
486    }
487
488    /// Get the dense vector index for a field (if available)
489    pub fn get_dense_vector_index(&self, field: Field) -> Option<Arc<RaBitQIndex>> {
490        match self.vector_indexes.get(&field.0) {
491            Some(VectorIndex::RaBitQ(idx)) => Some(idx.clone()),
492            _ => None,
493        }
494    }
495
496    /// Get the IVF vector index for a field (if available)
497    pub fn get_ivf_vector_index(&self, field: Field) -> Option<Arc<IVFRaBitQIndex>> {
498        match self.vector_indexes.get(&field.0) {
499            Some(VectorIndex::IVF { index, .. }) => Some(index.clone()),
500            _ => None,
501        }
502    }
503
504    /// Get the ScaNN vector index for a field (if available)
505    pub fn get_scann_vector_index(
506        &self,
507        field: Field,
508    ) -> Option<(Arc<IVFPQIndex>, Arc<PQCodebook>)> {
509        match self.vector_indexes.get(&field.0) {
510            Some(VectorIndex::ScaNN { index, codebook }) => Some((index.clone(), codebook.clone())),
511            _ => None,
512        }
513    }
514
515    /// Get the vector index type for a field
516    pub fn get_vector_index(&self, field: Field) -> Option<&VectorIndex> {
517        self.vector_indexes.get(&field.0)
518    }
519
520    /// Search for similar sparse vectors using dedicated sparse posting lists
521    ///
522    /// Uses shared `WandExecutor` with `SparseTermScorer` for efficient top-k retrieval.
523    /// Optimizations (via WandExecutor):
524    /// 1. **MaxScore pruning**: Dimensions sorted by max contribution
525    /// 2. **Block-Max WAND**: Skips blocks where max contribution < threshold
526    /// 3. **Top-K heap**: Efficient score collection
527    ///
528    /// Returns VectorSearchResult with ordinal tracking for multi-value fields.
529    pub async fn search_sparse_vector(
530        &self,
531        field: Field,
532        vector: &[(u32, f32)],
533        limit: usize,
534        combiner: crate::query::MultiValueCombiner,
535        heap_factor: f32,
536    ) -> Result<Vec<VectorSearchResult>> {
537        use crate::query::{BlockMaxScoreExecutor, BmpExecutor, SparseTermScorer};
538
539        let query_tokens = vector.len();
540
541        // Get sparse index for this field
542        let sparse_index = match self.sparse_indexes.get(&field.0) {
543            Some(idx) => idx,
544            None => {
545                log::debug!(
546                    "Sparse vector search: no index for field {}, returning empty",
547                    field.0
548                );
549                return Ok(Vec::new());
550            }
551        };
552
553        let index_dimensions = sparse_index.num_dimensions();
554
555        // Build scorers for each dimension that exists in the index
556        // Load posting lists on-demand (lazy loading via mmap)
557        // Keep Arc references alive for the duration of scoring
558        let mut matched_tokens = Vec::new();
559        let mut missing_tokens = Vec::new();
560        let mut posting_lists: Vec<(u32, f32, Arc<BlockSparsePostingList>)> =
561            Vec::with_capacity(vector.len());
562
563        for &(dim_id, query_weight) in vector {
564            // Check if dimension exists before loading
565            if !sparse_index.has_dimension(dim_id) {
566                missing_tokens.push(dim_id);
567                continue;
568            }
569
570            // Load posting list on-demand (async, uses mmap)
571            match sparse_index.get_posting(dim_id).await? {
572                Some(pl) => {
573                    matched_tokens.push(dim_id);
574                    posting_lists.push((dim_id, query_weight, pl));
575                }
576                None => {
577                    missing_tokens.push(dim_id);
578                }
579            }
580        }
581
582        // Create scorers from the loaded posting lists (borrows from posting_lists)
583        let scorers: Vec<SparseTermScorer> = posting_lists
584            .iter()
585            .map(|(_, query_weight, pl)| SparseTermScorer::from_arc(pl, *query_weight))
586            .collect();
587
588        log::debug!(
589            "Sparse vector search: query_tokens={}, matched={}, missing={}, index_dimensions={}",
590            query_tokens,
591            matched_tokens.len(),
592            missing_tokens.len(),
593            index_dimensions
594        );
595
596        // Log query tokens with their IDs and weights
597        if log::log_enabled!(log::Level::Debug) {
598            let query_details: Vec<_> = vector
599                .iter()
600                .take(30)
601                .map(|(id, w)| format!("{}:{:.3}", id, w))
602                .collect();
603            log::debug!("Query tokens (id:weight): [{}]", query_details.join(", "));
604        }
605
606        if !matched_tokens.is_empty() {
607            log::debug!(
608                "Matched token IDs: {:?}",
609                matched_tokens.iter().take(20).collect::<Vec<_>>()
610            );
611        }
612
613        if !missing_tokens.is_empty() {
614            log::debug!(
615                "Missing token IDs (not in index): {:?}",
616                missing_tokens.iter().take(20).collect::<Vec<_>>()
