1mod config;
12mod posting;
13mod vectors;
14
15pub use config::{MemoryBreakdown, SegmentBuilderConfig, SegmentBuilderStats};
16
17use std::fs::{File, OpenOptions};
18use std::io::{BufWriter, Write};
19use std::path::PathBuf;
20
21use hashbrown::HashMap;
22use lasso::{Rodeo, Spur};
23use rayon::prelude::*;
24use rustc_hash::FxHashMap;
25
26use crate::compression::CompressionLevel;
27
28use super::types::{FieldStats, SegmentFiles, SegmentId, SegmentMeta};
29use crate::directories::{Directory, DirectoryWriter};
30use crate::dsl::{Document, Field, FieldType, FieldValue, Schema};
31use crate::structures::{PostingList, SSTableWriter, TermInfo};
32use crate::tokenizer::BoxedTokenizer;
33use crate::{DocId, Result};
34
35use posting::{
36 CompactPosting, PositionPostingListBuilder, PostingListBuilder, SerializedPosting, TermKey,
37};
38use vectors::{DenseVectorBuilder, SparseVectorBuilder};
39
40pub use super::vector_data::{FlatVectorData, IVFRaBitQIndexData, ScaNNIndexData};
42
43const STORE_BUFFER_SIZE: usize = 16 * 1024 * 1024; pub struct SegmentBuilder {
53 schema: Schema,
54 config: SegmentBuilderConfig,
55 tokenizers: FxHashMap<Field, BoxedTokenizer>,
56
57 term_interner: Rodeo,
59
60 inverted_index: HashMap<TermKey, PostingListBuilder>,
62
63 store_file: BufWriter<File>,
65 store_path: PathBuf,
66
67 next_doc_id: DocId,
69
70 field_stats: FxHashMap<u32, FieldStats>,
72
73 doc_field_lengths: Vec<u32>,
77 num_indexed_fields: usize,
78 field_to_slot: FxHashMap<u32, usize>,
79
80 local_tf_buffer: FxHashMap<Spur, u32>,
83
84 token_buffer: String,
86
87 dense_vectors: FxHashMap<u32, DenseVectorBuilder>,
90
91 sparse_vectors: FxHashMap<u32, SparseVectorBuilder>,
94
95 position_index: HashMap<TermKey, PositionPostingListBuilder>,
98
99 position_enabled_fields: FxHashMap<u32, Option<crate::dsl::PositionMode>>,
101
102 current_element_ordinal: FxHashMap<u32, u32>,
104
105 estimated_memory: usize,
107}
108
109impl SegmentBuilder {
110 pub fn new(schema: Schema, config: SegmentBuilderConfig) -> Result<Self> {
112 let segment_id = uuid::Uuid::new_v4();
113 let store_path = config
114 .temp_dir
115 .join(format!("hermes_store_{}.tmp", segment_id));
116
117 let store_file = BufWriter::with_capacity(
118 STORE_BUFFER_SIZE,
119 OpenOptions::new()
120 .create(true)
121 .write(true)
122 .truncate(true)
123 .open(&store_path)?,
124 );
125
126 let mut num_indexed_fields = 0;
129 let mut field_to_slot = FxHashMap::default();
130 let mut position_enabled_fields = FxHashMap::default();
131 for (field, entry) in schema.fields() {
132 if entry.indexed && matches!(entry.field_type, FieldType::Text) {
133 field_to_slot.insert(field.0, num_indexed_fields);
134 num_indexed_fields += 1;
135 if entry.positions.is_some() {
136 position_enabled_fields.insert(field.0, entry.positions);
137 }
138 }
139 }
140
141 Ok(Self {
142 schema,
143 tokenizers: FxHashMap::default(),
144 term_interner: Rodeo::new(),
145 inverted_index: HashMap::with_capacity(config.posting_map_capacity),
146 store_file,
147 store_path,
148 next_doc_id: 0,
149 field_stats: FxHashMap::default(),
150 doc_field_lengths: Vec::new(),
151 num_indexed_fields,
152 field_to_slot,
153 local_tf_buffer: FxHashMap::default(),
154 token_buffer: String::with_capacity(64),
155 config,
156 dense_vectors: FxHashMap::default(),
157 sparse_vectors: FxHashMap::default(),
