Skip to main content

hermes_core/structures/postings/sparse/
config.rs

1//! Configuration types for sparse vector posting lists
2
3use serde::{Deserialize, Serialize};
4
5/// Size of the index (term/dimension ID) in sparse vectors
6#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Serialize, Deserialize)]
7#[repr(u8)]
8pub enum IndexSize {
9    /// 16-bit index (0-65535), ideal for SPLADE vocabularies
10    U16 = 0,
11    /// 32-bit index (0-4B), for large vocabularies
12    #[default]
13    U32 = 1,
14}
15
16impl IndexSize {
17    /// Bytes per index
18    pub fn bytes(&self) -> usize {
19        match self {
20            IndexSize::U16 => 2,
21            IndexSize::U32 => 4,
22        }
23    }
24
25    /// Maximum value representable
26    pub fn max_value(&self) -> u32 {
27        match self {
28            IndexSize::U16 => u16::MAX as u32,
29            IndexSize::U32 => u32::MAX,
30        }
31    }
32
33    pub(crate) fn from_u8(v: u8) -> Option<Self> {
34        match v {
35            0 => Some(IndexSize::U16),
36            1 => Some(IndexSize::U32),
37            _ => None,
38        }
39    }
40}
41
42/// Quantization format for sparse vector weights
43///
44/// Research-validated compression/effectiveness trade-offs (Pati, 2025):
45/// - **UInt8**: 4x compression, ~1-2% nDCG@10 loss (RECOMMENDED for production)
46/// - **Float16**: 2x compression, <1% nDCG@10 loss
47/// - **Float32**: No compression, baseline effectiveness
48/// - **UInt4**: 8x compression, ~3-5% nDCG@10 loss (experimental)
49#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Serialize, Deserialize)]
50#[repr(u8)]
51pub enum WeightQuantization {
52    /// Full 32-bit float precision
53    #[default]
54    Float32 = 0,
55    /// 16-bit float (half precision) - 2x compression, <1% effectiveness loss
56    Float16 = 1,
57    /// 8-bit unsigned integer with scale factor - 4x compression, ~1-2% effectiveness loss (RECOMMENDED)
58    UInt8 = 2,
59    /// 4-bit unsigned integer with scale factor (packed, 2 per byte) - 8x compression, ~3-5% effectiveness loss
60    UInt4 = 3,
61}
62
63impl WeightQuantization {
64    /// Bytes per weight (approximate for UInt4)
65    pub fn bytes_per_weight(&self) -> f32 {
66        match self {
67            WeightQuantization::Float32 => 4.0,
68            WeightQuantization::Float16 => 2.0,
69            WeightQuantization::UInt8 => 1.0,
70            WeightQuantization::UInt4 => 0.5,
71        }
72    }
73
74    pub(crate) fn from_u8(v: u8) -> Option<Self> {
75        match v {
76            0 => Some(WeightQuantization::Float32),
77            1 => Some(WeightQuantization::Float16),
78            2 => Some(WeightQuantization::UInt8),
79            3 => Some(WeightQuantization::UInt4),
80            _ => None,
81        }
82    }
83}
84
85/// Query-time weighting strategy for sparse vector queries
86#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Serialize, Deserialize)]
87pub enum QueryWeighting {
88    /// All terms get weight 1.0
89    #[default]
90    One,
91    /// Terms weighted by IDF (inverse document frequency) from global index statistics
92    /// Uses ln(N/df) where N = total docs, df = docs containing dimension
93    Idf,
94    /// Terms weighted by pre-computed IDF from model's idf.json file
95    /// Loaded from HuggingFace model repo. No fallback to global stats.
