hermes_core/structures/vector/ivf/
coarse.rs1use std::io::{self, Cursor, Read, Write};
7use std::path::Path;
8
9use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
10#[cfg(not(feature = "native"))]
11use rand::SeedableRng;
12#[cfg(not(feature = "native"))]
13use rand::prelude::SliceRandom;
14use serde::{Deserialize, Serialize};
15
16use super::soar::{MultiAssignment, SoarConfig};
17
18const CENTROIDS_MAGIC: u32 = 0x48435643; #[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct CoarseConfig {
24 pub num_clusters: usize,
26 pub dim: usize,
28 pub max_iters: usize,
30 pub seed: u64,
32 pub soar: Option<SoarConfig>,
34}
35
36impl CoarseConfig {
37 pub fn new(dim: usize, num_clusters: usize) -> Self {
38 Self {
39 num_clusters,
40 dim,
41 max_iters: 25,
42 seed: 42,
43 soar: None,
44 }
45 }
46
47 pub fn with_soar(mut self, config: SoarConfig) -> Self {
48 self.soar = Some(config);
49 self
50 }
51
52 pub fn with_seed(mut self, seed: u64) -> Self {
53 self.seed = seed;
54 self
55 }
56
57 pub fn with_max_iters(mut self, iters: usize) -> Self {
58 self.max_iters = iters;
59 self
60 }
61}
62
63#[derive(Debug, Clone, Serialize, Deserialize)]
65pub struct CoarseCentroids {
66 pub num_clusters: u32,
68 pub dim: usize,
70 pub centroids: Vec<f32>,
72 pub version: u64,
74 pub soar_config: Option<SoarConfig>,
76}
77
78impl CoarseCentroids {
79 #[cfg(feature = "native")]
83 pub fn train(config: &CoarseConfig, vectors: &[Vec<f32>]) -> Self {
84 use kentro::KMeans;
85 use ndarray::Array2;
86
87 assert!(!vectors.is_empty(), "Cannot train on empty vector set");
88 assert!(config.num_clusters > 0, "Need at least 1 cluster");
89
90 let actual_clusters = config.num_clusters.min(vectors.len());
91 let dim = config.dim;
92
93 let flat: Vec<f32> = vectors.iter().flat_map(|v| v.iter().copied()).collect();
95 let data = Array2::from_shape_vec((vectors.len(), dim), flat)
96 .expect("Failed to create ndarray from vectors");
97
98 let mut kmeans = KMeans::new(actual_clusters)
100 .with_euclidean(true)
101 .with_iterations(config.max_iters);
102 let _ = kmeans
103 .train(data.view(), None)
104 .expect("K-means training failed");
105
106 let centroids: Vec<f32> = kmeans
108 .centroids()
109 .expect("No centroids after training")
110 .iter()
111 .copied()
112 .collect();
113
114 let version = std::time::SystemTime::now()
115 .duration_since(std::time::UNIX_EPOCH)
116 .unwrap_or_default()
117 .as_millis() as u64;
118
119 Self {
120 num_clusters: actual_clusters as u32,
121 dim,
122 centroids,
123 version,
124 soar_config: config.soar.clone(),
125 }
126 }
127
128 #[cfg(not(feature = "native"))]
130 pub fn train(config: &CoarseConfig, vectors: &[Vec<f32>]) -> Self {
131 assert!(!vectors.is_empty(), "Cannot train on empty vector set");
132 assert!(config.num_clusters > 0, "Need at least 1 cluster");
133
134 let actual_clusters = config.num_clusters.min(vectors.len());
135 let dim = config.dim;
136 let mut rng = rand::rngs::StdRng::seed_from_u64(config.seed);
137
138 let mut indices: Vec<usize> = (0..vectors.len()).collect();
140 indices.shuffle(&mut rng);
141
142 let mut centroids: Vec<f32> = indices[..actual_clusters]
143 .iter()
144 .flat_map(|&i| vectors[i].iter().copied())
145 .collect();
146
147 for _ in 0..config.max_iters {