158 position_index: HashMap::new(),
159 position_enabled_fields,
160 current_element_ordinal: FxHashMap::default(),
161 estimated_memory: 0,
162 })
163 }
164
165 pub fn set_tokenizer(&mut self, field: Field, tokenizer: BoxedTokenizer) {
166 self.tokenizers.insert(field, tokenizer);
167 }
168
169 pub fn num_docs(&self) -> u32 {
170 self.next_doc_id
171 }
172
173 #[inline]
175 pub fn estimated_memory_bytes(&self) -> usize {
176 self.estimated_memory
177 }
178
179 pub fn sparse_dim_count(&self) -> usize {
181 self.sparse_vectors.values().map(|b| b.postings.len()).sum()
182 }
183
184 pub fn stats(&self) -> SegmentBuilderStats {
186 use std::mem::size_of;
187
188 let postings_in_memory: usize =
189 self.inverted_index.values().map(|p| p.postings.len()).sum();
190
191 let compact_posting_size = size_of::<CompactPosting>();
193 let vec_overhead = size_of::<Vec<u8>>(); let term_key_size = size_of::<TermKey>();
195 let posting_builder_size = size_of::<PostingListBuilder>();
196 let spur_size = size_of::<lasso::Spur>();
197 let sparse_entry_size = size_of::<(DocId, u16, f32)>();
198
199 let hashmap_entry_base_overhead = 8usize;
202
203 let fxhashmap_entry_overhead = hashmap_entry_base_overhead;
205
206 let postings_bytes: usize = self
208 .inverted_index
209 .values()
210 .map(|p| p.postings.capacity() * compact_posting_size + vec_overhead)
211 .sum();
212
213 let index_overhead_bytes = self.inverted_index.len()
215 * (term_key_size + posting_builder_size + hashmap_entry_base_overhead);
216
217 let interner_arena_overhead = 2 * size_of::<usize>();
220 let avg_term_len = 8; let interner_bytes =
222 self.term_interner.len() * (avg_term_len + spur_size + interner_arena_overhead);
223
224 let field_lengths_bytes =
226 self.doc_field_lengths.capacity() * size_of::<u32>() + vec_overhead;
227
228 let mut dense_vectors_bytes: usize = 0;
230 let mut dense_vector_count: usize = 0;
231 let doc_id_ordinal_size = size_of::<(DocId, u16)>();
232 for b in self.dense_vectors.values() {
233 dense_vectors_bytes += b.vectors.capacity() * size_of::<f32>()
234 + b.doc_ids.capacity() * doc_id_ordinal_size
235 + 2 * vec_overhead; dense_vector_count += b.doc_ids.len();
237 }
238
239 let local_tf_entry_size = spur_size + size_of::<u32>() + fxhashmap_entry_overhead;
241 let local_tf_buffer_bytes = self.local_tf_buffer.capacity() * local_tf_entry_size;
242
243 let mut sparse_vectors_bytes: usize = 0;
245 for builder in self.sparse_vectors.values() {
246 for postings in builder.postings.values() {
247 sparse_vectors_bytes += postings.capacity() * sparse_entry_size + vec_overhead;
248 }
249 let inner_entry_size = size_of::<u32>() + vec_overhead + fxhashmap_entry_overhead;
251 sparse_vectors_bytes += builder.postings.len() * inner_entry_size;
252 }
253 let outer_sparse_entry_size =
255 size_of::<u32>() + size_of::<SparseVectorBuilder>() + fxhashmap_entry_overhead;
256 sparse_vectors_bytes += self.sparse_vectors.len() * outer_sparse_entry_size;
257
258 let mut position_index_bytes: usize = 0;
260 for pos_builder in self.position_index.values() {
261 for (_, positions) in &pos_builder.postings {
262 position_index_bytes += positions.capacity() * size_of::<u32>() + vec_overhead;
263 }
264 let pos_entry_size = size_of::<DocId>() + vec_overhead;
266 position_index_bytes += pos_builder.postings.capacity() * pos_entry_size;
