Skip to main content

hermes_core/query/
vector.rs

1//! Vector query types for dense and sparse vector search
2
3use crate::dsl::Field;
4use crate::segment::{SegmentReader, VectorSearchResult};
5use crate::{DocId, Score, TERMINATED};
6
7use super::ScoredPosition;
8use super::traits::{CountFuture, MatchedPositions, Query, Scorer, ScorerFuture};
9
10/// Strategy for combining scores when a document has multiple values for the same field
11#[derive(Debug, Clone, Copy, PartialEq)]
12pub enum MultiValueCombiner {
13    /// Sum all scores (accumulates dot product contributions)
14    Sum,
15    /// Take the maximum score
16    Max,
17    /// Take the average score
18    Avg,
19    /// Log-Sum-Exp: smooth maximum approximation (default)
20    /// `score = (1/t) * log(Σ exp(t * sᵢ))`
21    /// Higher temperature → closer to max; lower → closer to mean
22    LogSumExp {
23        /// Temperature parameter (default: 1.5)
24        temperature: f32,
25    },
26    /// Weighted Top-K: weight top scores with exponential decay
27    /// `score = Σ wᵢ * sorted_scores[i]` where `wᵢ = decay^i`
28    WeightedTopK {
29        /// Number of top scores to consider (default: 5)
30        k: usize,
31        /// Decay factor per rank (default: 0.7)
32        decay: f32,
33    },
34}
35
36impl Default for MultiValueCombiner {
37    fn default() -> Self {
38        // LogSumExp with temperature 1.5 provides good balance between
39        // max (best relevance) and sum (saturation from multiple matches)
40        MultiValueCombiner::LogSumExp { temperature: 1.5 }
41    }
42}
43
44impl MultiValueCombiner {
45    /// Create LogSumExp combiner with default temperature (1.5)
46    pub fn log_sum_exp() -> Self {
47        Self::LogSumExp { temperature: 1.5 }
48    }
49
50    /// Create LogSumExp combiner with custom temperature
51    pub fn log_sum_exp_with_temperature(temperature: f32) -> Self {
52        Self::LogSumExp { temperature }
53    }
54
55    /// Create WeightedTopK combiner with defaults (k=5, decay=0.7)
56    pub fn weighted_top_k() -> Self {
57        Self::WeightedTopK { k: 5, decay: 0.7 }
58    }
59
60    /// Create WeightedTopK combiner with custom parameters
61    pub fn weighted_top_k_with_params(k: usize, decay: f32) -> Self {
62        Self::WeightedTopK { k, decay }
63    }
64
65    /// Combine multiple scores into a single score
66    pub fn combine(&self, scores: &[(u32, f32)]) -> f32 {
67        if scores.is_empty() {
68            return 0.0;
69        }
70
71        match self {
72            MultiValueCombiner::Sum => scores.iter().map(|(_, s)| s).sum(),
73            MultiValueCombiner::Max => scores
74                .iter()
75                .map(|(_, s)| *s)
76                .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
77                .unwrap_or(0.0),
78            MultiValueCombiner::Avg => {
79                let sum: f32 = scores.iter().map(|(_, s)| s).sum();
80                sum / scores.len() as f32
81            }
82            MultiValueCombiner::LogSumExp { temperature } => {
83                // Numerically stable log-sum-exp:
84                // LSE(x) = max(x) + log(Σ exp(xᵢ - max(x)))
85                let t = *temperature;
86                let max_score = scores
87                    .iter()
88                    .map(|(_, s)| *s)
89                    .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
90                    .unwrap_or(0.0);
91
92                let sum_exp: f32 = scores
93                    .iter()
94                    .map(|(_, s)| (t * (s - max_score)).exp())
95                    .sum();
96
97                max_score + sum_exp.ln() / t
98            }
99            MultiValueCombiner::WeightedTopK { k, decay } => {
100                // Sort scores descending and take top k
101                let mut sorted: Vec<f32> = scores.iter().map(|(_, s)| *s).collect();
102                sorted.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal));
103                sorted.truncate(*k);
104
105                // Apply exponential decay weights
106                let mut weight = 1.0f32;
