1mod config;
12mod posting;
13mod vectors;
14
15pub use config::{MemoryBreakdown, SegmentBuilderConfig, SegmentBuilderStats};
16
17use std::fs::{File, OpenOptions};
18use std::io::{BufWriter, Write};
19use std::path::PathBuf;
20
21use hashbrown::HashMap;
22use lasso::{Rodeo, Spur};
23use rayon::prelude::*;
24use rustc_hash::FxHashMap;
25
26use crate::compression::CompressionLevel;
27
28use super::types::{FieldStats, SegmentFiles, SegmentId, SegmentMeta};
29use crate::directories::{Directory, DirectoryWriter};
30use crate::dsl::{Document, Field, FieldType, FieldValue, Schema};
31use crate::structures::{PostingList, SSTableWriter, TermInfo};
32use crate::tokenizer::BoxedTokenizer;
33use crate::{DocId, Result};
34
35use posting::{
36 CompactPosting, PositionPostingListBuilder, PostingListBuilder, SerializedPosting, TermKey,
37};
38use vectors::{DenseVectorBuilder, SparseVectorBuilder};
39
40pub use super::vector_data::{FlatVectorData, IVFRaBitQIndexData, ScaNNIndexData};
42
43const STORE_BUFFER_SIZE: usize = 16 * 1024 * 1024; pub struct SegmentBuilder {
53 schema: Schema,
54 config: SegmentBuilderConfig,
55 tokenizers: FxHashMap<Field, BoxedTokenizer>,
56
57 term_interner: Rodeo,
59
60 inverted_index: HashMap<TermKey, PostingListBuilder>,
62
63 store_file: BufWriter<File>,
65 store_path: PathBuf,
66
67 next_doc_id: DocId,
69
70 field_stats: FxHashMap<u32, FieldStats>,
72
73 doc_field_lengths: Vec<u32>,
77 num_indexed_fields: usize,
78 field_to_slot: FxHashMap<u32, usize>,
79
80 local_tf_buffer: FxHashMap<Spur, u32>,
83
84 token_buffer: String,
86
87 dense_vectors: FxHashMap<u32, DenseVectorBuilder>,
90
91 sparse_vectors: FxHashMap<u32, SparseVectorBuilder>,
94
95 position_index: HashMap<TermKey, PositionPostingListBuilder>,
98
99 position_enabled_fields: FxHashMap<u32, Option<crate::dsl::PositionMode>>,
101
102 current_element_ordinal: FxHashMap<u32, u32>,
104
105 estimated_memory: usize,
107}
108
109impl SegmentBuilder {
110 pub fn new(schema: Schema, config: SegmentBuilderConfig) -> Result<Self> {
112 let segment_id = uuid::Uuid::new_v4();
113 let store_path = config
114 .temp_dir
115 .join(format!("hermes_store_{}.tmp", segment_id));
116
117 let store_file = BufWriter::with_capacity(
118 STORE_BUFFER_SIZE,
119 OpenOptions::new()
120 .create(true)
121 .write(true)
122 .truncate(true)
123 .open(&store_path)?,
124 );
125
126 let mut num_indexed_fields = 0;
129 let mut field_to_slot = FxHashMap::default();
130 let mut position_enabled_fields = FxHashMap::default();
131 for (field, entry) in schema.fields() {
132 if entry.indexed && matches!(entry.field_type, FieldType::Text) {
133 field_to_slot.insert(field.0, num_indexed_fields);
134 num_indexed_fields += 1;
135 if entry.positions.is_some() {
136 position_enabled_fields.insert(field.0, entry.positions);
137 }
138 }
139 }
140
141 Ok(Self {
142 schema,
143 tokenizers: FxHashMap::default(),
144 term_interner: Rodeo::new(),
145 inverted_index: HashMap::with_capacity(config.posting_map_capacity),
146 store_file,
147 store_path,
148 next_doc_id: 0,
149 field_stats: FxHashMap::default(),
150 doc_field_lengths: Vec::new(),
151 num_indexed_fields,
152 field_to_slot,
153 local_tf_buffer: FxHashMap::default(),