149 let assignments: Vec<usize> = vectors
150 .iter()
151 .map(|v| Self::find_nearest_idx_static(v, ¢roids, dim))
152 .collect();
153
154 let mut new_centroids = vec![0.0f32; actual_clusters * dim];
155 let mut counts = vec![0usize; actual_clusters];
156
157 for (vec_idx, &cluster_id) in assignments.iter().enumerate() {
158 counts[cluster_id] += 1;
159 let offset = cluster_id * dim;
160 for (i, &val) in vectors[vec_idx].iter().enumerate() {
161 new_centroids[offset + i] += val;
162 }
163 }
164
165 for (cluster_id, &count) in counts.iter().enumerate().take(actual_clusters) {
166 if count > 0 {
167 let offset = cluster_id * dim;
168 for i in 0..dim {
169 new_centroids[offset + i] /= count as f32;
170 }
171 }
172 }
173
174 centroids = new_centroids;
175 }
176
177 let version = std::time::SystemTime::now()
178 .duration_since(std::time::UNIX_EPOCH)
179 .unwrap_or_default()
180 .as_millis() as u64;
181
182 Self {
183 num_clusters: actual_clusters as u32,
184 dim,
185 centroids,
186 version,
187 soar_config: config.soar.clone(),
188 }
189 }
190
191 fn find_nearest_idx_static(vector: &[f32], centroids: &[f32], dim: usize) -> usize {
193 let num_clusters = centroids.len() / dim;
194 let mut best_idx = 0;
195 let mut best_dist = f32::MAX;
196
197 for c in 0..num_clusters {
198 let offset = c * dim;
199 let dist: f32 = vector
200 .iter()
201 .zip(¢roids[offset..offset + dim])
202 .map(|(&a, &b)| (a - b) * (a - b))
203 .sum();
204
205 if dist < best_dist {
206 best_dist = dist;
207 best_idx = c;
208 }
209 }
210
211 best_idx
212 }
213
214 pub fn find_nearest(&self, vector: &[f32]) -> u32 {
216 Self::find_nearest_idx_static(vector, &self.centroids, self.dim) as u32
217 }
218
219 pub fn find_k_nearest(&self, vector: &[f32], k: usize) -> Vec<u32> {
221 let mut distances: Vec<(u32, f32)> = (0..self.num_clusters)
222 .map(|c| {
223 let offset = c as usize * self.dim;
224 let dist: f32 = vector
225 .iter()
226 .zip(&self.centroids[offset..offset + self.dim])
227 .map(|(&a, &b)| (a - b) * (a - b))
228 .sum();
229 (c, dist)
230 })
231 .collect();
232
233 distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
234 distances.truncate(k);
235 distances.into_iter().map(|(c, _)| c).collect()
236 }
237
238 pub fn find_k_nearest_with_distances(&self, vector: &[f32], k: usize) -> Vec<(u32, f32)> {
240 let mut distances: Vec<(u32, f32)> = (0..self.num_clusters)
241 .map(|c| {
242 let offset = c as usize * self.dim;
243 let dist: f32 = vector
244 .iter()
245 .zip(&self.centroids[offset..offset + self.dim])
246 .map(|(&a, &b)| (a - b) * (a - b))
247 .sum();
248 (c, dist)
249 })
250 .collect();
251
252 distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
253 distances.truncate(k);
254 distances
255 }
256
257 pub fn assign(&self, vector: &[f32]) -> MultiAssignment {
259 if let Some(ref soar_config) = self.soar_config {
260 self.assign_with_soar(vector, soar_config)
261 } else {
262 MultiAssignment {
263 primary_cluster: self.find_nearest(vector),
264 secondary_clusters: Vec::new(),
265 }
266 }
267 }
268
269 pub fn assign_with_soar(&self, vector: &[f32], config: &SoarConfig) -> MultiAssignment {
271 let primary = self.find_nearest(vector);
273 let primary_centroid = self.get_centroid(primary);
274
275 let residual: Vec<f32> = vector
277 .iter()
