1use crate::dsl::Field;
4use crate::segment::{SegmentReader, VectorSearchResult};
5use crate::{DocId, Score, TERMINATED};
6
7use super::ScoredPosition;
8use super::traits::{CountFuture, MatchedPositions, Query, Scorer, ScorerFuture};
9
10#[derive(Debug, Clone, Copy, PartialEq)]
12pub enum MultiValueCombiner {
13 Sum,
15 Max,
17 Avg,
19 LogSumExp {
23 temperature: f32,
25 },
26 WeightedTopK {
29 k: usize,
31 decay: f32,
33 },
34}
35
36impl Default for MultiValueCombiner {
37 fn default() -> Self {
38 MultiValueCombiner::LogSumExp { temperature: 1.5 }
41 }
42}
43
44impl MultiValueCombiner {
45 pub fn log_sum_exp() -> Self {
47 Self::LogSumExp { temperature: 1.5 }
48 }
49
50 pub fn log_sum_exp_with_temperature(temperature: f32) -> Self {
52 Self::LogSumExp { temperature }
53 }
54
55 pub fn weighted_top_k() -> Self {
57 Self::WeightedTopK { k: 5, decay: 0.7 }
58 }
59
60 pub fn weighted_top_k_with_params(k: usize, decay: f32) -> Self {
62 Self::WeightedTopK { k, decay }
63 }
64
65 pub fn combine(&self, scores: &[(u32, f32)]) -> f32 {
67 if scores.is_empty() {
68 return 0.0;
69 }
70
71 match self {
72 MultiValueCombiner::Sum => scores.iter().map(|(_, s)| s).sum(),
73 MultiValueCombiner::Max => scores
74 .iter()
75 .map(|(_, s)| *s)
76 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
77 .unwrap_or(0.0),
78 MultiValueCombiner::Avg => {
79 let sum: f32 = scores.iter().map(|(_, s)| s).sum();
80 sum / scores.len() as f32
81 }
82 MultiValueCombiner::LogSumExp { temperature } => {
83 let t = *temperature;
86 let max_score = scores
87 .iter()
88 .map(|(_, s)| *s)
89 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
90 .unwrap_or(0.0);
91
92 let sum_exp: f32 = scores
93 .iter()
94 .map(|(_, s)| (t * (s - max_score)).exp())
95 .sum();
96
97 max_score + sum_exp.ln() / t
98 }
99 MultiValueCombiner::WeightedTopK { k, decay } => {
100 let mut sorted: Vec<f32> = scores.iter().map(|(_, s)| *s).collect();
102 sorted.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal));
103 sorted.truncate(*k);
104
105 let mut weight = 1.0f32;
107 let mut weighted_sum = 0.0f32;
108 let mut weight_total = 0.0f32;
109
110 for score in sorted {
111 weighted_sum += weight * score;
112 weight_total += weight;
113 weight *= decay;
114 }
115
116 if weight_total > 0.0 {
117 weighted_sum / weight_total
118 } else {
119 0.0
120 }
121 }
122 }
123 }
124}
125
126#[derive(Debug, Clone)]
128pub struct DenseVectorQuery {
129 pub field: Field,
131 pub vector: Vec<f32>,
133 pub nprobe: usize,
135 pub rerank_factor: usize,
137 pub combiner: MultiValueCombiner,
139}
140
141impl DenseVectorQuery {
142 pub fn new(field: Field, vector: Vec<f32>) -> Self {
144 Self {
145 field,
146 vector,
147 nprobe: 32,
148 rerank_factor: 3,
149 combiner: MultiValueCombiner::Max,
150 }
151 }
152
153 pub fn with_nprobe(mut self, nprobe: usize) -> Self {
155 self.nprobe = nprobe;
156 self
157 }
158
159 pub fn with_rerank_factor(mut self, factor: usize) -> Self {
161 self.rerank_factor = factor;
162 self
163 }
164
165 pub fn with_combiner(mut self, combiner: MultiValueCombiner) -> Self {
167 self.combiner = combiner;
168 self
169 }
170}
171
172impl Query for DenseVectorQuery {
173 fn scorer<'a>(&self, reader: &'a SegmentReader, limit: usize) -> ScorerFuture<'a> {
174 let field = self.field;
175 let vector = self.vector.clone();
176 let rerank_factor = self.rerank_factor;
177 let combiner = self.combiner;
178 Box::pin(async move {
179 let results =
180 reader.search_dense_vector(field, &vector, limit, rerank_factor, combiner)?;
181
182 Ok(Box::new(DenseVectorScorer::new(results, field.0)) as Box<dyn Scorer>)
