1mod config;
12mod posting;
13mod vectors;
14
15pub use config::{MemoryBreakdown, SegmentBuilderConfig, SegmentBuilderStats};
16
17use std::fs::{File, OpenOptions};
18use std::io::{BufWriter, Write};
19use std::path::PathBuf;
20
21use hashbrown::HashMap;
22use lasso::{Rodeo, Spur};
23use rayon::prelude::*;
24use rustc_hash::FxHashMap;
25
26use crate::compression::CompressionLevel;
27
28use super::types::{FieldStats, SegmentFiles, SegmentId, SegmentMeta};
29use crate::directories::{Directory, DirectoryWriter};
30use crate::dsl::{Document, Field, FieldType, FieldValue, Schema};
31use crate::structures::{PostingList, SSTableWriter, TermInfo};
32use crate::tokenizer::BoxedTokenizer;
33use crate::{DocId, Result};
34
35use posting::{
36 CompactPosting, PositionPostingListBuilder, PostingListBuilder, SerializedPosting, TermKey,
37};
38use vectors::{DenseVectorBuilder, SparseVectorBuilder};
39
40pub use super::vector_data::{FlatVectorData, IVFRaBitQIndexData, ScaNNIndexData};
42
43const STORE_BUFFER_SIZE: usize = 16 * 1024 * 1024; pub struct SegmentBuilder {
53 schema: Schema,
54 config: SegmentBuilderConfig,
55 tokenizers: FxHashMap<Field, BoxedTokenizer>,
56
57 term_interner: Rodeo,
59
60 inverted_index: HashMap<TermKey, PostingListBuilder>,
62
63 store_file: BufWriter<File>,
65 store_path: PathBuf,
66
67 next_doc_id: DocId,
69
70 field_stats: FxHashMap<u32, FieldStats>,
72
73 doc_field_lengths: Vec<u32>,
77 num_indexed_fields: usize,
78 field_to_slot: FxHashMap<u32, usize>,
79
80 local_tf_buffer: FxHashMap<Spur, u32>,
83
84 token_buffer: String,
86
87 dense_vectors: FxHashMap<u32, DenseVectorBuilder>,
90
91 sparse_vectors: FxHashMap<u32, SparseVectorBuilder>,
94
95 position_index: HashMap<TermKey, PositionPostingListBuilder>,
98
99 position_enabled_fields: FxHashMap<u32, Option<crate::dsl::PositionMode>>,
101
102 current_element_ordinal: FxHashMap<u32, u32>,
104
105 estimated_memory: usize,
107}
108
109impl SegmentBuilder {
110 pub fn new(schema: Schema, config: SegmentBuilderConfig) -> Result<Self> {
112 let segment_id = uuid::Uuid::new_v4();
113 let store_path = config
114 .temp_dir
115 .join(format!("hermes_store_{}.tmp", segment_id));
116
117 let store_file = BufWriter::with_capacity(
118 STORE_BUFFER_SIZE,
119 OpenOptions::new()
120 .create(true)
121 .write(true)
122 .truncate(true)
123 .open(&store_path)?,
124 );
125
126 let mut num_indexed_fields = 0;
129 let mut field_to_slot = FxHashMap::default();
130 let mut position_enabled_fields = FxHashMap::default();
131 for (field, entry) in schema.fields() {
132 if entry.indexed && matches!(entry.field_type, FieldType::Text) {
133 field_to_slot.insert(field.0, num_indexed_fields);
134 num_indexed_fields += 1;
135 if entry.positions.is_some() {
136 position_enabled_fields.insert(field.0, entry.positions);
137 }
138 }
139 }
140
141 Ok(Self {
142 schema,
143 tokenizers: FxHashMap::default(),
144 term_interner: Rodeo::new(),
145 inverted_index: HashMap::with_capacity(config.posting_map_capacity),
146 store_file,
147 store_path,
148 next_doc_id: 0,
149 field_stats: FxHashMap::default(),
150 doc_field_lengths: Vec::new(),
151 num_indexed_fields,
152 field_to_slot,
153 local_tf_buffer: FxHashMap::default(),
154 token_buffer: String::with_capacity(64),
155 config,
156 dense_vectors: FxHashMap::default(),
157 sparse_vectors: FxHashMap::default(),
158 position_index: HashMap::new(),
159 position_enabled_fields,