96    IdfFile,
97}
98
99/// Query-time configuration for sparse vectors
100///
101/// Research-validated query optimization strategies:
102/// - **max_query_dims (10-20)**: Process only top-k dimensions by weight
103///   - 30-50% latency reduction with <2% nDCG loss (Qiao et al., 2023)
104/// - **heap_factor (0.8)**: Skip blocks with low max score contribution
105///   - ~20% speedup with minor recall loss (SEISMIC-style)
106#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
107pub struct SparseQueryConfig {
108    /// HuggingFace tokenizer path/name for query-time tokenization
109    /// Example: "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
110    #[serde(default, skip_serializing_if = "Option::is_none")]
111    pub tokenizer: Option<String>,
112    /// Weighting strategy for tokenized query terms
113    #[serde(default)]
114    pub weighting: QueryWeighting,
115    /// Heap factor for approximate search (SEISMIC-style optimization)
116    /// A block is skipped if its max possible score < heap_factor * threshold
117    ///
118    /// Research recommendation:
119    /// - 1.0 = exact search (default)
120    /// - 0.8 = approximate, ~20% faster with minor recall loss (RECOMMENDED for production)
121    /// - 0.5 = very approximate, much faster but higher recall loss
122    #[serde(default = "default_heap_factor")]
123    pub heap_factor: f32,
124    /// Maximum number of query dimensions to process (query pruning)
125    /// Processes only the top-k dimensions by weight
126    ///
127    /// Research recommendation (Multiple papers 2022-2024):
128    /// - None = process all dimensions (default, exact)
129    /// - Some(10-20) = process top 10-20 dimensions only (RECOMMENDED for SPLADE)
130    ///   - 30-50% latency reduction
131    ///   - <2% nDCG@10 loss
132    #[serde(default, skip_serializing_if = "Option::is_none")]
133    pub max_query_dims: Option<usize>,
134}
135
136fn default_heap_factor() -> f32 {
137    1.0
138}
139
140impl Default for SparseQueryConfig {
141    fn default() -> Self {
142        Self {
143            tokenizer: None,
144            weighting: QueryWeighting::One,
145            heap_factor: 1.0,
146            max_query_dims: None,
147        }
148    }
149}
150
151/// Configuration for sparse vector storage
152///
153/// Research-validated optimizations for learned sparse retrieval (SPLADE, uniCOIL, etc.):
154/// - **Weight threshold (0.01-0.05)**: Removes ~30-50% of postings with minimal nDCG impact
155/// - **Posting list pruning (0.1)**: Keeps top 10% per dimension, 50-70% index reduction, <1% nDCG loss
156/// - **Query pruning (top 10-20 dims)**: 30-50% latency reduction, <2% nDCG loss
157/// - **UInt8 quantization**: 4x compression, 1-2% nDCG loss (optimal trade-off)
158#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
159pub struct SparseVectorConfig {
160    /// Size of dimension/term indices
161    pub index_size: IndexSize,
162    /// Quantization for weights (see WeightQuantization docs for trade-offs)
163    pub weight_quantization: WeightQuantization,
164    /// Minimum weight threshold - weights below this value are not indexed
165    ///
166    /// Research recommendation (Guo et al., 2022; SPLADE v2):
167    /// - 0.01-0.05 for SPLADE models removes ~30-50% of postings
168    /// - Minimal impact on nDCG@10 (<1% loss)
169    /// - Major reduction in index size and query latency
170    #[serde(default)]
171    pub weight_threshold: f32,
172    /// Block size for posting lists (must be power of 2, default 128 for SIMD)
173    /// Larger blocks = better compression, smaller blocks = faster seeks
174    #[serde(default = "default_block_size")]
175    pub block_size: usize,
176    /// Static pruning: fraction of postings to keep per inverted list (SEISMIC-style)
177    /// Lists are sorted by weight descending and truncated to top fraction.
178    ///
179    /// Research recommendation (SPLADE v2, Formal et al., 2021):
180    /// - None = keep all postings (default, exact)
181    /// - Some(0.1) = keep top 10% of postings per dimension
182    ///   - 50-70% index size reduction
183    ///   - <1% nDCG@10 loss
184    ///   - Exploits "concentration of importance" in learned representations
185    ///
186    /// Applied only during initial segment build, not during merge.