107                let mut weighted_sum = 0.0f32;
108                let mut weight_total = 0.0f32;
109
110                for score in sorted {
111                    weighted_sum += weight * score;
112                    weight_total += weight;
113                    weight *= decay;
114                }
115
116                if weight_total > 0.0 {
117                    weighted_sum / weight_total
118                } else {
119                    0.0
120                }
121            }
122        }
123    }
124}
125
126/// Dense vector query for similarity search
127#[derive(Debug, Clone)]
128pub struct DenseVectorQuery {
129    /// Field containing the dense vectors
130    pub field: Field,
131    /// Query vector
132    pub vector: Vec<f32>,
133    /// Number of clusters to probe (for IVF indexes)
134    pub nprobe: usize,
135    /// Re-ranking factor (multiplied by k for candidate selection)
136    pub rerank_factor: usize,
137    /// How to combine scores for multi-valued documents
138    pub combiner: MultiValueCombiner,
139}
140
141impl DenseVectorQuery {
142    /// Create a new dense vector query
143    pub fn new(field: Field, vector: Vec<f32>) -> Self {
144        Self {
145            field,
146            vector,
147            nprobe: 32,
148            rerank_factor: 3,
149            combiner: MultiValueCombiner::Max,
150        }
151    }
152
153    /// Set the number of clusters to probe (for IVF indexes)
154    pub fn with_nprobe(mut self, nprobe: usize) -> Self {
155        self.nprobe = nprobe;
156        self
157    }
158
159    /// Set the re-ranking factor
160    pub fn with_rerank_factor(mut self, factor: usize) -> Self {
161        self.rerank_factor = factor;
162        self
163    }
164
165    /// Set the multi-value score combiner
166    pub fn with_combiner(mut self, combiner: MultiValueCombiner) -> Self {
167        self.combiner = combiner;
168        self
169    }
170}
171
172impl Query for DenseVectorQuery {
173    fn scorer<'a>(&self, reader: &'a SegmentReader, limit: usize) -> ScorerFuture<'a> {
174        let field = self.field;
175        let vector = self.vector.clone();
176        let rerank_factor = self.rerank_factor;
177        let combiner = self.combiner;
178        Box::pin(async move {
179            let results =
180                reader.search_dense_vector(field, &vector, limit, rerank_factor, combiner)?;
181
182            Ok(Box::new(DenseVectorScorer::new(results, field.0)) as Box<dyn Scorer>)
183        })
184    }
185
186    fn count_estimate<'a>(&self, _reader: &'a SegmentReader) -> CountFuture<'a> {
187        Box::pin(async move { Ok(u32::MAX) })
188    }
189}
190
191/// Scorer for dense vector search results with ordinal tracking
192struct DenseVectorScorer {
193    results: Vec<VectorSearchResult>,
194    position: usize,
195    field_id: u32,
196}
197
198impl DenseVectorScorer {
199    fn new(results: Vec<VectorSearchResult>, field_id: u32) -> Self {
200        Self {
201            results,
202            position: 0,
203            field_id,
204        }
205    }
206}
207
208impl Scorer for DenseVectorScorer {
209    fn doc(&self) -> DocId {
210        if self.position < self.results.len() {
211            self.results[self.position].doc_id
212        } else {
213            TERMINATED
214        }
215    }
216
217    fn score(&self) -> Score {
218        if self.position < self.results.len() {
219            self.results[self.position].score
220        } else {
221            0.0
222        }
223    }
224
225    fn advance(&mut self) -> DocId {
226        self.position += 1;
227        self.doc()
228    }
229
230    fn seek(&mut self, target: DocId) -> DocId {
231        while self.doc() < target && self.doc() != TERMINATED {
232            self.advance();
233        }
234        self.doc()
235    }
236
237    fn size_hint(&self) -> u32 {
238        (self.results.len() - self.position) as u32
239    }
240
241    fn matched_positions(&self) -> Option<MatchedPositions> {
242        if self.position >= self.results.len() {
243            return None;