154 token_buffer: String::with_capacity(64),
155 config,
156 dense_vectors: FxHashMap::default(),
157 sparse_vectors: FxHashMap::default(),
158 position_index: HashMap::new(),
159 position_enabled_fields,
160 current_element_ordinal: FxHashMap::default(),
161 estimated_memory: 0,
162 })
163 }
164
165 pub fn set_tokenizer(&mut self, field: Field, tokenizer: BoxedTokenizer) {
166 self.tokenizers.insert(field, tokenizer);
167 }
168
169 pub fn num_docs(&self) -> u32 {
170 self.next_doc_id
171 }
172
173 #[inline]
175 pub fn estimated_memory_bytes(&self) -> usize {
176 self.estimated_memory
177 }
178
179 pub fn stats(&self) -> SegmentBuilderStats {
181 use std::mem::size_of;
182
183 let postings_in_memory: usize =
184 self.inverted_index.values().map(|p| p.postings.len()).sum();
185
186 let compact_posting_size = size_of::<CompactPosting>();
188 let vec_overhead = size_of::<Vec<u8>>(); let term_key_size = size_of::<TermKey>();
190 let posting_builder_size = size_of::<PostingListBuilder>();
191 let spur_size = size_of::<lasso::Spur>();
192 let sparse_entry_size = size_of::<(DocId, u16, f32)>();
193
194 let hashmap_entry_base_overhead = 8usize;
197
198 let fxhashmap_entry_overhead = hashmap_entry_base_overhead;
200
201 let postings_bytes: usize = self
203 .inverted_index
204 .values()
205 .map(|p| p.postings.capacity() * compact_posting_size + vec_overhead)
206 .sum();
207
208 let index_overhead_bytes = self.inverted_index.len()
210 * (term_key_size + posting_builder_size + hashmap_entry_base_overhead);
211
212 let interner_arena_overhead = 2 * size_of::<usize>();
215 let avg_term_len = 8; let interner_bytes =
217 self.term_interner.len() * (avg_term_len + spur_size + interner_arena_overhead);
218
219 let field_lengths_bytes =
221 self.doc_field_lengths.capacity() * size_of::<u32>() + vec_overhead;
222
223 let mut dense_vectors_bytes: usize = 0;
225 let mut dense_vector_count: usize = 0;
226 let doc_id_ordinal_size = size_of::<(DocId, u16)>();
227 for b in self.dense_vectors.values() {
228 dense_vectors_bytes += b.vectors.capacity() * size_of::<f32>()
229 + b.doc_ids.capacity() * doc_id_ordinal_size
230 + 2 * vec_overhead; dense_vector_count += b.doc_ids.len();
232 }
233
234 let local_tf_entry_size = spur_size + size_of::<u32>() + fxhashmap_entry_overhead;
236 let local_tf_buffer_bytes = self.local_tf_buffer.capacity() * local_tf_entry_size;
237
238 let mut sparse_vectors_bytes: usize = 0;
240 for builder in self.sparse_vectors.values() {
241 for postings in builder.postings.values() {
242 sparse_vectors_bytes += postings.capacity() * sparse_entry_size + vec_overhead;
243 }
244 let inner_entry_size = size_of::<u32>() + vec_overhead + fxhashmap_entry_overhead;
246 sparse_vectors_bytes += builder.postings.len() * inner_entry_size;
247 }
248 let outer_sparse_entry_size =
250 size_of::<u32>() + size_of::<SparseVectorBuilder>() + fxhashmap_entry_overhead;
251 sparse_vectors_bytes += self.sparse_vectors.len() * outer_sparse_entry_size;
252
253 let mut position_index_bytes: usize = 0;
255 for pos_builder in self.position_index.values() {
256 for (_, positions) in &pos_builder.postings {
257 position_index_bytes += positions.capacity() * size_of::<u32>() + vec_overhead;
258 }