187    #[serde(default, skip_serializing_if = "Option::is_none")]
188    pub posting_list_pruning: Option<f32>,
189    /// Query-time configuration (tokenizer, weighting)
190    #[serde(default, skip_serializing_if = "Option::is_none")]
191    pub query_config: Option<SparseQueryConfig>,
192}
193
194fn default_block_size() -> usize {
195    128
196}
197
198impl Default for SparseVectorConfig {
199    fn default() -> Self {
200        Self {
201            index_size: IndexSize::U32,
202            weight_quantization: WeightQuantization::Float32,
203            weight_threshold: 0.0,
204            block_size: 128,
205            posting_list_pruning: None,
206            query_config: None,
207        }
208    }
209}
210
211impl SparseVectorConfig {
212    /// SPLADE-optimized config with research-validated defaults
213    ///
214    /// Optimized for SPLADE, uniCOIL, and similar learned sparse retrieval models.
215    /// Based on research findings from:
216    /// - Pati (2025): UInt8 quantization = 4x compression, 1-2% nDCG loss
217    /// - Formal et al. (2021): SPLADE v2 posting list pruning
218    /// - Qiao et al. (2023): Query dimension pruning and approximate search
219    /// - Guo et al. (2022): Weight thresholding for efficiency
220    ///
221    /// Expected performance vs. full precision baseline:
222    /// - Index size: ~15-25% of original (combined effect of all optimizations)
223    /// - Query latency: 40-60% faster
224    /// - Effectiveness: 2-4% nDCG@10 loss (typically acceptable for production)
225    ///
226    /// Vocabulary: ~30K dimensions (fits in u16)
227    pub fn splade() -> Self {
228        Self {
229            index_size: IndexSize::U16,
230            weight_quantization: WeightQuantization::UInt8,
231            weight_threshold: 0.01, // Remove ~30-50% of low-weight postings
232            block_size: 128,
233            posting_list_pruning: Some(0.1), // Keep top 10% per dimension
234            query_config: Some(SparseQueryConfig {
235                tokenizer: None,
236                weighting: QueryWeighting::One,
237                heap_factor: 0.8,         // 20% faster approximate search
238                max_query_dims: Some(20), // Process top 20 query dimensions
239            }),
240        }
241    }
242
243    /// Compact config: Maximum compression (experimental)
244    ///
245    /// Uses aggressive UInt4 quantization for smallest possible index size.
246    /// Expected trade-offs:
247    /// - Index size: ~10-15% of Float32 baseline
248    /// - Effectiveness: ~3-5% nDCG@10 loss
249    ///
250    /// Recommended for: Memory-constrained environments, cache-heavy workloads
251    pub fn compact() -> Self {
252        Self {
253            index_size: IndexSize::U16,
254            weight_quantization: WeightQuantization::UInt4,
255            weight_threshold: 0.02, // Slightly higher threshold for UInt4
256            block_size: 128,
257            posting_list_pruning: Some(0.15), // Keep top 15% per dimension
258            query_config: Some(SparseQueryConfig {
259                tokenizer: None,
260                weighting: QueryWeighting::One,
261                heap_factor: 0.7,         // More aggressive approximate search
262                max_query_dims: Some(15), // Fewer query dimensions
263            }),
264        }
265    }
266
267    /// Full precision config: No compression, baseline effectiveness
268    ///
269    /// Use for: Research baselines, when effectiveness is critical
270    pub fn full_precision() -> Self {
271        Self {
272            index_size: IndexSize::U32,
273            weight_quantization: WeightQuantization::Float32,
274            weight_threshold: 0.0,
275            block_size: 128,
276            posting_list_pruning: None,
277            query_config: None,
278        }
279    }
280
281    /// Conservative config: Mild optimizations, minimal effectiveness loss
282    ///
283    /// Balances compression and effectiveness with conservative defaults.