267 }
268 let pos_index_entry_size =
270 term_key_size + size_of::<PositionPostingListBuilder>() + hashmap_entry_base_overhead;
271 position_index_bytes += self.position_index.len() * pos_index_entry_size;
272
273 let estimated_memory_bytes = postings_bytes
274 + index_overhead_bytes
275 + interner_bytes
276 + field_lengths_bytes
277 + dense_vectors_bytes
278 + local_tf_buffer_bytes
279 + sparse_vectors_bytes
280 + position_index_bytes;
281
282 let memory_breakdown = MemoryBreakdown {
283 postings_bytes,
284 index_overhead_bytes,
285 interner_bytes,
286 field_lengths_bytes,
287 dense_vectors_bytes,
288 dense_vector_count,
289 sparse_vectors_bytes,
290 position_index_bytes,
291 };
292
293 SegmentBuilderStats {
294 num_docs: self.next_doc_id,
295 unique_terms: self.inverted_index.len(),
296 postings_in_memory,
297 interned_strings: self.term_interner.len(),
298 doc_field_lengths_size: self.doc_field_lengths.len(),
299 estimated_memory_bytes,
300 memory_breakdown,
301 }
302 }
303
304 pub fn add_document(&mut self, doc: Document) -> Result<DocId> {
306 let doc_id = self.next_doc_id;
307 self.next_doc_id += 1;
308
309 let base_idx = self.doc_field_lengths.len();
311 self.doc_field_lengths
312 .resize(base_idx + self.num_indexed_fields, 0);
313
314 self.current_element_ordinal.clear();
316
317 for (field, value) in doc.field_values() {
318 let entry = self.schema.get_field_entry(*field);
319 if entry.is_none() || !entry.unwrap().indexed {
320 continue;
321 }
322
323 let entry = entry.unwrap();
324 match (&entry.field_type, value) {
325 (FieldType::Text, FieldValue::Text(text)) => {
326 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
328 let token_count =
329 self.index_text_field(*field, doc_id, text, element_ordinal)?;
330 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
332
333 let stats = self.field_stats.entry(field.0).or_default();
335 stats.total_tokens += token_count as u64;
336 stats.doc_count += 1;
337
338 if let Some(&slot) = self.field_to_slot.get(&field.0) {
340 self.doc_field_lengths[base_idx + slot] = token_count;
341 }
342 }
343 (FieldType::U64, FieldValue::U64(v)) => {
344 self.index_numeric_field(*field, doc_id, *v)?;
345 }
346 (FieldType::I64, FieldValue::I64(v)) => {
347 self.index_numeric_field(*field, doc_id, *v as u64)?;
348 }
349 (FieldType::F64, FieldValue::F64(v)) => {
350 self.index_numeric_field(*field, doc_id, v.to_bits())?;
351 }
352 (FieldType::DenseVector, FieldValue::DenseVector(vec)) => {
353 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
355 self.index_dense_vector_field(*field, doc_id, element_ordinal as u16, vec)?;
356 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
358 }
359 (FieldType::SparseVector, FieldValue::SparseVector(entries)) => {
360 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
362 self.index_sparse_vector_field(
363 *field,
364 doc_id,
365 element_ordinal as u16,
366 entries,
367 )?;
368 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
370 }
371 _ => {}
372 }
373 }
374
375 self.write_document_to_store(&doc)?;
377
378 Ok(doc_id)
379 }
380
381 fn index_text_field(
392 &mut self,
393 field: Field,
394 doc_id: DocId,
395 text: &str,
396 element_ordinal: u32,
397 ) -> Result<u32> {
398 use crate::dsl::PositionMode;
399
400 let field_id = field.0;
401 let position_mode = self