160 current_element_ordinal: FxHashMap::default(),
161 estimated_memory: 0,
162 })
163 }
164
165 pub fn set_tokenizer(&mut self, field: Field, tokenizer: BoxedTokenizer) {
166 self.tokenizers.insert(field, tokenizer);
167 }
168
169 pub fn num_docs(&self) -> u32 {
170 self.next_doc_id
171 }
172
173 #[inline]
175 pub fn estimated_memory_bytes(&self) -> usize {
176 self.estimated_memory
177 }
178
179 pub fn sparse_dim_count(&self) -> usize {
181 self.sparse_vectors.values().map(|b| b.postings.len()).sum()
182 }
183
184 pub fn stats(&self) -> SegmentBuilderStats {
186 use std::mem::size_of;
187
188 let postings_in_memory: usize =
189 self.inverted_index.values().map(|p| p.postings.len()).sum();
190
191 let compact_posting_size = size_of::<CompactPosting>();
193 let vec_overhead = size_of::<Vec<u8>>(); let term_key_size = size_of::<TermKey>();
195 let posting_builder_size = size_of::<PostingListBuilder>();
196 let spur_size = size_of::<lasso::Spur>();
197 let sparse_entry_size = size_of::<(DocId, u16, f32)>();
198
199 let hashmap_entry_base_overhead = 8usize;
202
203 let fxhashmap_entry_overhead = hashmap_entry_base_overhead;
205
206 let postings_bytes: usize = self
208 .inverted_index
209 .values()
210 .map(|p| p.postings.capacity() * compact_posting_size + vec_overhead)
211 .sum();
212
213 let index_overhead_bytes = self.inverted_index.len()
215 * (term_key_size + posting_builder_size + hashmap_entry_base_overhead);
216
217 let interner_arena_overhead = 2 * size_of::<usize>();
220 let avg_term_len = 8; let interner_bytes =
222 self.term_interner.len() * (avg_term_len + spur_size + interner_arena_overhead);
223
224 let field_lengths_bytes =
226 self.doc_field_lengths.capacity() * size_of::<u32>() + vec_overhead;
227
228 let mut dense_vectors_bytes: usize = 0;
230 let mut dense_vector_count: usize = 0;
231 let doc_id_ordinal_size = size_of::<(DocId, u16)>();
232 for b in self.dense_vectors.values() {
233 dense_vectors_bytes += b.vectors.capacity() * size_of::<f32>()
234 + b.doc_ids.capacity() * doc_id_ordinal_size
235 + 2 * vec_overhead; dense_vector_count += b.doc_ids.len();
237 }
238
239 let local_tf_entry_size = spur_size + size_of::<u32>() + fxhashmap_entry_overhead;
241 let local_tf_buffer_bytes = self.local_tf_buffer.capacity() * local_tf_entry_size;
242
243 let mut sparse_vectors_bytes: usize = 0;
245 for builder in self.sparse_vectors.values() {
246 for postings in builder.postings.values() {
247 sparse_vectors_bytes += postings.capacity() * sparse_entry_size + vec_overhead;
248 }
249 let inner_entry_size = size_of::<u32>() + vec_overhead + fxhashmap_entry_overhead;
251 sparse_vectors_bytes += builder.postings.len() * inner_entry_size;
252 }
253 let outer_sparse_entry_size =
255 size_of::<u32>() + size_of::<SparseVectorBuilder>() + fxhashmap_entry_overhead;
256 sparse_vectors_bytes += self.sparse_vectors.len() * outer_sparse_entry_size;
257
258 let mut position_index_bytes: usize = 0;
260 for pos_builder in self.position_index.values() {
261 for (_, positions) in &pos_builder.postings {
262 position_index_bytes += positions.capacity() * size_of::<u32>() + vec_overhead;
263 }
264 let pos_entry_size = size_of::<DocId>() + vec_overhead;
266 position_index_bytes += pos_builder.postings.capacity() * pos_entry_size;
267 }
268 let pos_index_entry_size =
270 term_key_size + size_of::<PositionPostingListBuilder>() + hashmap_entry_base_overhead;