244        }
245        let result = &self.results[self.position];
246        let scored_positions: Vec<ScoredPosition> = result
247            .ordinals
248            .iter()
249            .map(|(ordinal, score)| ScoredPosition::new(*ordinal, *score))
250            .collect();
251        Some(vec![(self.field_id, scored_positions)])
252    }
253}
254
255/// Sparse vector query for similarity search
256#[derive(Debug, Clone)]
257pub struct SparseVectorQuery {
258    /// Field containing the sparse vectors
259    pub field: Field,
260    /// Query vector as (dimension_id, weight) pairs
261    pub vector: Vec<(u32, f32)>,
262    /// How to combine scores for multi-valued documents
263    pub combiner: MultiValueCombiner,
264    /// Approximate search factor (1.0 = exact, lower values = faster but approximate)
265    /// Controls WAND pruning aggressiveness in block-max scoring
266    pub heap_factor: f32,
267}
268
269impl SparseVectorQuery {
270    /// Create a new sparse vector query
271    pub fn new(field: Field, vector: Vec<(u32, f32)>) -> Self {
272        Self {
273            field,
274            vector,
275            combiner: MultiValueCombiner::Sum,
276            heap_factor: 1.0,
277        }
278    }
279
280    /// Set the multi-value score combiner
281    pub fn with_combiner(mut self, combiner: MultiValueCombiner) -> Self {
282        self.combiner = combiner;
283        self
284    }
285
286    /// Set the heap factor for approximate search
287    ///
288    /// Controls the trade-off between speed and recall:
289    /// - 1.0 = exact search (default)
290    /// - 0.8-0.9 = ~20-40% faster with minimal recall loss
291    /// - Lower values = more aggressive pruning, faster but lower recall
292    pub fn with_heap_factor(mut self, heap_factor: f32) -> Self {
293        self.heap_factor = heap_factor.clamp(0.0, 1.0);
294        self
295    }
296
297    /// Create from separate indices and weights vectors
298    pub fn from_indices_weights(field: Field, indices: Vec<u32>, weights: Vec<f32>) -> Self {
299        let vector: Vec<(u32, f32)> = indices.into_iter().zip(weights).collect();
300        Self::new(field, vector)
301    }
302
303    /// Create from raw text using a HuggingFace tokenizer (single segment)
304    ///
305    /// This method tokenizes the text and creates a sparse vector query.
306    /// For multi-segment indexes, use `from_text_with_stats` instead.
307    ///
308    /// # Arguments
309    /// * `field` - The sparse vector field to search
310    /// * `text` - Raw text to tokenize
311    /// * `tokenizer_name` - HuggingFace tokenizer path (e.g., "bert-base-uncased")
312    /// * `weighting` - Weighting strategy for tokens
313    /// * `sparse_index` - Optional sparse index for IDF lookup (required for IDF weighting)
314    #[cfg(feature = "native")]
315    pub fn from_text(
316        field: Field,
317        text: &str,
318        tokenizer_name: &str,
319        weighting: crate::structures::QueryWeighting,
320        sparse_index: Option<&crate::segment::SparseIndex>,
321    ) -> crate::Result<Self> {
322        use crate::structures::QueryWeighting;
323        use crate::tokenizer::tokenizer_cache;
324
325        let tokenizer = tokenizer_cache().get_or_load(tokenizer_name)?;
326        let token_ids = tokenizer.tokenize_unique(text)?;
327
328        let weights: Vec<f32> = match weighting {
329            QueryWeighting::One => vec![1.0f32; token_ids.len()],
330            QueryWeighting::Idf => {
331                if let Some(index) = sparse_index {
332                    index.idf_weights(&token_ids)
333                } else {
334                    vec![1.0f32; token_ids.len()]
335                }
336            }
337        };
338
339        let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
340        Ok(Self::new(field, vector))
341    }
342
343    /// Create from raw text using global statistics (multi-segment)
344    ///
345    /// This is the recommended method for multi-segment indexes as it uses
346    /// aggregated IDF values across all segments for consistent ranking.