183 })
184 }
185
186 fn count_estimate<'a>(&self, _reader: &'a SegmentReader) -> CountFuture<'a> {
187 Box::pin(async move { Ok(u32::MAX) })
188 }
189}
190
191struct DenseVectorScorer {
193 results: Vec<VectorSearchResult>,
194 position: usize,
195 field_id: u32,
196}
197
198impl DenseVectorScorer {
199 fn new(results: Vec<VectorSearchResult>, field_id: u32) -> Self {
200 Self {
201 results,
202 position: 0,
203 field_id,
204 }
205 }
206}
207
208impl Scorer for DenseVectorScorer {
209 fn doc(&self) -> DocId {
210 if self.position < self.results.len() {
211 self.results[self.position].doc_id
212 } else {
213 TERMINATED
214 }
215 }
216
217 fn score(&self) -> Score {
218 if self.position < self.results.len() {
219 self.results[self.position].score
220 } else {
221 0.0
222 }
223 }
224
225 fn advance(&mut self) -> DocId {
226 self.position += 1;
227 self.doc()
228 }
229
230 fn seek(&mut self, target: DocId) -> DocId {
231 while self.doc() < target && self.doc() != TERMINATED {
232 self.advance();
233 }
234 self.doc()
235 }
236
237 fn size_hint(&self) -> u32 {
238 (self.results.len() - self.position) as u32
239 }
240
241 fn matched_positions(&self) -> Option<MatchedPositions> {
242 if self.position >= self.results.len() {
243 return None;
244 }
245 let result = &self.results[self.position];
246 let scored_positions: Vec<ScoredPosition> = result
247 .ordinals
248 .iter()
249 .map(|(ordinal, score)| ScoredPosition::new(*ordinal, *score))
250 .collect();
251 Some(vec![(self.field_id, scored_positions)])
252 }
253}
254
255#[derive(Debug, Clone)]
257pub struct SparseVectorQuery {
258 pub field: Field,
260 pub vector: Vec<(u32, f32)>,
262 pub combiner: MultiValueCombiner,
264}
265
266impl SparseVectorQuery {
267 pub fn new(field: Field, vector: Vec<(u32, f32)>) -> Self {
269 Self {
270 field,
271 vector,
272 combiner: MultiValueCombiner::Sum,
273 }
274 }
275
276 pub fn with_combiner(mut self, combiner: MultiValueCombiner) -> Self {
278 self.combiner = combiner;
279 self
280 }
281
282 pub fn from_indices_weights(field: Field, indices: Vec<u32>, weights: Vec<f32>) -> Self {
284 let vector: Vec<(u32, f32)> = indices.into_iter().zip(weights).collect();
285 Self::new(field, vector)
286 }
287
288 #[cfg(feature = "native")]
300 pub fn from_text(
301 field: Field,
302 text: &str,
303 tokenizer_name: &str,
304 weighting: crate::structures::QueryWeighting,
305 sparse_index: Option<&crate::segment::SparseIndex>,
306 ) -> crate::Result<Self> {
307 use crate::structures::QueryWeighting;
308 use crate::tokenizer::tokenizer_cache;
309
310 let tokenizer = tokenizer_cache().get_or_load(tokenizer_name)?;
311 let token_ids = tokenizer.tokenize_unique(text)?;
312
313 let weights: Vec<f32> = match weighting {
314 QueryWeighting::One => vec![1.0f32; token_ids.len()],
315 QueryWeighting::Idf => {
316 if let Some(index) = sparse_index {
317 index.idf_weights(&token_ids)
318 } else {
319 vec![1.0f32; token_ids.len()]
320 }
321 }
322 };
323
324 let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
325 Ok(Self::new(field, vector))
326 }
327
328 #[cfg(feature = "native")]
340 pub fn from_text_with_stats(
341 field: Field,
342 text: &str,
343 tokenizer: &crate::tokenizer::HfTokenizer,
344 weighting: crate::structures::QueryWeighting,
345 global_stats: Option<&super::GlobalStats>,
346 ) -> crate::Result<Self> {
347 use crate::structures::QueryWeighting;
348
349 let token_ids = tokenizer.tokenize_unique(text)?;
350
351 let weights: Vec<f32> = match weighting {
352 QueryWeighting::One => vec![1.0f32; token_ids.len()],
353 QueryWeighting::Idf => {
354 if let Some(stats) = global_stats {