259 let pos_entry_size = size_of::<DocId>() + vec_overhead;
261 position_index_bytes += pos_builder.postings.capacity() * pos_entry_size;
262 }
263 let pos_index_entry_size =
265 term_key_size + size_of::<PositionPostingListBuilder>() + hashmap_entry_base_overhead;
266 position_index_bytes += self.position_index.len() * pos_index_entry_size;
267
268 let estimated_memory_bytes = postings_bytes
269 + index_overhead_bytes
270 + interner_bytes
271 + field_lengths_bytes
272 + dense_vectors_bytes
273 + local_tf_buffer_bytes
274 + sparse_vectors_bytes
275 + position_index_bytes;
276
277 let memory_breakdown = MemoryBreakdown {
278 postings_bytes,
279 index_overhead_bytes,
280 interner_bytes,
281 field_lengths_bytes,
282 dense_vectors_bytes,
283 dense_vector_count,
284 sparse_vectors_bytes,
285 position_index_bytes,
286 };
287
288 SegmentBuilderStats {
289 num_docs: self.next_doc_id,
290 unique_terms: self.inverted_index.len(),
291 postings_in_memory,
292 interned_strings: self.term_interner.len(),
293 doc_field_lengths_size: self.doc_field_lengths.len(),
294 estimated_memory_bytes,
295 memory_breakdown,
296 }
297 }
298
299 pub fn add_document(&mut self, doc: Document) -> Result<DocId> {
301 let doc_id = self.next_doc_id;
302 self.next_doc_id += 1;
303
304 let base_idx = self.doc_field_lengths.len();
306 self.doc_field_lengths
307 .resize(base_idx + self.num_indexed_fields, 0);
308
309 self.current_element_ordinal.clear();
311
312 for (field, value) in doc.field_values() {
313 let entry = self.schema.get_field_entry(*field);
314 if entry.is_none() || !entry.unwrap().indexed {
315 continue;
316 }
317
318 let entry = entry.unwrap();
319 match (&entry.field_type, value) {
320 (FieldType::Text, FieldValue::Text(text)) => {
321 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
323 let token_count =
324 self.index_text_field(*field, doc_id, text, element_ordinal)?;
325 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
327
328 let stats = self.field_stats.entry(field.0).or_default();
330 stats.total_tokens += token_count as u64;
331 stats.doc_count += 1;
332
333 if let Some(&slot) = self.field_to_slot.get(&field.0) {
335 self.doc_field_lengths[base_idx + slot] = token_count;
336 }
337 }
338 (FieldType::U64, FieldValue::U64(v)) => {
339 self.index_numeric_field(*field, doc_id, *v)?;
340 }
341 (FieldType::I64, FieldValue::I64(v)) => {
342 self.index_numeric_field(*field, doc_id, *v as u64)?;
343 }
344 (FieldType::F64, FieldValue::F64(v)) => {
345 self.index_numeric_field(*field, doc_id, v.to_bits())?;
346 }
347 (FieldType::DenseVector, FieldValue::DenseVector(vec)) => {
348 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
350 self.index_dense_vector_field(*field, doc_id, element_ordinal as u16, vec)?;
351 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
353 }
354 (FieldType::SparseVector, FieldValue::SparseVector(entries)) => {
355 let element_ordinal = *self.current_element_ordinal.get(&field.0).unwrap_or(&0);
357 self.index_sparse_vector_field(
358 *field,
359 doc_id,
360 element_ordinal as u16,
361 entries,
362 )?;
363 *self.current_element_ordinal.entry(field.0).or_insert(0) += 1;
365 }
366 _ => {}
367 }
368 }
369
370 self.write_document_to_store(&doc)?;
372
373 Ok(doc_id)