347    ///
348    /// # Arguments
349    /// * `field` - The sparse vector field to search
350    /// * `text` - Raw text to tokenize
351    /// * `tokenizer` - Pre-loaded HuggingFace tokenizer
352    /// * `weighting` - Weighting strategy for tokens
353    /// * `global_stats` - Global statistics for IDF computation
354    #[cfg(feature = "native")]
355    pub fn from_text_with_stats(
356        field: Field,
357        text: &str,
358        tokenizer: &crate::tokenizer::HfTokenizer,
359        weighting: crate::structures::QueryWeighting,
360        global_stats: Option<&super::GlobalStats>,
361    ) -> crate::Result<Self> {
362        use crate::structures::QueryWeighting;
363
364        let token_ids = tokenizer.tokenize_unique(text)?;
365
366        let weights: Vec<f32> = match weighting {
367            QueryWeighting::One => vec![1.0f32; token_ids.len()],
368            QueryWeighting::Idf => {
369                if let Some(stats) = global_stats {
370                    // Clamp to zero: negative weights don't make sense for IDF
371                    stats
372                        .sparse_idf_weights(field, &token_ids)
373                        .into_iter()
374                        .map(|w| w.max(0.0))
375                        .collect()
376                } else {
377                    vec![1.0f32; token_ids.len()]
378                }
379            }
380        };
381
382        let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
383        Ok(Self::new(field, vector))
384    }
385
386    /// Create from raw text, loading tokenizer from index directory
387    ///
388    /// This method supports the `index://` prefix for tokenizer paths,
389    /// loading tokenizer.json from the index directory.
390    ///
391    /// # Arguments
392    /// * `field` - The sparse vector field to search
393    /// * `text` - Raw text to tokenize
394    /// * `tokenizer_bytes` - Tokenizer JSON bytes (pre-loaded from directory)
395    /// * `weighting` - Weighting strategy for tokens
396    /// * `global_stats` - Global statistics for IDF computation
397    #[cfg(feature = "native")]
398    pub fn from_text_with_tokenizer_bytes(
399        field: Field,
400        text: &str,
401        tokenizer_bytes: &[u8],
402        weighting: crate::structures::QueryWeighting,
403        global_stats: Option<&super::GlobalStats>,
404    ) -> crate::Result<Self> {
405        use crate::structures::QueryWeighting;
406        use crate::tokenizer::HfTokenizer;
407
408        let tokenizer = HfTokenizer::from_bytes(tokenizer_bytes)?;
409        let token_ids = tokenizer.tokenize_unique(text)?;
410
411        let weights: Vec<f32> = match weighting {
412            QueryWeighting::One => vec![1.0f32; token_ids.len()],
413            QueryWeighting::Idf => {
414                if let Some(stats) = global_stats {
415                    // Clamp to zero: negative weights don't make sense for IDF
416                    stats
417                        .sparse_idf_weights(field, &token_ids)
418                        .into_iter()
419                        .map(|w| w.max(0.0))
420                        .collect()
421                } else {
422                    vec![1.0f32; token_ids.len()]
423                }
424            }
425        };
426
427        let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
428        Ok(Self::new(field, vector))
429    }
430}
431
432impl Query for SparseVectorQuery {
433    fn scorer<'a>(&self, reader: &'a SegmentReader, limit: usize) -> ScorerFuture<'a> {
434        let field = self.field;
435        let vector = self.vector.clone();
436        let combiner = self.combiner;
437        let heap_factor = self.heap_factor;