271 position_index_bytes += self.position_index.len() * pos_index_entry_size;
272
273 let estimated_memory_bytes = postings_bytes
274 + index_overhead_bytes
275 + interner_bytes
276 + field_lengths_bytes
277 + dense_vectors_bytes
278 + local_tf_buffer_bytes
279 + sparse_vectors_bytes
280 + position_index_bytes;
281
282 let memory_breakdown = MemoryBreakdown {
283 postings_bytes,
284 index_overhead_bytes,
285 interner_bytes,
286 field_lengths_bytes,
287 dense_vectors_bytes,
288 dense_vector_count,
289 sparse_vectors_bytes,
290 position_index_bytes,
291 };
292
293 SegmentBuilderStats {
294 num_docs: self.next_doc_id,
295 unique_terms: self.inverted_index.len(),
296 postings_in_memory,
297 interned_strings: self.term_interner.len(),
298 doc_field_lengths_size: self.doc_field_lengths.len(),
299 estimated_memory_bytes,
300 memory_breakdown,
301 }
302 }
303
304 pub fn add_document(&mut self, doc: Document) -> Result<DocId> {
306 let doc_id = self.next_doc_id;
307 self.next_doc_id += 1;
308
309 let base_idx = self.doc_field_lengths.len();
311 self.doc_field_lengths
312 .resize(base_idx + self.num_indexed_fields, 0);
313
314 self.current_element_ordinal.clear();
316
317 for (field, value) in doc.field_values() {
318 let entry = self.schema.get_field_entry(*field);
319 if entry.is_none() || !entry.unwrap().indexed {
320 continue;
321 }
322
323 let entry = entry.unwrap();
324 match (&entry.field_type, value) {
325 (FieldType::Text, FieldValue::Text(text)) => {
326 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
328 let token_count =
329 self.index_text_field(*field, doc_id, text, element_ordinal)?;
330 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
332
333 let stats = self.field_stats.entry(field.0).or_default();
335 stats.total_tokens += token_count as u64;
336 stats.doc_count += 1;
337
338 if let Some(&slot) = self.field_to_slot.get(&field.0) {
340 self.doc_field_lengths[base_idx + slot] = token_count;
341 }
342 }
343 (FieldType::U64, FieldValue::U64(v)) => {
344 self.index_numeric_field(*field, doc_id, *v)?;
345 }
346 (FieldType::I64, FieldValue::I64(v)) => {
347 self.index_numeric_field(*field, doc_id, *v as u64)?;
348 }
349 (FieldType::F64, FieldValue::F64(v)) => {
350 self.index_numeric_field(*field, doc_id, v.to_bits())?;
351 }
352 (FieldType::DenseVector, FieldValue::DenseVector(vec)) => {
353 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
355 self.index_dense_vector_field(*field, doc_id, element_ordinal as u16, vec)?;
356 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
358 }
359 (FieldType::SparseVector, FieldValue::SparseVector(entries)) => {
360 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
362 self.index_sparse_vector_field(
363 *field,
364 doc_id,
365 element_ordinal as u16,
366 entries,
367 )?;
368 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
370 }
371 _ => {}
372 }
373 }
374
375 self.write_document_to_store(&doc)?;
377
378 Ok(doc_id)
379 }
380
381 fn index_text_field(
392 &mut self,
393 field: Field,
394 doc_id: DocId,
395 text: &str,
396 element_ordinal: u32,
397 ) -> Result<u32> {
398 use crate::dsl::PositionMode;
399
400 let field_id = field.0;
401 let position_mode = self
402 .position_enabled_fields
403 .get(&field_id)
404 .copied()
405 .flatten();
406
407 self.local_tf_buffer.clear();
411
412 let mut local_positions: FxHashMap<Spur, Vec<u32>> = FxHashMap::default();
414