374 }
375
376 fn index_text_field(
387 &mut self,
388 field: Field,
389 doc_id: DocId,
390 text: &str,
391 element_ordinal: u32,
392 ) -> Result<u32> {
393 use crate::dsl::PositionMode;
394
395 let field_id = field.0;
396 let position_mode = self
397 .position_enabled_fields
398 .get(&field_id)
399 .copied()
400 .flatten();
401
402 self.local_tf_buffer.clear();
406
407 let mut local_positions: FxHashMap<Spur, Vec<u32>> = FxHashMap::default();
409
410 let mut token_position = 0u32;
411
412 for word in text.split_whitespace() {
414 self.token_buffer.clear();
416 for c in word.chars() {
417 if c.is_alphanumeric() {
418 for lc in c.to_lowercase() {
419 self.token_buffer.push(lc);
420 }
421 }
422 }
423
424 if self.token_buffer.is_empty() {
425 continue;
426 }
427
428 let term_spur = self.term_interner.get_or_intern(&self.token_buffer);
430 *self.local_tf_buffer.entry(term_spur).or_insert(0) += 1;
431
432 if let Some(mode) = position_mode {
434 let encoded_pos = match mode {
435 PositionMode::Ordinal => element_ordinal << 20,
437 PositionMode::TokenPosition => token_position,
439 PositionMode::Full => (element_ordinal << 20) | token_position,
441 };
442 local_positions
443 .entry(term_spur)
444 .or_default()
445 .push(encoded_pos);
446 }
447
448 token_position += 1;
449 }
450
451 for (&term_spur, &tf) in &self.local_tf_buffer {
454 let term_key = TermKey {
455 field: field_id,
456 term: term_spur,
457 };
458
459 let posting = self
460 .inverted_index
461 .entry(term_key)
462 .or_insert_with(PostingListBuilder::new);
463 posting.add(doc_id, tf);
464
465 if position_mode.is_some()
467 && let Some(positions) = local_positions.get(&term_spur)
468 {
469 let pos_posting = self
470 .position_index
471 .entry(term_key)
472 .or_insert_with(PositionPostingListBuilder::new);
473 for &pos in positions {
474 pos_posting.add_position(doc_id, pos);
475 }
476 }
477 }
478
479 Ok(token_position)
480 }
481
482 fn index_numeric_field(&mut self, field: Field, doc_id: DocId, value: u64) -> Result<()> {
483 let term_str = format!("__num_{}", value);
485 let term_spur = self.term_interner.get_or_intern(&term_str);
486
487 let term_key = TermKey {
488 field: field.0,
489 term: term_spur,
490 };
491
492 let posting = self
493 .inverted_index
494 .entry(term_key)
495 .or_insert_with(PostingListBuilder::new);
496 posting.add(doc_id, 1);
497
498 Ok(())
499 }
500
501 fn index_dense_vector_field(
503 &mut self,
504 field: Field,
505 doc_id: DocId,
506 ordinal: u16,
507 vector: &[f32],
508 ) -> Result<()> {
509 let dim = vector.len();
510
511 let builder = self
512 .dense_vectors
513 .entry(field.0)
514 .or_insert_with(|| DenseVectorBuilder::new(dim));
515
516 if builder.dim != dim && builder.len() > 0 {
518 return Err(crate::Error::Schema(format!(
519 "Dense vector dimension mismatch: expected {}, got {}",
520 builder.dim, dim
521 )));
522 }
523
524 builder.add(doc_id, ordinal, vector);
525 Ok(())
526 }
527
528 fn index_sparse_vector_field(
535 &mut self,
536 field: Field,
537 doc_id: DocId,
538 ordinal: u16,
539 entries: &[(u32, f32)],
540 ) -> Result<()> {
541 let weight_threshold = self
543 .schema
544 .get_field_entry(field)
545 .and_then(|entry| entry.sparse_vector_config.as_ref())