402 .position_enabled_fields
403 .get(&field_id)
404 .copied()
405 .flatten();
406
407 self.local_tf_buffer.clear();
411
412 let mut local_positions: FxHashMap<Spur, Vec<u32>> = FxHashMap::default();
414
415 let mut token_position = 0u32;
416
417 for word in text.split_whitespace() {
419 self.token_buffer.clear();
421 for c in word.chars() {
422 if c.is_alphanumeric() {
423 for lc in c.to_lowercase() {
424 self.token_buffer.push(lc);
425 }
426 }
427 }
428
429 if self.token_buffer.is_empty() {
430 continue;
431 }
432
433 let term_spur = self.term_interner.get_or_intern(&self.token_buffer);
435 *self.local_tf_buffer.entry(term_spur).or_insert(0) += 1;
436
437 if let Some(mode) = position_mode {
439 let encoded_pos = match mode {
440 PositionMode::Ordinal => element_ordinal << 20,
442 PositionMode::TokenPosition => token_position,
444 PositionMode::Full => (element_ordinal << 20) | token_position,
446 };
447 local_positions
448 .entry(term_spur)
449 .or_default()
450 .push(encoded_pos);
451 }
452
453 token_position += 1;
454 }
455
456 for (&term_spur, &tf) in &self.local_tf_buffer {
459 let term_key = TermKey {
460 field: field_id,
461 term: term_spur,
462 };
463
464 let is_new_term = !self.inverted_index.contains_key(&term_key);
465 let posting = self
466 .inverted_index
467 .entry(term_key)
468 .or_insert_with(PostingListBuilder::new);
469 posting.add(doc_id, tf);
470
471 use std::mem::size_of;
473 self.estimated_memory += size_of::<CompactPosting>();
474 if is_new_term {
475 self.estimated_memory +=
477 size_of::<TermKey>() + size_of::<PostingListBuilder>() + 24;
478 }
479
480 if position_mode.is_some()
482 && let Some(positions) = local_positions.get(&term_spur)
483 {
484 let pos_posting = self
485 .position_index
486 .entry(term_key)
487 .or_insert_with(PositionPostingListBuilder::new);
488 for &pos in positions {
489 pos_posting.add_position(doc_id, pos);
490 }
491 }
492 }
493
494 Ok(token_position)
495 }
496
497 fn index_numeric_field(&mut self, field: Field, doc_id: DocId, value: u64) -> Result<()> {
498 let term_str = format!("__num_{}", value);
500 let term_spur = self.term_interner.get_or_intern(&term_str);
501
502 let term_key = TermKey {
503 field: field.0,
504 term: term_spur,
505 };
506
507 let posting = self
508 .inverted_index
509 .entry(term_key)
510 .or_insert_with(PostingListBuilder::new);
511 posting.add(doc_id, 1);
512
513 Ok(())
514 }
515
516 fn index_dense_vector_field(
518 &mut self,
519 field: Field,
520 doc_id: DocId,
521 ordinal: u16,
522 vector: &[f32],
523 ) -> Result<()> {
524 let dim = vector.len();
525
526 let builder = self
527 .dense_vectors
528 .entry(field.0)
529 .or_insert_with(|| DenseVectorBuilder::new(dim));
530
531 if builder.dim != dim && builder.len() > 0 {
533 return Err(crate::Error::Schema(format!(
534 "Dense vector dimension mismatch: expected {}, got {}",
535 builder.dim, dim
536 )));
537 }
538
539 builder.add(doc_id, ordinal, vector);
540
541 use std::mem::{size_of, size_of_val};
543 self.estimated_memory += size_of_val(vector) + size_of::<(DocId, u16)>();
544
545 Ok(())
546 }
547
548 fn index_sparse_vector_field(
555 &mut self,
556 field: Field,
557 doc_id: DocId,
558 ordinal: u16,
559 entries: &[(u32, f32)],
560 ) -> Result<()> {
561 let weight_threshold = self
563 .schema
564 .get_field_entry(field)