438        Box::pin(async move {
439            let results = reader
440                .search_sparse_vector(field, &vector, limit, combiner, heap_factor)
441                .await?;
442
443            Ok(Box::new(SparseVectorScorer::new(results, field.0)) as Box<dyn Scorer>)
444        })
445    }
446
447    fn count_estimate<'a>(&self, _reader: &'a SegmentReader) -> CountFuture<'a> {
448        Box::pin(async move { Ok(u32::MAX) })
449    }
450}
451
452/// Scorer for sparse vector search results with ordinal tracking
453struct SparseVectorScorer {
454    results: Vec<VectorSearchResult>,
455    position: usize,
456    field_id: u32,
457}
458
459impl SparseVectorScorer {
460    fn new(results: Vec<VectorSearchResult>, field_id: u32) -> Self {
461        Self {
462            results,
463            position: 0,
464            field_id,
465        }
466    }
467}
468
469impl Scorer for SparseVectorScorer {
470    fn doc(&self) -> DocId {
471        if self.position < self.results.len() {
472            self.results[self.position].doc_id
473        } else {
474            TERMINATED
475        }
476    }
477
478    fn score(&self) -> Score {
479        if self.position < self.results.len() {
480            self.results[self.position].score
481        } else {
482            0.0
483        }
484    }
485
486    fn advance(&mut self) -> DocId {
487        self.position += 1;
488        self.doc()
489    }
490
491    fn seek(&mut self, target: DocId) -> DocId {
492        while self.doc() < target && self.doc() != TERMINATED {
493            self.advance();
494        }
495        self.doc()
496    }
497
498    fn size_hint(&self) -> u32 {
499        (self.results.len() - self.position) as u32
500    }
501
502    fn matched_positions(&self) -> Option<MatchedPositions> {
503        if self.position >= self.results.len() {
504            return None;
505        }
506        let result = &self.results[self.position];
507        let scored_positions: Vec<ScoredPosition> = result
508            .ordinals
509            .iter()
510            .map(|(ordinal, score)| ScoredPosition::new(*ordinal, *score))
511            .collect();
512        Some(vec![(self.field_id, scored_positions)])
513    }
514}
515
516#[cfg(test)]
517mod tests {
518    use super::*;
519    use crate::dsl::Field;
520
521    #[test]
522    fn test_dense_vector_query_builder() {
523        let query = DenseVectorQuery::new(Field(0), vec![1.0, 2.0, 3.0])
524            .with_nprobe(64)
525            .with_rerank_factor(5);
526
527        assert_eq!(query.field, Field(0));
528        assert_eq!(query.vector.len(), 3);
529        assert_eq!(query.nprobe, 64);
530        assert_eq!(query.rerank_factor, 5);
531    }
532
533    #[test]
534    fn test_sparse_vector_query_new() {
535        let sparse = vec![(1, 0.5), (5, 0.3), (10, 0.2)];
536        let query = SparseVectorQuery::new(Field(0), sparse.clone());
537
538        assert_eq!(query.field, Field(0));
539        assert_eq!(query.vector, sparse);
540    }
541
542    #[test]
543    fn test_sparse_vector_query_from_indices_weights() {
544        let query =
545            SparseVectorQuery::from_indices_weights(Field(0), vec![1, 5, 10], vec![0.5, 0.3, 0.2]);
546
547        assert_eq!(query.vector, vec![(1, 0.5), (5, 0.3), (10, 0.2)]);
548    }
549
550    #[test]
551    fn test_combiner_sum() {
552        let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
553        let combiner = MultiValueCombiner::Sum;
554        assert!((combiner.combine(&scores) - 6.0).abs() < 1e-6);
555    }
556
557    #[test]
558    fn test_combiner_max() {
559        let scores = vec![(0, 1.0), (1, 3.0), (2, 2.0)];