415 let mut token_position = 0u32;
416
417 for word in text.split_whitespace() {
419 self.token_buffer.clear();
421 for c in word.chars() {
422 if c.is_alphanumeric() {
423 for lc in c.to_lowercase() {
424 self.token_buffer.push(lc);
425 }
426 }
427 }
428
429 if self.token_buffer.is_empty() {
430 continue;
431 }
432
433 let term_spur = self.term_interner.get_or_intern(&self.token_buffer);
435 *self.local_tf_buffer.entry(term_spur).or_insert(0) += 1;
436
437 if let Some(mode) = position_mode {
439 let encoded_pos = match mode {
440 PositionMode::Ordinal => element_ordinal << 20,
442 PositionMode::TokenPosition => token_position,
444 PositionMode::Full => (element_ordinal << 20) | token_position,
446 };
447 local_positions
448 .entry(term_spur)
449 .or_default()
450 .push(encoded_pos);
451 }
452
453 token_position += 1;
454 }
455
456 for (&term_spur, &tf) in &self.local_tf_buffer {
459 let term_key = TermKey {
460 field: field_id,
461 term: term_spur,
462 };
463
464 let is_new_term = !self.inverted_index.contains_key(&term_key);
465 let posting = self
466 .inverted_index
467 .entry(term_key)
468 .or_insert_with(PostingListBuilder::new);
469 posting.add(doc_id, tf);
470
471 use std::mem::size_of;
473 self.estimated_memory += size_of::<CompactPosting>();
474 if is_new_term {
475 self.estimated_memory +=
477 size_of::<TermKey>() + size_of::<PostingListBuilder>() + 24;
478 }
479
480 if position_mode.is_some()
482 && let Some(positions) = local_positions.get(&term_spur)
483 {
484 let pos_posting = self
485 .position_index
486 .entry(term_key)
487 .or_insert_with(PositionPostingListBuilder::new);
488 for &pos in positions {
489 pos_posting.add_position(doc_id, pos);
490 }
491 }
492 }
493
494 Ok(token_position)
495 }
496
497 fn index_numeric_field(&mut self, field: Field, doc_id: DocId, value: u64) -> Result<()> {
498 let term_str = format!("__num_{}", value);
500 let term_spur = self.term_interner.get_or_intern(&term_str);
501
502 let term_key = TermKey {
503 field: field.0,
504 term: term_spur,
505 };
506
507 let posting = self
508 .inverted_index
509 .entry(term_key)
510 .or_insert_with(PostingListBuilder::new);
511 posting.add(doc_id, 1);
512
513 Ok(())
514 }
515
516 fn index_dense_vector_field(
518 &mut self,
519 field: Field,
520 doc_id: DocId,
521 ordinal: u16,
522 vector: &[f32],
523 ) -> Result<()> {
524 let dim = vector.len();
525
526 let builder = self
527 .dense_vectors
528 .entry(field.0)
529 .or_insert_with(|| DenseVectorBuilder::new(dim));
530
531 if builder.dim != dim && builder.len() > 0 {
533 return Err(crate::Error::Schema(format!(
534 "Dense vector dimension mismatch: expected {}, got {}",
535 builder.dim, dim
536 )));
537 }
538
539 builder.add(doc_id, ordinal, vector);
540
541 use std::mem::{size_of, size_of_val};
543 self.estimated_memory += size_of_val(vector) + size_of::<(DocId, u16)>();
544
545 Ok(())
546 }
547
548 fn index_sparse_vector_field(
555 &mut self,
556 field: Field,
557 doc_id: DocId,
558 ordinal: u16,
559 entries: &[(u32, f32)],
560 ) -> Result<()> {
561 let weight_threshold = self
563 .schema
564 .get_field_entry(field)
565 .and_then(|entry| entry.sparse_vector_config.as_ref())
566 .map(|config| config.weight_threshold)
567 .unwrap_or(0.0);
568
569 let builder = self
570 .sparse_vectors
571 .entry(field.0)
572 .or_insert_with(SparseVectorBuilder::new);
573
574 for &(dim_id, weight) in entries {
575 if weight.abs() < weight_threshold {