546 .map(|config| config.weight_threshold)
547 .unwrap_or(0.0);
548
549 let builder = self
550 .sparse_vectors
551 .entry(field.0)
552 .or_insert_with(SparseVectorBuilder::new);
553
554 for &(dim_id, weight) in entries {
555 if weight.abs() < weight_threshold {
557 continue;
558 }
559
560 builder.add(dim_id, doc_id, ordinal, weight);
561 }
562
563 Ok(())
564 }
565
566 fn write_document_to_store(&mut self, doc: &Document) -> Result<()> {
568 use byteorder::{LittleEndian, WriteBytesExt};
569
570 let doc_bytes = super::store::serialize_document(doc, &self.schema)?;
571
572 self.store_file
573 .write_u32::<LittleEndian>(doc_bytes.len() as u32)?;
574 self.store_file.write_all(&doc_bytes)?;
575
576 Ok(())
577 }
578
579 pub async fn build<D: Directory + DirectoryWriter>(
581 mut self,
582 dir: &D,
583 segment_id: SegmentId,
584 ) -> Result<SegmentMeta> {
585 self.store_file.flush()?;
587
588 let files = SegmentFiles::new(segment_id.0);
589
590 let (positions_data, position_offsets) = self.build_positions_file()?;
592
593 let store_path = self.store_path.clone();
595 let schema = self.schema.clone();
596 let num_compression_threads = self.config.num_compression_threads;
597 let compression_level = self.config.compression_level;
598
599 let (postings_result, store_result) = rayon::join(
601 || self.build_postings(&position_offsets),
602 || {
603 Self::build_store_parallel(
604 &store_path,
605 &schema,
606 num_compression_threads,
607 compression_level,
608 )
609 },
610 );
611
612 let (term_dict_data, postings_data) = postings_result?;
613 let store_data = store_result?;
614
615 dir.write(&files.term_dict, &term_dict_data).await?;
617 dir.write(&files.postings, &postings_data).await?;
618 dir.write(&files.store, &store_data).await?;
619
620 if !positions_data.is_empty() {
622 dir.write(&files.positions, &positions_data).await?;
623 }
624
625 if !self.dense_vectors.is_empty() {
627 let vectors_data = self.build_vectors_file()?;
628 if !vectors_data.is_empty() {
629 dir.write(&files.vectors, &vectors_data).await?;
630 }
631 }
632
633 if !self.sparse_vectors.is_empty() {
635 let sparse_data = self.build_sparse_file()?;
636 if !sparse_data.is_empty() {
637 dir.write(&files.sparse, &sparse_data).await?;
638 }
639 }
640
641 let meta = SegmentMeta {
642 id: segment_id.0,
643 num_docs: self.next_doc_id,
644 field_stats: self.field_stats.clone(),
645 };
646
647 dir.write(&files.meta, &meta.serialize()?).await?;
648
649 let _ = std::fs::remove_file(&self.store_path);
651
652 Ok(meta)
653 }
654
655 fn build_vectors_file(&self) -> Result<Vec<u8>> {
662 use byteorder::{LittleEndian, WriteBytesExt};
663
664 let mut field_indexes: Vec<(u32, u8, Vec<u8>)> = Vec::new();
666
667 for (&field_id, builder) in &self.dense_vectors {
668 if builder.len() == 0 {
669 continue;
670 }
671
672 let field = crate::dsl::Field(field_id);
673
674 let dense_config = self
676 .schema
677 .get_field_entry(field)
678 .and_then(|e| e.dense_vector_config.as_ref());
679
680 let index_dim = dense_config.map(|c| c.index_dim()).unwrap_or(builder.dim);
682 let vectors = if index_dim < builder.dim {
683 builder.get_vectors_trimmed(index_dim)
685 } else {
686 builder.get_vectors()
687 };
688
689 let flat_data = FlatVectorData {