278 .zip(primary_centroid)
279 .map(|(v, c)| v - c)
280 .collect();
281
282 let residual_norm_sq: f32 = residual.iter().map(|x| x * x).sum();
283
284 if config.selective && residual_norm_sq < config.spill_threshold * config.spill_threshold {
286 return MultiAssignment {
287 primary_cluster: primary,
288 secondary_clusters: Vec::new(),
289 };
290 }
291
292 let mut candidates: Vec<(u32, f32)> = (0..self.num_clusters)
294 .filter(|&c| c != primary)
295 .map(|c| {
296 let centroid = self.get_centroid(c);
297 let dot: f32 = vector
300 .iter()
301 .zip(centroid)
302 .zip(&residual)
303 .map(|((v, c), r)| (v - c) * r)
304 .sum();
305 (c, dot.abs())
306 })
307 .collect();
308
309 candidates.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
311
312 MultiAssignment {
313 primary_cluster: primary,
314 secondary_clusters: candidates
315 .iter()
316 .take(config.num_secondary)
317 .map(|(c, _)| *c)
318 .collect(),
319 }
320 }
321
322 pub fn get_centroid(&self, cluster_id: u32) -> &[f32] {
324 let offset = cluster_id as usize * self.dim;
325 &self.centroids[offset..offset + self.dim]
326 }
327
328 pub fn compute_residual(&self, vector: &[f32], cluster_id: u32) -> Vec<f32> {
330 let centroid = self.get_centroid(cluster_id);
331 vector.iter().zip(centroid).map(|(&v, &c)| v - c).collect()
332 }
333
334 pub fn save(&self, path: &Path) -> io::Result<()> {
336 let mut file = std::fs::File::create(path)?;
337 self.write_to(&mut file)
338 }
339
340 pub fn write_to<W: Write>(&self, writer: &mut W) -> io::Result<()> {
342 writer.write_u32::<LittleEndian>(CENTROIDS_MAGIC)?;
343 writer.write_u32::<LittleEndian>(2)?; writer.write_u64::<LittleEndian>(self.version)?;
345 writer.write_u32::<LittleEndian>(self.num_clusters)?;
346 writer.write_u32::<LittleEndian>(self.dim as u32)?;
347
348 if let Some(ref soar) = self.soar_config {
350 writer.write_u8(1)?;
351 writer.write_u32::<LittleEndian>(soar.num_secondary as u32)?;
352 writer.write_u8(if soar.selective { 1 } else { 0 })?;
353 writer.write_f32::<LittleEndian>(soar.spill_threshold)?;
354 } else {
355 writer.write_u8(0)?;
356 }
357
358 for &val in &self.centroids {
359 writer.write_f32::<LittleEndian>(val)?;
360 }
361
362 Ok(())
363 }
364
365 pub fn load(path: &Path) -> io::Result<Self> {
367 let data = std::fs::read(path)?;
368 Self::read_from(&mut Cursor::new(data))
369 }
370
371 pub fn read_from<R: Read>(reader: &mut R) -> io::Result<Self> {
373 let magic = reader.read_u32::<LittleEndian>()?;
374 if magic != CENTROIDS_MAGIC {
375 return Err(io::Error::new(
376 io::ErrorKind::InvalidData,
377 "Invalid centroids file magic",
378 ));
379 }
380
381 let file_version = reader.read_u32::<LittleEndian>()?;
382 let version = reader.read_u64::<LittleEndian>()?;
383 let num_clusters = reader.read_u32::<LittleEndian>()?;
384 let dim = reader.read_u32::<LittleEndian>()? as usize;
385
386 let soar_config = if file_version >= 2 {
388 let has_soar = reader.read_u8()? != 0;
389 if has_soar {
390 let num_secondary = reader.read_u32::<LittleEndian>()? as usize;
391 let selective = reader.read_u8()? != 0;
392 let spill_threshold = reader.read_f32::<LittleEndian>()?;
393 Some(SoarConfig {
394 num_secondary,
395 selective,
396 spill_threshold,
397 })
398 } else {
399 None
400 }
401 } else {
402 None
403 };
404