577 continue;
578 }
579
580 use std::mem::size_of;
582 let is_new_dim = !builder.postings.contains_key(&dim_id);
583 builder.add(dim_id, doc_id, ordinal, weight);
584 self.estimated_memory += size_of::<(DocId, u16, f32)>();
585 if is_new_dim {
586 self.estimated_memory += size_of::<u32>() + size_of::<Vec<(DocId, u16, f32)>>() + 8; }
589 }
590
591 Ok(())
592 }
593
594 fn write_document_to_store(&mut self, doc: &Document) -> Result<()> {
596 use byteorder::{LittleEndian, WriteBytesExt};
597
598 let doc_bytes = super::store::serialize_document(doc, &self.schema)?;
599
600 self.store_file
601 .write_u32::<LittleEndian>(doc_bytes.len() as u32)?;
602 self.store_file.write_all(&doc_bytes)?;
603
604 Ok(())
605 }
606
607 pub async fn build<D: Directory + DirectoryWriter>(
612 mut self,
613 dir: &D,
614 segment_id: SegmentId,
615 ) -> Result<SegmentMeta> {
616 self.store_file.flush()?;
618
619 let files = SegmentFiles::new(segment_id.0);
620
621 let position_index = std::mem::take(&mut self.position_index);
623 let (positions_data, position_offsets) =
624 Self::build_positions_owned(position_index, &self.term_interner)?;
625 let inverted_index = std::mem::take(&mut self.inverted_index);
630 let term_interner = std::mem::replace(&mut self.term_interner, Rodeo::new());
631 let store_path = self.store_path.clone();
632 let schema_clone = self.schema.clone();
633 let num_compression_threads = self.config.num_compression_threads;
634 let compression_level = self.config.compression_level;
635
636 let (postings_result, store_result) = rayon::join(
637 || Self::build_postings_owned(inverted_index, term_interner, &position_offsets),
638 || {
639 Self::build_store_batched(
640 &store_path,
641 &schema_clone,
642 num_compression_threads,
643 compression_level,
644 )
645 },
646 );
647 let (term_dict_data, postings_data) = postings_result?;
650 let store_data = store_result?;
651
652 dir.write(&files.term_dict, &term_dict_data).await?;
654 drop(term_dict_data);
655 dir.write(&files.postings, &postings_data).await?;
656 drop(postings_data);
657 dir.write(&files.store, &store_data).await?;
658 drop(store_data);
659
660 if !positions_data.is_empty() {
661 dir.write(&files.positions, &positions_data).await?;
662 }
663 drop(positions_data);
664 drop(position_offsets);
665
666 let dense_vectors = std::mem::take(&mut self.dense_vectors);
668 if !dense_vectors.is_empty() {
669 let vectors_data = Self::build_vectors_file_binary(dense_vectors, &self.schema)?;
670 if !vectors_data.is_empty() {
671 dir.write(&files.vectors, &vectors_data).await?;
672 }
673 }
674 let mut sparse_vectors = std::mem::take(&mut self.sparse_vectors);
678 if !sparse_vectors.is_empty() {
679 let sparse_data = Self::build_sparse_file_inplace(&mut sparse_vectors, &self.schema)?;
680 drop(sparse_vectors);
681 if !sparse_data.is_empty() {
682 dir.write(&files.sparse, &sparse_data).await?;
683 }
684 }
685
686 let meta = SegmentMeta {
687 id: segment_id.0,
688 num_docs: self.next_doc_id,
689 field_stats: self.field_stats.clone(),
690 };
691
692 dir.write(&files.meta, &meta.serialize()?).await?;
693
694 let _ = std::fs::remove_file(&self.store_path);
696
697 Ok(meta)
698 }
699
700 fn build_vectors_file_binary(
705 dense_vectors: FxHashMap<u32, DenseVectorBuilder>,
706 schema: &Schema,
707 ) -> Result<Vec<u8>> {
708 use byteorder::{LittleEndian, WriteBytesExt};
709
710 let mut field_indexes: Vec<(u32, u8, Vec<u8>)> = Vec::new();