693 dim: index_dim,
694 vectors: vectors.clone(),
695 doc_ids: builder.doc_ids.clone(),
696 };
697 let index_bytes = serde_json::to_vec(&flat_data)
698 .map_err(|e| crate::Error::Serialization(e.to_string()))?;
699 let index_type = 3u8; field_indexes.push((field_id, index_type, index_bytes));
702 }
703
704 if field_indexes.is_empty() {
705 return Ok(Vec::new());
706 }
707
708 field_indexes.sort_by_key(|(id, _, _)| *id);
710
711 let header_size = 4 + field_indexes.len() * (4 + 1 + 8 + 8);
713
714 let mut output = Vec::new();
716
717 output.write_u32::<LittleEndian>(field_indexes.len() as u32)?;
719
720 let mut current_offset = header_size as u64;
722 for (field_id, index_type, data) in &field_indexes {
723 output.write_u32::<LittleEndian>(*field_id)?;
724 output.write_u8(*index_type)?;
725 output.write_u64::<LittleEndian>(current_offset)?;
726 output.write_u64::<LittleEndian>(data.len() as u64)?;
727 current_offset += data.len() as u64;
728 }
729
730 for (_, _, data) in field_indexes {
732 output.extend_from_slice(&data);
733 }
734
735 Ok(output)
736 }
737
738 fn build_sparse_file(&self) -> Result<Vec<u8>> {
750 use crate::structures::{BlockSparsePostingList, WeightQuantization};
751 use byteorder::{LittleEndian, WriteBytesExt};
752
753 if self.sparse_vectors.is_empty() {
754 return Ok(Vec::new());
755 }
756
757 type SparseFieldData = (u32, WeightQuantization, u32, FxHashMap<u32, Vec<u8>>);
759 let mut field_data: Vec<SparseFieldData> = Vec::new();
760
761 for (&field_id, builder) in &self.sparse_vectors {
762 if builder.is_empty() {
763 continue;
764 }
765
766 let field = crate::dsl::Field(field_id);
767
768 let sparse_config = self
770 .schema
771 .get_field_entry(field)
772 .and_then(|e| e.sparse_vector_config.as_ref());
773
774 let quantization = sparse_config
775 .map(|c| c.weight_quantization)
776 .unwrap_or(WeightQuantization::Float32);
777
778 let block_size = sparse_config.map(|c| c.block_size).unwrap_or(128);
779
780 let max_dim_id = builder.postings.keys().max().copied().unwrap_or(0);
782
783 let mut dim_bytes: FxHashMap<u32, Vec<u8>> = FxHashMap::default();
785
786 for (&dim_id, postings) in &builder.postings {
787 let mut sorted_postings = postings.clone();
789 sorted_postings.sort_by_key(|(doc_id, ordinal, _)| (*doc_id, *ordinal));
790
791 let block_list = BlockSparsePostingList::from_postings_with_block_size(
793 &sorted_postings,
794 quantization,
795 block_size,
796 )
797 .map_err(crate::Error::Io)?;
798
799 let mut bytes = Vec::new();
801 block_list.serialize(&mut bytes).map_err(crate::Error::Io)?;
802
803 dim_bytes.insert(dim_id, bytes);
804 }
805
806 field_data.push((field_id, quantization, max_dim_id + 1, dim_bytes));
807 }
808
809 if field_data.is_empty() {
810 return Ok(Vec::new());
811 }
812
813 field_data.sort_by_key(|(id, _, _, _)| *id);
815
816 let mut header_size = 4u64;
820 for (_, _, max_dim_id, _) in &field_data {
821 header_size += 4 + 1 + 4; header_size += (*max_dim_id as u64) * 12; }
824
825 let mut output = Vec::new();
827
828 output.write_u32::<LittleEndian>(field_data.len() as u32)?;
830
831 let mut current_offset = header_size;
833
834 let mut all_data: Vec<u8> = Vec::new();
836 let mut field_tables: Vec<Vec<(u64, u32)>> = Vec::new();