565 .and_then(|entry| entry.sparse_vector_config.as_ref())
566 .map(|config| config.weight_threshold)
567 .unwrap_or(0.0);
568
569 let builder = self
570 .sparse_vectors
571 .entry(field.0)
572 .or_insert_with(SparseVectorBuilder::new);
573
574 for &(dim_id, weight) in entries {
575 if weight.abs() < weight_threshold {
577 continue;
578 }
579
580 use std::mem::size_of;
582 let is_new_dim = !builder.postings.contains_key(&dim_id);
583 builder.add(dim_id, doc_id, ordinal, weight);
584 self.estimated_memory += size_of::<(DocId, u16, f32)>();
585 if is_new_dim {
586 self.estimated_memory += size_of::<u32>() + size_of::<Vec<(DocId, u16, f32)>>() + 8; }
589 }
590
591 Ok(())
592 }
593
594 fn write_document_to_store(&mut self, doc: &Document) -> Result<()> {
596 use byteorder::{LittleEndian, WriteBytesExt};
597
598 let doc_bytes = super::store::serialize_document(doc, &self.schema)?;
599
600 self.store_file
601 .write_u32::<LittleEndian>(doc_bytes.len() as u32)?;
602 self.store_file.write_all(&doc_bytes)?;
603
604 Ok(())
605 }
606
607 pub async fn build<D: Directory + DirectoryWriter>(
609 mut self,
610 dir: &D,
611 segment_id: SegmentId,
612 ) -> Result<SegmentMeta> {
613 self.store_file.flush()?;
615
616 let files = SegmentFiles::new(segment_id.0);
617
618 let (positions_data, position_offsets) = self.build_positions_file()?;
620
621 let store_path = self.store_path.clone();
623 let schema = self.schema.clone();
624 let num_compression_threads = self.config.num_compression_threads;
625 let compression_level = self.config.compression_level;
626
627 let (postings_result, store_result) = rayon::join(
629 || self.build_postings(&position_offsets),
630 || {
631 Self::build_store_parallel(
632 &store_path,
633 &schema,
634 num_compression_threads,
635 compression_level,
636 )
637 },
638 );
639
640 let (term_dict_data, postings_data) = postings_result?;
641 let store_data = store_result?;
642
643 dir.write(&files.term_dict, &term_dict_data).await?;
645 dir.write(&files.postings, &postings_data).await?;
646 dir.write(&files.store, &store_data).await?;
647
648 if !positions_data.is_empty() {
650 dir.write(&files.positions, &positions_data).await?;
651 }
652
653 if !self.dense_vectors.is_empty() {
655 let vectors_data = self.build_vectors_file()?;
656 if !vectors_data.is_empty() {
657 dir.write(&files.vectors, &vectors_data).await?;
658 }
659 }
660
661 if !self.sparse_vectors.is_empty() {
663 let sparse_data = self.build_sparse_file()?;
664 if !sparse_data.is_empty() {
665 dir.write(&files.sparse, &sparse_data).await?;
666 }
667 }
668
669 let meta = SegmentMeta {
670 id: segment_id.0,
671 num_docs: self.next_doc_id,
672 field_stats: self.field_stats.clone(),
673 };
674
675 dir.write(&files.meta, &meta.serialize()?).await?;
676
677 let _ = std::fs::remove_file(&self.store_path);
679
680 Ok(meta)
681 }
682
683 fn build_vectors_file(&self) -> Result<Vec<u8>> {
690 use byteorder::{LittleEndian, WriteBytesExt};
691
692 let mut field_indexes: Vec<(u32, u8, Vec<u8>)> = Vec::new();
694
695 for (&field_id, builder) in &self.dense_vectors {
696 if builder.len() == 0 {
697 continue;
698 }
699
700 let field = crate::dsl::Field(field_id);
701
702 let dense_config = self
704 .schema
705 .get_field_entry(field)
706 .and_then(|e| e.dense_vector_config.as_ref());
707
708 let index_dim = dense_config.map(|c| c.index_dim()).unwrap_or(builder.dim);