355 stats
357 .sparse_idf_weights(field, &token_ids)
358 .into_iter()
359 .map(|w| w.max(0.0))
360 .collect()
361 } else {
362 vec![1.0f32; token_ids.len()]
363 }
364 }
365 };
366
367 let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
368 Ok(Self::new(field, vector))
369 }
370
371 #[cfg(feature = "native")]
383 pub fn from_text_with_tokenizer_bytes(
384 field: Field,
385 text: &str,
386 tokenizer_bytes: &[u8],
387 weighting: crate::structures::QueryWeighting,
388 global_stats: Option<&super::GlobalStats>,
389 ) -> crate::Result<Self> {
390 use crate::structures::QueryWeighting;
391 use crate::tokenizer::HfTokenizer;
392
393 let tokenizer = HfTokenizer::from_bytes(tokenizer_bytes)?;
394 let token_ids = tokenizer.tokenize_unique(text)?;
395
396 let weights: Vec<f32> = match weighting {
397 QueryWeighting::One => vec![1.0f32; token_ids.len()],
398 QueryWeighting::Idf => {
399 if let Some(stats) = global_stats {
400 stats
402 .sparse_idf_weights(field, &token_ids)
403 .into_iter()
404 .map(|w| w.max(0.0))
405 .collect()
406 } else {
407 vec![1.0f32; token_ids.len()]
408 }
409 }
410 };
411
412 let vector: Vec<(u32, f32)> = token_ids.into_iter().zip(weights).collect();
413 Ok(Self::new(field, vector))
414 }
415}
416
417impl Query for SparseVectorQuery {
418 fn scorer<'a>(&self, reader: &'a SegmentReader, limit: usize) -> ScorerFuture<'a> {
419 let field = self.field;
420 let vector = self.vector.clone();
421 let combiner = self.combiner;
422 Box::pin(async move {
423 let results = reader
424 .search_sparse_vector(field, &vector, limit, combiner)
425 .await?;
426
427 Ok(Box::new(SparseVectorScorer::new(results, field.0)) as Box<dyn Scorer>)
428 })
429 }
430
431 fn count_estimate<'a>(&self, _reader: &'a SegmentReader) -> CountFuture<'a> {
432 Box::pin(async move { Ok(u32::MAX) })
433 }
434}
435
436struct SparseVectorScorer {
438 results: Vec<VectorSearchResult>,
439 position: usize,
440 field_id: u32,
441}
442
443impl SparseVectorScorer {
444 fn new(results: Vec<VectorSearchResult>, field_id: u32) -> Self {
445 Self {
446 results,
447 position: 0,
448 field_id,
449 }
450 }
451}
452
453impl Scorer for SparseVectorScorer {
454 fn doc(&self) -> DocId {
455 if self.position < self.results.len() {
456 self.results[self.position].doc_id
457 } else {
458 TERMINATED
459 }
460 }
461
462 fn score(&self) -> Score {
463 if self.position < self.results.len() {
464 self.results[self.position].score
465 } else {
466 0.0
467 }
468 }
469
470 fn advance(&mut self) -> DocId {
471 self.position += 1;
472 self.doc()
473 }
474
475 fn seek(&mut self, target: DocId) -> DocId {
476 while self.doc() < target && self.doc() != TERMINATED {
477 self.advance();
478 }
479 self.doc()
480 }
481
482 fn size_hint(&self) -> u32 {
483 (self.results.len() - self.position) as u32
484 }
485
486 fn matched_positions(&self) -> Option<MatchedPositions> {
487 if self.position >= self.results.len() {
488 return None;
489 }
490 let result = &self.results[self.position];
491 let scored_positions: Vec<ScoredPosition> = result
492 .ordinals
493 .iter()
494 .map(|(ordinal, score)| ScoredPosition::new(*ordinal, *score))
495 .collect();
496 Some(vec![(self.field_id, scored_positions)])
497 }
498}
499
500#[cfg(test)]
501mod tests {
502 use super::*;
503 use crate::dsl::Field;
504
505 #[test]
506 fn test_dense_vector_query_builder() {
507 let query = DenseVectorQuery::new(Field(0), vec![1.0, 2.0, 3.0])
508 .with_nprobe(64)
509 .with_rerank_factor(5);
510
511 assert_eq!(query.field, Field(0));
512 assert_eq!(query.vector.len(), 3);
513 assert_eq!(query.nprobe, 64);