284    /// Expected trade-offs:
285    /// - Index size: ~40-50% of Float32 baseline
286    /// - Query latency: ~20-30% faster
287    /// - Effectiveness: <1% nDCG@10 loss
288    ///
289    /// Recommended for: Production deployments prioritizing effectiveness
290    pub fn conservative() -> Self {
291        Self {
292            index_size: IndexSize::U32,
293            weight_quantization: WeightQuantization::Float16,
294            weight_threshold: 0.005, // Minimal pruning
295            block_size: 128,
296            posting_list_pruning: None, // No posting list pruning
297            query_config: Some(SparseQueryConfig {
298                tokenizer: None,
299                weighting: QueryWeighting::One,
300                heap_factor: 0.9,         // Nearly exact search
301                max_query_dims: Some(50), // Process more dimensions
302            }),
303        }
304    }
305
306    /// Set weight threshold (builder pattern)
307    pub fn with_weight_threshold(mut self, threshold: f32) -> Self {
308        self.weight_threshold = threshold;
309        self
310    }
311
312    /// Set posting list pruning fraction (builder pattern)
313    /// e.g., 0.1 = keep top 10% of postings per dimension
314    pub fn with_pruning(mut self, fraction: f32) -> Self {
315        self.posting_list_pruning = Some(fraction.clamp(0.0, 1.0));
316        self
317    }
318
319    /// Bytes per entry (index + weight)
320    pub fn bytes_per_entry(&self) -> f32 {
321        self.index_size.bytes() as f32 + self.weight_quantization.bytes_per_weight()
322    }
323
324    /// Serialize config to a single byte
325    pub fn to_byte(&self) -> u8 {
326        ((self.index_size as u8) << 4) | (self.weight_quantization as u8)
327    }
328
329    /// Deserialize config from a single byte
330    /// Note: weight_threshold, block_size and query_config are not serialized in the byte
331    pub fn from_byte(b: u8) -> Option<Self> {
332        let index_size = IndexSize::from_u8(b >> 4)?;
333        let weight_quantization = WeightQuantization::from_u8(b & 0x0F)?;
334        Some(Self {
335            index_size,
336            weight_quantization,
337            weight_threshold: 0.0,
338            block_size: 128,
339            posting_list_pruning: None,
340            query_config: None,
341        })
342    }
343
344    /// Set block size (builder pattern)
345    /// Must be power of 2, recommended: 64, 128, 256
346    pub fn with_block_size(mut self, size: usize) -> Self {
347        self.block_size = size.next_power_of_two();
348        self
349    }
350
351    /// Set query configuration (builder pattern)
352    pub fn with_query_config(mut self, config: SparseQueryConfig) -> Self {
353        self.query_config = Some(config);
354        self
355    }
356}
357
358/// A sparse vector entry: (dimension_id, weight)
359#[derive(Debug, Clone, Copy, PartialEq)]
360pub struct SparseEntry {
361    pub dim_id: u32,
362    pub weight: f32,
363}
364
365/// Sparse vector representation
366#[derive(Debug, Clone, Default)]
367pub struct SparseVector {
368    pub(super) entries: Vec<SparseEntry>,
369}
370
371impl SparseVector {
372    /// Create a new sparse vector
373    pub fn new() -> Self {
374        Self {
375            entries: Vec::new(),
376        }
377    }
378
379    /// Create with pre-allocated capacity
380    pub fn with_capacity(capacity: usize) -> Self {
381        Self {
382            entries: Vec::with_capacity(capacity),
383        }
384    }
385
386    /// Create from dimension IDs and weights
387    pub fn from_entries(dim_ids: &[u32], weights: &[f32]) -> Self {
388        assert_eq!(dim_ids.len(), weights.len());
389        let mut entries: Vec<SparseEntry> = dim_ids
390            .iter()
391            .zip(weights.iter())