710 let vectors = if index_dim < builder.dim {
711 builder.get_vectors_trimmed(index_dim)
713 } else {
714 builder.get_vectors()
715 };
716
717 let flat_data = FlatVectorData {
721 dim: index_dim,
722 vectors: vectors.clone(),
723 doc_ids: builder.doc_ids.clone(),
724 };
725 let index_bytes = serde_json::to_vec(&flat_data)
726 .map_err(|e| crate::Error::Serialization(e.to_string()))?;
727 let index_type = 3u8; field_indexes.push((field_id, index_type, index_bytes));
730 }
731
732 if field_indexes.is_empty() {
733 return Ok(Vec::new());
734 }
735
736 field_indexes.sort_by_key(|(id, _, _)| *id);
738
739 let header_size = 4 + field_indexes.len() * (4 + 1 + 8 + 8);
741
742 let mut output = Vec::new();
744
745 output.write_u32::<LittleEndian>(field_indexes.len() as u32)?;
747
748 let mut current_offset = header_size as u64;
750 for (field_id, index_type, data) in &field_indexes {
751 output.write_u32::<LittleEndian>(*field_id)?;
752 output.write_u8(*index_type)?;
753 output.write_u64::<LittleEndian>(current_offset)?;
754 output.write_u64::<LittleEndian>(data.len() as u64)?;
755 current_offset += data.len() as u64;
756 }
757
758 for (_, _, data) in field_indexes {
760 output.extend_from_slice(&data);
761 }
762
763 Ok(output)
764 }
765
766 fn build_sparse_file(&self) -> Result<Vec<u8>> {
777 use crate::structures::{BlockSparsePostingList, WeightQuantization};
778 use byteorder::{LittleEndian, WriteBytesExt};
779
780 if self.sparse_vectors.is_empty() {
781 return Ok(Vec::new());
782 }
783
784 type SparseFieldData = (u32, WeightQuantization, u32, FxHashMap<u32, Vec<u8>>);
786 let mut field_data: Vec<SparseFieldData> = Vec::new();
787
788 for (&field_id, builder) in &self.sparse_vectors {
789 if builder.is_empty() {
790 continue;
791 }
792
793 let field = crate::dsl::Field(field_id);
794
795 let sparse_config = self
797 .schema
798 .get_field_entry(field)
799 .and_then(|e| e.sparse_vector_config.as_ref());
800
801 let quantization = sparse_config
802 .map(|c| c.weight_quantization)
803 .unwrap_or(WeightQuantization::Float32);
804
805 let block_size = sparse_config.map(|c| c.block_size).unwrap_or(128);
806
807 let _max_dim_id = builder.postings.keys().max().copied().unwrap_or(0);
809
810 let mut dim_bytes: FxHashMap<u32, Vec<u8>> = FxHashMap::default();
812
813 for (&dim_id, postings) in &builder.postings {
814 let mut sorted_postings = postings.clone();
816 sorted_postings.sort_by_key(|(doc_id, ordinal, _)| (*doc_id, *ordinal));
817
818 let block_list = BlockSparsePostingList::from_postings_with_block_size(
820 &sorted_postings,
821 quantization,
822 block_size,
823 )
824 .map_err(crate::Error::Io)?;
825
826 let mut bytes = Vec::new();
828 block_list.serialize(&mut bytes).map_err(crate::Error::Io)?;
829
830 dim_bytes.insert(dim_id, bytes);
831 }
832
833 field_data.push((field_id, quantization, dim_bytes.len() as u32, dim_bytes));
835 }
836
837 if field_data.is_empty() {
838 return Ok(Vec::new());
839 }
840
841 field_data.sort_by_key(|(id, _, _, _)| *id);
843
844 let mut header_size = 4u64;
848 for (_, _, num_dims, _) in &field_data {
849 header_size += 4 + 1 + 4; header_size += (*num_dims as u64) * 16; }
852
853 let mut output = Vec::new();
855
856 output.write_u32::<LittleEndian>(field_data.len() as u32)?;
858
859 let mut current_offset = header_size;