837
838 for (_, _, max_dim_id, dim_bytes) in &field_data {
839 let mut table: Vec<(u64, u32)> = vec![(0, 0); *max_dim_id as usize];
840
841 for dim_id in 0..*max_dim_id {
843 if let Some(bytes) = dim_bytes.get(&dim_id) {
844 table[dim_id as usize] = (current_offset, bytes.len() as u32);
845 current_offset += bytes.len() as u64;
846 all_data.extend_from_slice(bytes);
847 }
848 }
850
851 field_tables.push(table);
852 }
853
854 for (i, (field_id, quantization, max_dim_id, _)) in field_data.iter().enumerate() {
856 output.write_u32::<LittleEndian>(*field_id)?;
857 output.write_u8(*quantization as u8)?;
858 output.write_u32::<LittleEndian>(*max_dim_id)?;
859
860 for &(offset, length) in &field_tables[i] {
862 output.write_u64::<LittleEndian>(offset)?;
863 output.write_u32::<LittleEndian>(length)?;
864 }
865 }
866
867 output.extend_from_slice(&all_data);
869
870 Ok(output)
871 }
872
873 #[allow(clippy::type_complexity)]
881 fn build_positions_file(&self) -> Result<(Vec<u8>, FxHashMap<Vec<u8>, (u64, u32)>)> {
882 use crate::structures::PositionPostingList;
883
884 let mut position_offsets: FxHashMap<Vec<u8>, (u64, u32)> = FxHashMap::default();
885
886 if self.position_index.is_empty() {
887 return Ok((Vec::new(), position_offsets));
888 }
889
890 let mut entries: Vec<(Vec<u8>, &PositionPostingListBuilder)> = self
892 .position_index
893 .iter()
894 .map(|(term_key, pos_list)| {
895 let term_str = self.term_interner.resolve(&term_key.term);
896 let mut key = Vec::with_capacity(4 + term_str.len());
897 key.extend_from_slice(&term_key.field.to_le_bytes());
898 key.extend_from_slice(term_str.as_bytes());
899 (key, pos_list)
900 })
901 .collect();
902
903 entries.sort_by(|a, b| a.0.cmp(&b.0));
904
905 let mut output = Vec::new();
907
908 for (key, pos_builder) in entries {
909 let mut pos_list = PositionPostingList::with_capacity(pos_builder.postings.len());
911 for (doc_id, positions) in &pos_builder.postings {
912 pos_list.push(*doc_id, positions.clone());
913 }
914
915 let offset = output.len() as u64;
917 pos_list.serialize(&mut output).map_err(crate::Error::Io)?;
918 let len = (output.len() as u64 - offset) as u32;
919
920 position_offsets.insert(key, (offset, len));
921 }
922
923 Ok((output, position_offsets))
924 }
925
926 fn build_postings(
931 &mut self,
932 position_offsets: &FxHashMap<Vec<u8>, (u64, u32)>,
933 ) -> Result<(Vec<u8>, Vec<u8>)> {
934 let mut term_entries: Vec<(Vec<u8>, &PostingListBuilder)> = self
937 .inverted_index
938 .iter()
939 .map(|(term_key, posting_list)| {
940 let term_str = self.term_interner.resolve(&term_key.term);
941 let mut key = Vec::with_capacity(4 + term_str.len());
942 key.extend_from_slice(&term_key.field.to_le_bytes());
943 key.extend_from_slice(term_str.as_bytes());
944 (key, posting_list)
945 })
946 .collect();
947
948 term_entries.par_sort_unstable_by(|a, b| a.0.cmp(&b.0));
950
951 let serialized: Vec<(Vec<u8>, SerializedPosting)> = term_entries
954 .into_par_iter()
955 .map(|(key, posting_builder)| {
956 let mut full_postings = PostingList::with_capacity(posting_builder.len());
958 for p in &posting_builder.postings {
959 full_postings.push(p.doc_id, p.term_freq as u32);
960 }
961