617            );
618        }
619
620        if scorers.is_empty() {
621            log::debug!("Sparse vector search: no matching tokens, returning empty");
622            return Ok(Vec::new());
623        }
624
625        // Select executor based on number of query terms:
626        // - 12+ terms: BMP (block-at-a-time, best for SPLADE expansions)
627        // - 1-11 terms: BlockMaxScoreExecutor (unified MaxScore + block-max + conjunction)
628        let num_terms = scorers.len();
629        let over_fetch = limit * 2; // Over-fetch for multi-value combining
630        let raw_results = if num_terms > 12 {
631            // BMP: use posting lists directly (not iterators)
632            let pl_refs: Vec<_> = posting_lists
633                .iter()
634                .map(|(_, _, pl)| Arc::clone(pl))
635                .collect();
636            let weights: Vec<_> = posting_lists.iter().map(|(_, qw, _)| *qw).collect();
637            drop(scorers); // Release borrowing iterators before using posting_lists
638            BmpExecutor::new(pl_refs, weights, over_fetch, heap_factor).execute()
639        } else {
640            BlockMaxScoreExecutor::with_heap_factor(scorers, over_fetch, heap_factor).execute()
641        };
642
643        log::trace!(
644            "Sparse WAND returned {} raw results for segment (doc_id_offset={})",
645            raw_results.len(),
646            self.doc_id_offset
647        );
648        if log::log_enabled!(log::Level::Trace) && !raw_results.is_empty() {
649            for r in raw_results.iter().take(5) {
650                log::trace!(
651                    "  Raw result: doc_id={} (global={}), score={:.4}, ordinal={}",
652                    r.doc_id,
653                    r.doc_id + self.doc_id_offset,
654                    r.score,
655                    r.ordinal
656                );
657            }
658        }
659
660        // Track ordinals with individual scores for each doc_id
661        // Now using real ordinals from the posting lists
662        let mut doc_ordinals: rustc_hash::FxHashMap<u32, Vec<(u32, f32)>> =
663            rustc_hash::FxHashMap::default();
664        for r in raw_results {
665            let ordinals = doc_ordinals.entry(r.doc_id).or_default();
666            ordinals.push((r.ordinal as u32, r.score));
667        }
668
669        // Combine scores and build results with ordinal tracking
670        // Note: doc_id_offset is NOT applied here - the collector applies it uniformly
671        let mut results: Vec<VectorSearchResult> = doc_ordinals
672            .into_iter()
673            .map(|(doc_id, ordinals)| {
674                let combined_score = combiner.combine(&ordinals);
675                VectorSearchResult::new(doc_id, combined_score, ordinals)
676            })
677            .collect();
678
679        // Sort by score descending and take top limit
680        results.sort_by(|a, b| {
681            b.score
682                .partial_cmp(&a.score)
683                .unwrap_or(std::cmp::Ordering::Equal)
684        });
685        results.truncate(limit);
686
687        Ok(results)
688    }
689
690    /// Get positions for a term (for phrase queries)
691    ///
692    /// Position offsets are now embedded in TermInfo, so we first look up
693    /// the term to get its TermInfo, then use position_info() to get the offset.
694    pub async fn get_positions(
695        &self,
696        field: Field,
697        term: &[u8],
698    ) -> Result<Option<crate::structures::PositionPostingList>> {
699        use std::io::Cursor;
700
701        // Get positions handle
702        let handle = match &self.positions_handle {
703            Some(h) => h,
704            None => return Ok(None),
705        };
706
707        // Build key: field_id + term
708        let mut key = Vec::with_capacity(4 + term.len());
709        key.extend_from_slice(&field.0.to_le_bytes());
710        key.extend_from_slice(term);
711
712        // Look up term in dictionary to get TermInfo with position offset
713        let term_info = match self.term_dict.get(&key).await? {
714            Some(info) => info,
715            None => return Ok(None),
716        };
717
718        // Get position offset from TermInfo
719        let (offset, length) = match term_info.position_info() {
720            Some((o, l)) => (o, l),
721            None => return Ok(None),
722        };
723
724        // Read the position data
725        let slice = handle.slice(offset..offset + length as u64);
726        let data = slice.read_bytes().await?;
727
728        // Deserialize
729        let mut cursor = Cursor::new(data.as_slice());
730        let pos_list = crate::structures::PositionPostingList::deserialize(&mut cursor)?;
731
732        Ok(Some(pos_list))
733    }
734
735    /// Check if positions are available for a field
736    pub fn has_positions(&self, field: Field) -> bool {
737        // Check schema for position mode on this field
738        if let Some(entry) = self.schema.get_field_entry(field) {
739            entry.positions.is_some()
740        } else {
741            false
742        }
743    }
744}
745
746/// Alias for AsyncSegmentReader
747pub type SegmentReader = AsyncSegmentReader;