392            .map(|(&dim_id, &weight)| SparseEntry { dim_id, weight })
393            .collect();
394        // Sort by dimension ID for efficient intersection
395        entries.sort_by_key(|e| e.dim_id);
396        Self { entries }
397    }
398
399    /// Add an entry (must maintain sorted order by dim_id)
400    pub fn push(&mut self, dim_id: u32, weight: f32) {
401        debug_assert!(
402            self.entries.is_empty() || self.entries.last().unwrap().dim_id < dim_id,
403            "Entries must be added in sorted order by dim_id"
404        );
405        self.entries.push(SparseEntry { dim_id, weight });
406    }
407
408    /// Number of non-zero entries
409    pub fn len(&self) -> usize {
410        self.entries.len()
411    }
412
413    /// Check if empty
414    pub fn is_empty(&self) -> bool {
415        self.entries.is_empty()
416    }
417
418    /// Iterate over entries
419    pub fn iter(&self) -> impl Iterator<Item = &SparseEntry> {
420        self.entries.iter()
421    }
422
423    /// Sort by dimension ID (required for posting list encoding)
424    pub fn sort_by_dim(&mut self) {
425        self.entries.sort_by_key(|e| e.dim_id);
426    }
427
428    /// Sort by weight descending
429    pub fn sort_by_weight_desc(&mut self) {
430        self.entries.sort_by(|a, b| {
431            b.weight
432                .partial_cmp(&a.weight)
433                .unwrap_or(std::cmp::Ordering::Equal)
434        });
435    }
436
437    /// Get top-k entries by weight
438    pub fn top_k(&self, k: usize) -> Vec<SparseEntry> {
439        let mut sorted = self.entries.clone();
440        sorted.sort_by(|a, b| {
441            b.weight
442                .partial_cmp(&a.weight)
443                .unwrap_or(std::cmp::Ordering::Equal)
444        });
445        sorted.truncate(k);
446        sorted
447    }
448
449    /// Compute dot product with another sparse vector
450    pub fn dot(&self, other: &SparseVector) -> f32 {
451        let mut result = 0.0f32;
452        let mut i = 0;
453        let mut j = 0;
454
455        while i < self.entries.len() && j < other.entries.len() {
456            let a = &self.entries[i];
457            let b = &other.entries[j];
458
459            match a.dim_id.cmp(&b.dim_id) {
460                std::cmp::Ordering::Less => i += 1,
461                std::cmp::Ordering::Greater => j += 1,
462                std::cmp::Ordering::Equal => {
463                    result += a.weight * b.weight;
464                    i += 1;
465                    j += 1;
466                }
467            }
468        }
469
470        result
471    }
472
473    /// L2 norm squared
474    pub fn norm_squared(&self) -> f32 {
475        self.entries.iter().map(|e| e.weight * e.weight).sum()
476    }
477
478    /// L2 norm
479    pub fn norm(&self) -> f32 {
480        self.norm_squared().sqrt()
481    }
482
483    /// Prune dimensions below a weight threshold
484    pub fn filter_by_weight(&self, min_weight: f32) -> Self {
485        let entries: Vec<SparseEntry> = self
486            .entries
487            .iter()
488            .filter(|e| e.weight.abs() >= min_weight)
489            .cloned()
490            .collect();
491        Self { entries }
492    }
493}
494
495impl From<Vec<(u32, f32)>> for SparseVector {
496    fn from(pairs: Vec<(u32, f32)>) -> Self {
497        Self {
498            entries: pairs
499                .into_iter()
500                .map(|(dim_id, weight)| SparseEntry { dim_id, weight })
501                .collect(),
502        }
503    }
504}
505
506impl From<SparseVector> for Vec<(u32, f32)> {
507    fn from(vec: SparseVector) -> Self {
508        vec.entries
509            .into_iter()
510            .map(|e| (e.dim_id, e.weight))
511            .collect()
512    }
513}