962 let doc_ids: Vec<u32> = full_postings.iter().map(|p| p.doc_id).collect();
964 let term_freqs: Vec<u32> = full_postings.iter().map(|p| p.term_freq).collect();
965
966 let has_positions = position_offsets.contains_key(&key);
968 let result = if !has_positions
969 && let Some(inline) = TermInfo::try_inline(&doc_ids, &term_freqs)
970 {
971 SerializedPosting::Inline(inline)
972 } else {
973 let mut posting_bytes = Vec::new();
975 let block_list =
976 crate::structures::BlockPostingList::from_posting_list(&full_postings)
977 .expect("BlockPostingList creation failed");
978 block_list
979 .serialize(&mut posting_bytes)
980 .expect("BlockPostingList serialization failed");
981 SerializedPosting::External {
982 bytes: posting_bytes,
983 doc_count: full_postings.doc_count(),
984 }
985 };
986
987 (key, result)
988 })
989 .collect();
990
991 let mut term_dict = Vec::new();
993 let mut postings = Vec::new();
994 let mut writer = SSTableWriter::<TermInfo>::new(&mut term_dict);
995
996 for (key, serialized_posting) in serialized {
997 let term_info = match serialized_posting {
998 SerializedPosting::Inline(info) => info,
999 SerializedPosting::External { bytes, doc_count } => {
1000 let posting_offset = postings.len() as u64;
1001 let posting_len = bytes.len() as u32;
1002 postings.extend_from_slice(&bytes);
1003
1004 if let Some(&(pos_offset, pos_len)) = position_offsets.get(&key) {
1006 TermInfo::external_with_positions(
1007 posting_offset,
1008 posting_len,
1009 doc_count,
1010 pos_offset,
1011 pos_len,
1012 )
1013 } else {
1014 TermInfo::external(posting_offset, posting_len, doc_count)
1015 }
1016 }
1017 };
1018
1019 writer.insert(&key, &term_info)?;
1020 }
1021
1022 writer.finish()?;
1023 Ok((term_dict, postings))
1024 }
1025
1026 fn build_store_parallel(
1030 store_path: &PathBuf,
1031 schema: &Schema,
1032 num_compression_threads: usize,
1033 compression_level: CompressionLevel,
1034 ) -> Result<Vec<u8>> {
1035 use super::store::EagerParallelStoreWriter;
1036
1037 let file = File::open(store_path)?;
1038 let mmap = unsafe { memmap2::Mmap::map(&file)? };
1039
1040 let mut doc_ranges: Vec<(usize, usize)> = Vec::new();
1042 let mut offset = 0usize;
1043 while offset + 4 <= mmap.len() {
1044 let doc_len = u32::from_le_bytes([
1045 mmap[offset],
1046 mmap[offset + 1],
1047 mmap[offset + 2],
1048 mmap[offset + 3],
1049 ]) as usize;
1050 offset += 4;
1051
1052 if offset + doc_len > mmap.len() {
1053 break;
1054 }
1055
1056 doc_ranges.push((offset, doc_len));
1057 offset += doc_len;
1058 }
1059
1060 let docs: Vec<Document> = doc_ranges
1062 .into_par_iter()
1063 .filter_map(|(start, len)| {
1064 let doc_bytes = &mmap[start..start + len];
1065 super::store::deserialize_document(doc_bytes, schema).ok()
1066 })
1067 .collect();
1068
1069 let mut store_data = Vec::new();
1071 let mut store_writer = EagerParallelStoreWriter::with_compression_level(
1072 &mut store_data,
1073 num_compression_threads,
1074 compression_level,
1075 );
1076
1077 for doc in &docs {
1078 store_writer.store(doc, schema)?;
1079 }
1080
1081 store_writer.finish()?;
1082 Ok(store_data)
1083 }
1084}
1085
1086impl Drop for SegmentBuilder {
1087 fn drop(&mut self) {
1088 let _ = std::fs::remove_file(&self.store_path);
1090 }
1091}