514 assert_eq!(query.rerank_factor, 5);
515 }
516
517 #[test]
518 fn test_sparse_vector_query_new() {
519 let sparse = vec![(1, 0.5), (5, 0.3), (10, 0.2)];
520 let query = SparseVectorQuery::new(Field(0), sparse.clone());
521
522 assert_eq!(query.field, Field(0));
523 assert_eq!(query.vector, sparse);
524 }
525
526 #[test]
527 fn test_sparse_vector_query_from_indices_weights() {
528 let query =
529 SparseVectorQuery::from_indices_weights(Field(0), vec![1, 5, 10], vec![0.5, 0.3, 0.2]);
530
531 assert_eq!(query.vector, vec![(1, 0.5), (5, 0.3), (10, 0.2)]);
532 }
533
534 #[test]
535 fn test_combiner_sum() {
536 let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
537 let combiner = MultiValueCombiner::Sum;
538 assert!((combiner.combine(&scores) - 6.0).abs() < 1e-6);
539 }
540
541 #[test]
542 fn test_combiner_max() {
543 let scores = vec![(0, 1.0), (1, 3.0), (2, 2.0)];
544 let combiner = MultiValueCombiner::Max;
545 assert!((combiner.combine(&scores) - 3.0).abs() < 1e-6);
546 }
547
548 #[test]
549 fn test_combiner_avg() {
550 let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
551 let combiner = MultiValueCombiner::Avg;
552 assert!((combiner.combine(&scores) - 2.0).abs() < 1e-6);
553 }
554
555 #[test]
556 fn test_combiner_log_sum_exp() {
557 let scores = vec![(0, 1.0), (1, 2.0), (2, 3.0)];
558 let combiner = MultiValueCombiner::log_sum_exp();
559 let result = combiner.combine(&scores);
560 assert!(result >= 3.0);
562 assert!(result <= 3.0 + (3.0_f32).ln() / 1.5);
563 }
564
565 #[test]
566 fn test_combiner_log_sum_exp_approaches_max_with_high_temp() {
567 let scores = vec![(0, 1.0), (1, 5.0), (2, 2.0)];
568 let combiner = MultiValueCombiner::log_sum_exp_with_temperature(10.0);
570 let result = combiner.combine(&scores);
571 assert!((result - 5.0).abs() < 0.5);
573 }
574
575 #[test]
576 fn test_combiner_weighted_top_k() {
577 let scores = vec![(0, 5.0), (1, 3.0), (2, 1.0), (3, 0.5)];
578 let combiner = MultiValueCombiner::weighted_top_k_with_params(3, 0.5);
579 let result = combiner.combine(&scores);
580 assert!((result - 3.857).abs() < 0.01);
585 }
586
587 #[test]
588 fn test_combiner_weighted_top_k_less_than_k() {
589 let scores = vec![(0, 2.0), (1, 1.0)];
590 let combiner = MultiValueCombiner::weighted_top_k_with_params(5, 0.7);
591 let result = combiner.combine(&scores);
592 assert!((result - 1.588).abs() < 0.01);
597 }
598
599 #[test]
600 fn test_combiner_empty_scores() {
601 let scores: Vec<(u32, f32)> = vec![];
602 assert_eq!(MultiValueCombiner::Sum.combine(&scores), 0.0);
603 assert_eq!(MultiValueCombiner::Max.combine(&scores), 0.0);
604 assert_eq!(MultiValueCombiner::Avg.combine(&scores), 0.0);
605 assert_eq!(MultiValueCombiner::log_sum_exp().combine(&scores), 0.0);
606 assert_eq!(MultiValueCombiner::weighted_top_k().combine(&scores), 0.0);
607 }
608
609 #[test]
610 fn test_combiner_single_score() {
611 let scores = vec![(0, 5.0)];
612 assert!((MultiValueCombiner::Sum.combine(&scores) - 5.0).abs() < 1e-6);
614 assert!((MultiValueCombiner::Max.combine(&scores) - 5.0).abs() < 1e-6);
615 assert!((MultiValueCombiner::Avg.combine(&scores) - 5.0).abs() < 1e-6);
616 assert!((MultiValueCombiner::log_sum_exp().combine(&scores) - 5.0).abs() < 1e-6);
617 assert!((MultiValueCombiner::weighted_top_k().combine(&scores) - 5.0).abs() < 1e-6);
618 }
619
620 #[test]
621 fn test_default_combiner_is_log_sum_exp() {
622 let combiner = MultiValueCombiner::default();
623 match combiner {
624 MultiValueCombiner::LogSumExp { temperature } => {
625 assert!((temperature - 1.5).abs() < 1e-6);
626 }
627 _ => panic!("Default combiner should be LogSumExp"),
628 }
629 }
630}