711
712 for (field_id, builder) in dense_vectors {
713 if builder.len() == 0 {
714 continue;
715 }
716
717 let field = crate::dsl::Field(field_id);
718 let dense_config = schema
719 .get_field_entry(field)
720 .and_then(|e| e.dense_vector_config.as_ref());
721
722 let index_dim = dense_config.map(|c| c.index_dim()).unwrap_or(builder.dim);
723
724 let index_bytes = FlatVectorData::serialize_binary_from_flat(
726 index_dim,
727 &builder.vectors,
728 builder.dim,
729 &builder.doc_ids,
730 );
731
732 field_indexes.push((field_id, 4u8, index_bytes)); }
735
736 if field_indexes.is_empty() {
737 return Ok(Vec::new());
738 }
739
740 field_indexes.sort_by_key(|(id, _, _)| *id);
741 let header_size = 4 + field_indexes.len() * (4 + 1 + 8 + 8);
742
743 let mut output = Vec::new();
744 output.write_u32::<LittleEndian>(field_indexes.len() as u32)?;
745
746 let mut current_offset = header_size as u64;
747 for (field_id, index_type, data) in &field_indexes {
748 output.write_u32::<LittleEndian>(*field_id)?;
749 output.write_u8(*index_type)?;
750 output.write_u64::<LittleEndian>(current_offset)?;
751 output.write_u64::<LittleEndian>(data.len() as u64)?;
752 current_offset += data.len() as u64;
753 }
754
755 for (_, _, data) in field_indexes {
756 output.extend_from_slice(&data);
757 }
758
759 Ok(output)
760 }
761
762 fn build_sparse_file_inplace(
767 sparse_vectors: &mut FxHashMap<u32, SparseVectorBuilder>,
768 schema: &Schema,
769 ) -> Result<Vec<u8>> {
770 use crate::structures::{BlockSparsePostingList, WeightQuantization};
771 use byteorder::{LittleEndian, WriteBytesExt};
772
773 if sparse_vectors.is_empty() {
774 return Ok(Vec::new());
775 }
776
777 type SparseFieldData = (u32, WeightQuantization, u32, FxHashMap<u32, Vec<u8>>);
778 let mut field_data: Vec<SparseFieldData> = Vec::new();
779
780 for (&field_id, builder) in sparse_vectors.iter_mut() {
781 if builder.is_empty() {
782 continue;
783 }
784
785 let field = crate::dsl::Field(field_id);
786 let sparse_config = schema
787 .get_field_entry(field)
788 .and_then(|e| e.sparse_vector_config.as_ref());
789
790 let quantization = sparse_config
791 .map(|c| c.weight_quantization)
792 .unwrap_or(WeightQuantization::Float32);
793
794 let block_size = sparse_config.map(|c| c.block_size).unwrap_or(128);
795
796 let mut dim_bytes: FxHashMap<u32, Vec<u8>> = FxHashMap::default();
797
798 for (&dim_id, postings) in builder.postings.iter_mut() {
799 postings.sort_unstable_by_key(|(doc_id, ordinal, _)| (*doc_id, *ordinal));
801
802 let block_list = BlockSparsePostingList::from_postings_with_block_size(
803 postings,
804 quantization,
805 block_size,
806 )
807 .map_err(crate::Error::Io)?;
808
809 let mut bytes = Vec::new();
810 block_list.serialize(&mut bytes).map_err(crate::Error::Io)?;
811 dim_bytes.insert(dim_id, bytes);
812 }
813
814 field_data.push((field_id, quantization, dim_bytes.len() as u32, dim_bytes));
815 }
816
817 if field_data.is_empty() {
818 return Ok(Vec::new());
819 }
820
821 field_data.sort_by_key(|(id, _, _, _)| *id);
822
823 let mut header_size = 4u64;
825 for (_, _, num_dims, _) in &field_data {
826 header_size += 4 + 1 + 4;
827 header_size += (*num_dims as u64) * 16;
828 }
829
830 let mut output = Vec::new();
831 output.write_u32::<LittleEndian>(field_data.len() as u32)?;
832
833 let mut current_offset = header_size;
834 let mut all_data: Vec<u8> = Vec::new();