861
862 let mut all_data: Vec<u8> = Vec::new();
864 let mut field_tables: Vec<Vec<(u32, u64, u32)>> = Vec::new();
866
867 for (_, _, _, dim_bytes) in &field_data {
868 let mut table: Vec<(u32, u64, u32)> = Vec::with_capacity(dim_bytes.len());
869
870 let mut dims: Vec<_> = dim_bytes.keys().copied().collect();
872 dims.sort();
873
874 for dim_id in dims {
875 let bytes = &dim_bytes[&dim_id];
876 table.push((dim_id, current_offset, bytes.len() as u32));
877 current_offset += bytes.len() as u64;
878 all_data.extend_from_slice(bytes);
879 }
880
881 field_tables.push(table);
882 }
883
884 for (i, (field_id, quantization, num_dims, _)) in field_data.iter().enumerate() {
886 output.write_u32::<LittleEndian>(*field_id)?;
887 output.write_u8(*quantization as u8)?;
888 output.write_u32::<LittleEndian>(*num_dims)?;
889
890 for &(dim_id, offset, length) in &field_tables[i] {
892 output.write_u32::<LittleEndian>(dim_id)?;
893 output.write_u64::<LittleEndian>(offset)?;
894 output.write_u32::<LittleEndian>(length)?;
895 }
896 }
897
898 output.extend_from_slice(&all_data);
900
901 Ok(output)
902 }
903
904 #[allow(clippy::type_complexity)]
912 fn build_positions_file(&self) -> Result<(Vec<u8>, FxHashMap<Vec<u8>, (u64, u32)>)> {
913 use crate::structures::PositionPostingList;
914
915 let mut position_offsets: FxHashMap<Vec<u8>, (u64, u32)> = FxHashMap::default();
916
917 if self.position_index.is_empty() {
918 return Ok((Vec::new(), position_offsets));
919 }
920
921 let mut entries: Vec<(Vec<u8>, &PositionPostingListBuilder)> = self
923 .position_index
924 .iter()
925 .map(|(term_key, pos_list)| {
926 let term_str = self.term_interner.resolve(&term_key.term);
927 let mut key = Vec::with_capacity(4 + term_str.len());
928 key.extend_from_slice(&term_key.field.to_le_bytes());
929 key.extend_from_slice(term_str.as_bytes());
930 (key, pos_list)
931 })
932 .collect();
933
934 entries.sort_by(|a, b| a.0.cmp(&b.0));
935
936 let mut output = Vec::new();
938
939 for (key, pos_builder) in entries {
940 let mut pos_list = PositionPostingList::with_capacity(pos_builder.postings.len());
942 for (doc_id, positions) in &pos_builder.postings {
943 pos_list.push(*doc_id, positions.clone());
944 }
945
946 let offset = output.len() as u64;
948 pos_list.serialize(&mut output).map_err(crate::Error::Io)?;
949 let len = (output.len() as u64 - offset) as u32;
950
951 position_offsets.insert(key, (offset, len));
952 }
953
954 Ok((output, position_offsets))
955 }
956
957 fn build_postings(
962 &mut self,
963 position_offsets: &FxHashMap<Vec<u8>, (u64, u32)>,
964 ) -> Result<(Vec<u8>, Vec<u8>)> {
965 let mut term_entries: Vec<(Vec<u8>, &PostingListBuilder)> = self
968 .inverted_index
969 .iter()
970 .map(|(term_key, posting_list)| {
971 let term_str = self.term_interner.resolve(&term_key.term);
972 let mut key = Vec::with_capacity(4 + term_str.len());
973 key.extend_from_slice(&term_key.field.to_le_bytes());
974 key.extend_from_slice(term_str.as_bytes());
975 (key, posting_list)
976 })
977 .collect();
978
979 term_entries.par_sort_unstable_by(|a, b| a.0.cmp(&b.0));
981
982 let serialized: Vec<(Vec<u8>, SerializedPosting)> = term_entries
985 .into_par_iter()
986 .map(|(key, posting_builder)| {
987 let mut full_postings = PostingList::with_capacity(posting_builder.len());
989 for p in &posting_builder.postings {