560        let combiner = MultiValueCombiner::Max;
561        assert!((combiner.combine(&scores) - 3.0).abs() < 1e-6);
562    }
563
564    #[test]
565    fn test_combiner_avg() {
566        let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
567        let combiner = MultiValueCombiner::Avg;
568        assert!((combiner.combine(&scores) - 2.0).abs() < 1e-6);
569    }
570
571    #[test]
572    fn test_combiner_log_sum_exp() {
573        let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
574        let combiner = MultiValueCombiner::log_sum_exp();
575        let result = combiner.combine(&scores);
576        // LogSumExp should be between max (3.0) and max + log(n)/t
577        assert!(result >= 3.0);
578        assert!(result <= 3.0 + (3.0_f32).ln() / 1.5);
579    }
580
581    #[test]
582    fn test_combiner_log_sum_exp_approaches_max_with_high_temp() {
583        let scores = vec![(0, 1.0), (1, 5.0), (2, 2.0)];
584        // High temperature should approach max
585        let combiner = MultiValueCombiner::log_sum_exp_with_temperature(10.0);
586        let result = combiner.combine(&scores);
587        // Should be very close to max (5.0)
588        assert!((result - 5.0).abs() < 0.5);
589    }
590
591    #[test]
592    fn test_combiner_weighted_top_k() {
593        let scores = vec![(0, 5.0), (1, 3.0), (2, 1.0), (3, 0.5)];
594        let combiner = MultiValueCombiner::weighted_top_k_with_params(3, 0.5);
595        let result = combiner.combine(&scores);
596        // Top 3: 5.0, 3.0, 1.0 with weights 1.0, 0.5, 0.25
597        // weighted_sum = 5*1 + 3*0.5 + 1*0.25 = 6.75
598        // weight_total = 1.75
599        // result = 6.75 / 1.75 ≈ 3.857
600        assert!((result - 3.857).abs() < 0.01);
601    }
602
603    #[test]
604    fn test_combiner_weighted_top_k_less_than_k() {
605        let scores = vec![(0, 2.0), (1, 1.0)];
606        let combiner = MultiValueCombiner::weighted_top_k_with_params(5, 0.7);
607        let result = combiner.combine(&scores);
608        // Only 2 scores, weights 1.0 and 0.7
609        // weighted_sum = 2*1 + 1*0.7 = 2.7
610        // weight_total = 1.7
611        // result = 2.7 / 1.7 ≈ 1.588
612        assert!((result - 1.588).abs() < 0.01);
613    }
614
615    #[test]
616    fn test_combiner_empty_scores() {
617        let scores: Vec<(u32, f32)> = vec![];
618        assert_eq!(MultiValueCombiner::Sum.combine(&scores), 0.0);
619        assert_eq!(MultiValueCombiner::Max.combine(&scores), 0.0);
620        assert_eq!(MultiValueCombiner::Avg.combine(&scores), 0.0);
621        assert_eq!(MultiValueCombiner::log_sum_exp().combine(&scores), 0.0);
622        assert_eq!(MultiValueCombiner::weighted_top_k().combine(&scores), 0.0);
623    }
624
625    #[test]
626    fn test_combiner_single_score() {
627        let scores = vec![(0, 5.0)];
628        // All combiners should return 5.0 for a single score
629        assert!((MultiValueCombiner::Sum.combine(&scores) - 5.0).abs() < 1e-6);
630        assert!((MultiValueCombiner::Max.combine(&scores) - 5.0).abs() < 1e-6);
631        assert!((MultiValueCombiner::Avg.combine(&scores) - 5.0).abs() < 1e-6);
632        assert!((MultiValueCombiner::log_sum_exp().combine(&scores) - 5.0).abs() < 1e-6);
633        assert!((MultiValueCombiner::weighted_top_k().combine(&scores) - 5.0).abs() < 1e-6);
634    }
635
636    #[test]
637    fn test_default_combiner_is_log_sum_exp() {
638        let combiner = MultiValueCombiner::default();
639        match combiner {
640            MultiValueCombiner::LogSumExp { temperature } => {
641                assert!((temperature - 1.5).abs() < 1e-6);
642            }
643            _ => panic!("Default combiner should be LogSumExp"),
644        }
645    }
646}