835 let mut field_tables: Vec<Vec<(u32, u64, u32)>> = Vec::new();
836
837 for (_, _, _, dim_bytes) in &field_data {
838 let mut table: Vec<(u32, u64, u32)> = Vec::with_capacity(dim_bytes.len());
839 let mut dims: Vec<_> = dim_bytes.keys().copied().collect();
840 dims.sort();
841
842 for dim_id in dims {
843 let bytes = &dim_bytes[&dim_id];
844 table.push((dim_id, current_offset, bytes.len() as u32));
845 current_offset += bytes.len() as u64;
846 all_data.extend_from_slice(bytes);
847 }
848 field_tables.push(table);
849 }
850
851 for (i, (field_id, quantization, num_dims, _)) in field_data.iter().enumerate() {
852 output.write_u32::<LittleEndian>(*field_id)?;
853 output.write_u8(*quantization as u8)?;
854 output.write_u32::<LittleEndian>(*num_dims)?;
855
856 for &(dim_id, offset, length) in &field_tables[i] {
857 output.write_u32::<LittleEndian>(dim_id)?;
858 output.write_u64::<LittleEndian>(offset)?;
859 output.write_u32::<LittleEndian>(length)?;
860 }
861 }
862
863 output.extend_from_slice(&all_data);
864 Ok(output)
865 }
866
867 #[allow(clippy::type_complexity)]
869 fn build_positions_owned(
870 position_index: HashMap<TermKey, PositionPostingListBuilder>,
871 term_interner: &Rodeo,
872 ) -> Result<(Vec<u8>, FxHashMap<Vec<u8>, (u64, u32)>)> {
873 use crate::structures::PositionPostingList;
874
875 let mut position_offsets: FxHashMap<Vec<u8>, (u64, u32)> = FxHashMap::default();
876
877 if position_index.is_empty() {
878 return Ok((Vec::new(), position_offsets));
879 }
880
881 let mut entries: Vec<(Vec<u8>, PositionPostingListBuilder)> = position_index
883 .into_iter()
884 .map(|(term_key, pos_builder)| {
885 let term_str = term_interner.resolve(&term_key.term);
886 let mut key = Vec::with_capacity(4 + term_str.len());
887 key.extend_from_slice(&term_key.field.to_le_bytes());
888 key.extend_from_slice(term_str.as_bytes());
889 (key, pos_builder)
890 })
891 .collect();
892
893 entries.sort_by(|a, b| a.0.cmp(&b.0));
894
895 let mut output = Vec::new();
896
897 for (key, pos_builder) in entries {
898 let mut pos_list = PositionPostingList::with_capacity(pos_builder.postings.len());
899 for (doc_id, positions) in pos_builder.postings {
900 pos_list.push(doc_id, positions);
902 }
903
904 let offset = output.len() as u64;
905 pos_list.serialize(&mut output).map_err(crate::Error::Io)?;
906 let len = (output.len() as u64 - offset) as u32;
907
908 position_offsets.insert(key, (offset, len));
909 }
910
911 Ok((output, position_offsets))
912 }
913
914 fn build_postings_owned(
919 inverted_index: HashMap<TermKey, PostingListBuilder>,
920 term_interner: Rodeo,
921 position_offsets: &FxHashMap<Vec<u8>, (u64, u32)>,
922 ) -> Result<(Vec<u8>, Vec<u8>)> {
923 let mut term_entries: Vec<(Vec<u8>, PostingListBuilder)> = inverted_index
925 .into_iter()
926 .map(|(term_key, posting_list)| {
927 let term_str = term_interner.resolve(&term_key.term);
928 let mut key = Vec::with_capacity(4 + term_str.len());
929 key.extend_from_slice(&term_key.field.to_le_bytes());
930 key.extend_from_slice(term_str.as_bytes());
931 (key, posting_list)
932 })
933 .collect();
934
935 drop(term_interner);
937
938 term_entries.par_sort_unstable_by(|a, b| a.0.cmp(&b.0));
939
940 let serialized: Vec<(Vec<u8>, SerializedPosting)> = term_entries
943 .into_par_iter()
944 .map(|(key, posting_builder)| {
945 let mut full_postings = PostingList::with_capacity(posting_builder.len());
946 for p in &posting_builder.postings {