405 let mut centroids = vec![0.0f32; num_clusters as usize * dim];
406 for val in &mut centroids {
407 *val = reader.read_f32::<LittleEndian>()?;
408 }
409
410 Ok(Self {
411 num_clusters,
412 dim,
413 centroids,
414 version,
415 soar_config,
416 })
417 }
418
419 pub fn to_bytes(&self) -> io::Result<Vec<u8>> {
421 let mut buf = Vec::new();
422 self.write_to(&mut buf)?;
423 Ok(buf)
424 }
425
426 pub fn from_bytes(data: &[u8]) -> io::Result<Self> {
428 Self::read_from(&mut Cursor::new(data))
429 }
430
431 pub fn size_bytes(&self) -> usize {
433 self.centroids.len() * 4 + 64 }
435}
436
437#[cfg(test)]
438mod tests {
439 use super::*;
440 use rand::prelude::*;
441
442 #[test]
443 fn test_coarse_centroids_basic() {
444 let dim = 64;
445 let n = 1000;
446 let num_clusters = 16;
447
448 let mut rng = rand::rngs::StdRng::seed_from_u64(42);
449 let vectors: Vec<Vec<f32>> = (0..n)
450 .map(|_| (0..dim).map(|_| rng.random::<f32>() - 0.5).collect())
451 .collect();
452
453 let config = CoarseConfig::new(dim, num_clusters);
454 let centroids = CoarseCentroids::train(&config, &vectors);
455
456 assert_eq!(centroids.num_clusters, num_clusters as u32);
457 assert_eq!(centroids.dim, dim);
458 }
459
460 #[test]
461 fn test_find_nearest() {
462 let dim = 32;
463 let n = 500;
464 let num_clusters = 8;
465
466 let mut rng = rand::rngs::StdRng::seed_from_u64(123);
467 let vectors: Vec<Vec<f32>> = (0..n)
468 .map(|_| (0..dim).map(|_| rng.random::<f32>()).collect())
469 .collect();
470
471 let config = CoarseConfig::new(dim, num_clusters);
472 let centroids = CoarseCentroids::train(&config, &vectors);
473
474 for v in &vectors {
476 let cluster = centroids.find_nearest(v);
477 assert!(cluster < centroids.num_clusters);
478 }
479 }
480
481 #[test]
482 fn test_soar_assignment() {
483 let dim = 32;
484 let n = 100;
485 let num_clusters = 8;
486
487 let mut rng = rand::rngs::StdRng::seed_from_u64(456);
488 let vectors: Vec<Vec<f32>> = (0..n)
489 .map(|_| (0..dim).map(|_| rng.random::<f32>()).collect())
490 .collect();
491
492 let soar_config = SoarConfig {
493 num_secondary: 2,
494 selective: false,
495 spill_threshold: 0.0,
496 };
497 let config = CoarseConfig::new(dim, num_clusters).with_soar(soar_config);
498 let centroids = CoarseCentroids::train(&config, &vectors);
499
500 let assignment = centroids.assign(&vectors[0]);
502 assert!(assignment.primary_cluster < centroids.num_clusters);
503 assert_eq!(assignment.secondary_clusters.len(), 2);
504
505 for &sec in &assignment.secondary_clusters {
507 assert_ne!(sec, assignment.primary_cluster);
508 }
509 }
510
511 #[test]
512 fn test_serialization() {
513 let dim = 16;
514 let n = 50;
515 let num_clusters = 4;
516
517 let mut rng = rand::rngs::StdRng::seed_from_u64(789);
518 let vectors: Vec<Vec<f32>> = (0..n)
519 .map(|_| (0..dim).map(|_| rng.random::<f32>()).collect())
520 .collect();
521
522 let config = CoarseConfig::new(dim, num_clusters);
523 let centroids = CoarseCentroids::train(&config, &vectors);
524
525 let bytes = centroids.to_bytes().unwrap();
527 let loaded = CoarseCentroids::from_bytes(&bytes).unwrap();
528
529 assert_eq!(loaded.num_clusters, centroids.num_clusters);
530 assert_eq!(loaded.dim, centroids.dim);
531 assert_eq!(loaded.centroids.len(), centroids.centroids.len());
532 }
533}