990 full_postings.push(p.doc_id, p.term_freq as u32);
991 }
992
993 let doc_ids: Vec<u32> = full_postings.iter().map(|p| p.doc_id).collect();
995 let term_freqs: Vec<u32> = full_postings.iter().map(|p| p.term_freq).collect();
996
997 let has_positions = position_offsets.contains_key(&key);
999 let result = if !has_positions
1000 && let Some(inline) = TermInfo::try_inline(&doc_ids, &term_freqs)
1001 {
1002 SerializedPosting::Inline(inline)
1003 } else {
1004 let mut posting_bytes = Vec::new();
1006 let block_list =
1007 crate::structures::BlockPostingList::from_posting_list(&full_postings)
1008 .expect("BlockPostingList creation failed");
1009 block_list
1010 .serialize(&mut posting_bytes)
1011 .expect("BlockPostingList serialization failed");
1012 SerializedPosting::External {
1013 bytes: posting_bytes,
1014 doc_count: full_postings.doc_count(),
1015 }
1016 };
1017
1018 (key, result)
1019 })
1020 .collect();
1021
1022 let mut term_dict = Vec::new();
1024 let mut postings = Vec::new();
1025 let mut writer = SSTableWriter::<TermInfo>::new(&mut term_dict);
1026
1027 for (key, serialized_posting) in serialized {
1028 let term_info = match serialized_posting {
1029 SerializedPosting::Inline(info) => info,
1030 SerializedPosting::External { bytes, doc_count } => {
1031 let posting_offset = postings.len() as u64;
1032 let posting_len = bytes.len() as u32;
1033 postings.extend_from_slice(&bytes);
1034
1035 if let Some(&(pos_offset, pos_len)) = position_offsets.get(&key) {
1037 TermInfo::external_with_positions(
1038 posting_offset,
1039 posting_len,
1040 doc_count,
1041 pos_offset,
1042 pos_len,
1043 )
1044 } else {
1045 TermInfo::external(posting_offset, posting_len, doc_count)
1046 }
1047 }
1048 };
1049
1050 writer.insert(&key, &term_info)?;
1051 }
1052
1053 writer.finish()?;
1054 Ok((term_dict, postings))
1055 }
1056
1057 fn build_store_parallel(
1061 store_path: &PathBuf,
1062 schema: &Schema,
1063 num_compression_threads: usize,
1064 compression_level: CompressionLevel,
1065 ) -> Result<Vec<u8>> {
1066 use super::store::EagerParallelStoreWriter;
1067
1068 let file = File::open(store_path)?;
1069 let mmap = unsafe { memmap2::Mmap::map(&file)? };
1070
1071 let mut doc_ranges: Vec<(usize, usize)> = Vec::new();
1073 let mut offset = 0usize;
1074 while offset + 4 <= mmap.len() {
1075 let doc_len = u32::from_le_bytes([
1076 mmap[offset],
1077 mmap[offset + 1],
1078 mmap[offset + 2],
1079 mmap[offset + 3],
1080 ]) as usize;
1081 offset += 4;
1082
1083 if offset + doc_len > mmap.len() {
1084 break;
1085 }
1086
1087 doc_ranges.push((offset, doc_len));
1088 offset += doc_len;
1089 }
1090
1091 let docs: Vec<Document> = doc_ranges
1093 .into_par_iter()
1094 .filter_map(|(start, len)| {
1095 let doc_bytes = &mmap[start..start + len];
1096 super::store::deserialize_document(doc_bytes, schema).ok()
1097 })
1098 .collect();
1099
1100 let mut store_data = Vec::new();
1102 let mut store_writer = EagerParallelStoreWriter::with_compression_level(
1103 &mut store_data,
1104 num_compression_threads,
1105 compression_level,
1106 );
1107
1108 for doc in &docs {
1109 store_writer.store(doc, schema)?;
1110 }
1111
1112 store_writer.finish()?;
1113 Ok(store_data)
1114 }
1115}
1116
1117impl Drop for SegmentBuilder {
1118 fn drop(&mut self) {
1119 let _ = std::fs::remove_file(&self.store_path);
1121 }
1122}