947 full_postings.push(p.doc_id, p.term_freq as u32);
948 }
949 let doc_ids: Vec<u32> = full_postings.iter().map(|p| p.doc_id).collect();
952 let term_freqs: Vec<u32> = full_postings.iter().map(|p| p.term_freq).collect();
953
954 let has_positions = position_offsets.contains_key(&key);
955 let result = if !has_positions
956 && let Some(inline) = TermInfo::try_inline(&doc_ids, &term_freqs)
957 {
958 SerializedPosting::Inline(inline)
959 } else {
960 let mut posting_bytes = Vec::new();
961 let block_list =
962 crate::structures::BlockPostingList::from_posting_list(&full_postings)
963 .expect("BlockPostingList creation failed");
964 block_list
965 .serialize(&mut posting_bytes)
966 .expect("BlockPostingList serialization failed");
967 SerializedPosting::External {
968 bytes: posting_bytes,
969 doc_count: full_postings.doc_count(),
970 }
971 };
972
973 (key, result)
974 })
975 .collect();
976
977 let mut term_dict = Vec::new();
979 let mut postings = Vec::new();
980 let mut writer = SSTableWriter::<TermInfo>::new(&mut term_dict);
981
982 for (key, serialized_posting) in serialized {
983 let term_info = match serialized_posting {
984 SerializedPosting::Inline(info) => info,
985 SerializedPosting::External { bytes, doc_count } => {
986 let posting_offset = postings.len() as u64;
987 let posting_len = bytes.len() as u32;
988 postings.extend_from_slice(&bytes);
989
990 if let Some(&(pos_offset, pos_len)) = position_offsets.get(&key) {
991 TermInfo::external_with_positions(
992 posting_offset,
993 posting_len,
994 doc_count,
995 pos_offset,
996 pos_len,
997 )
998 } else {
999 TermInfo::external(posting_offset, posting_len, doc_count)
1000 }
1001 }
1002 };
1003
1004 writer.insert(&key, &term_info)?;
1005 }
1006
1007 writer.finish()?;
1008 Ok((term_dict, postings))
1009 }
1010
1011 fn build_store_batched(
1016 store_path: &PathBuf,
1017 schema: &Schema,
1018 num_compression_threads: usize,
1019 compression_level: CompressionLevel,
1020 ) -> Result<Vec<u8>> {
1021 use super::store::EagerParallelStoreWriter;
1022
1023 let file = File::open(store_path)?;
1024 let mmap = unsafe { memmap2::Mmap::map(&file)? };
1025
1026 let mut doc_ranges: Vec<(usize, usize)> = Vec::new();
1028 let mut offset = 0usize;
1029 while offset + 4 <= mmap.len() {
1030 let doc_len = u32::from_le_bytes([
1031 mmap[offset],
1032 mmap[offset + 1],
1033 mmap[offset + 2],
1034 mmap[offset + 3],
1035 ]) as usize;
1036 offset += 4;
1037
1038 if offset + doc_len > mmap.len() {
1039 break;
1040 }
1041
1042 doc_ranges.push((offset, doc_len));
1043 offset += doc_len;
1044 }
1045
1046 const BATCH_SIZE: usize = 10_000;
1050 let mut store_data = Vec::new();
1051 let mut store_writer = EagerParallelStoreWriter::with_compression_level(
1052 &mut store_data,
1053 num_compression_threads,
1054 compression_level,
1055 );
1056
1057 for batch in doc_ranges.chunks(BATCH_SIZE) {
1058 let batch_docs: Vec<Document> = batch
1059 .par_iter()
1060 .filter_map(|&(start, len)| {
1061 let doc_bytes = &mmap[start..start + len];
1062 super::store::deserialize_document(doc_bytes, schema).ok()
1063 })
1064 .collect();
1065
1066 for doc in &batch_docs {
1067 store_writer.store(doc, schema)?;
1068 }
1069 }
1071
1072 store_writer.finish()?;
1073 Ok(store_data)
1074 }
1075}
1076
1077impl Drop for SegmentBuilder {
1078 fn drop(&mut self) {
1079 let _ = std::fs::remove_file(&self.store_path);
1081 }
1082}