1#[cfg(target_arch = "aarch64")]
18#[allow(unsafe_op_in_unsafe_fn)]
19mod neon {
20 use std::arch::aarch64::*;
21
22 #[target_feature(enable = "neon")]
24 pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
25 let chunks = count / 16;
26 let remainder = count % 16;
27
28 for chunk in 0..chunks {
29 let base = chunk * 16;
30 let in_ptr = input.as_ptr().add(base);
31
32 let bytes = vld1q_u8(in_ptr);
34
35 let low8 = vget_low_u8(bytes);
37 let high8 = vget_high_u8(bytes);
38
39 let low16 = vmovl_u8(low8);
40 let high16 = vmovl_u8(high8);
41
42 let v0 = vmovl_u16(vget_low_u16(low16));
43 let v1 = vmovl_u16(vget_high_u16(low16));
44 let v2 = vmovl_u16(vget_low_u16(high16));
45 let v3 = vmovl_u16(vget_high_u16(high16));
46
47 let out_ptr = output.as_mut_ptr().add(base);
48 vst1q_u32(out_ptr, v0);
49 vst1q_u32(out_ptr.add(4), v1);
50 vst1q_u32(out_ptr.add(8), v2);
51 vst1q_u32(out_ptr.add(12), v3);
52 }
53
54 let base = chunks * 16;
56 for i in 0..remainder {
57 output[base + i] = input[base + i] as u32;
58 }
59 }
60
61 #[target_feature(enable = "neon")]
63 pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
64 let chunks = count / 8;
65 let remainder = count % 8;
66
67 for chunk in 0..chunks {
68 let base = chunk * 8;
69 let in_ptr = input.as_ptr().add(base * 2) as *const u16;
70
71 let vals = vld1q_u16(in_ptr);
72 let low = vmovl_u16(vget_low_u16(vals));
73 let high = vmovl_u16(vget_high_u16(vals));
74
75 let out_ptr = output.as_mut_ptr().add(base);
76 vst1q_u32(out_ptr, low);
77 vst1q_u32(out_ptr.add(4), high);
78 }
79
80 let base = chunks * 8;
82 for i in 0..remainder {
83 let idx = (base + i) * 2;
84 output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
85 }
86 }
87
88 #[target_feature(enable = "neon")]
90 pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
91 let chunks = count / 4;
92 let remainder = count % 4;
93
94 let in_ptr = input.as_ptr() as *const u32;
95 let out_ptr = output.as_mut_ptr();
96
97 for chunk in 0..chunks {
98 let vals = vld1q_u32(in_ptr.add(chunk * 4));
99 vst1q_u32(out_ptr.add(chunk * 4), vals);
100 }
101
102 let base = chunks * 4;
104 for i in 0..remainder {
105 let idx = (base + i) * 4;
106 output[base + i] =
107 u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
108 }
109 }
110
111 #[inline]
115 #[target_feature(enable = "neon")]
116 unsafe fn prefix_sum_4(v: uint32x4_t) -> uint32x4_t {
117 let shifted1 = vextq_u32(vdupq_n_u32(0), v, 3);
120 let sum1 = vaddq_u32(v, shifted1);
121
122 let shifted2 = vextq_u32(vdupq_n_u32(0), sum1, 2);
125 vaddq_u32(sum1, shifted2)
126 }
127
128 #[target_feature(enable = "neon")]
132 pub unsafe fn delta_decode(
133 output: &mut [u32],
134 deltas: &[u32],
135 first_doc_id: u32,
136 count: usize,
137 ) {
138 if count == 0 {
139 return;
140 }
141
142 output[0] = first_doc_id;
143 if count == 1 {
144 return;
145 }
146
147 let ones = vdupq_n_u32(1);
148 let mut carry = vdupq_n_u32(first_doc_id);
149
150 let full_groups = (count - 1) / 4;
151 let remainder = (count - 1) % 4;
152
153 for group in 0..full_groups {
154 let base = group * 4;
155
156 let d = vld1q_u32(deltas[base..].as_ptr());
158 let gaps = vaddq_u32(d, ones);
159
160 let prefix = prefix_sum_4(gaps);
162
163 let result = vaddq_u32(prefix, carry);
165
166 vst1q_u32(output[base + 1..].as_mut_ptr(), result);
168
169 carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
171 }
172
173 let base = full_groups * 4;
175 let mut scalar_carry = vgetq_lane_u32(carry, 0);
176 for j in 0..remainder {
177 scalar_carry = scalar_carry.wrapping_add(deltas[base + j]).wrapping_add(1);
178 output[base + j + 1] = scalar_carry;
179 }
180 }
181
182 #[target_feature(enable = "neon")]
184 pub unsafe fn add_one(values: &mut [u32], count: usize) {
185 let ones = vdupq_n_u32(1);
186 let chunks = count / 4;
187 let remainder = count % 4;
188
189 for chunk in 0..chunks {
190 let base = chunk * 4;
191 let ptr = values.as_mut_ptr().add(base);
192 let v = vld1q_u32(ptr);
193 let result = vaddq_u32(v, ones);
194 vst1q_u32(ptr, result);
195 }
196
197 let base = chunks * 4;
198 for i in 0..remainder {
199 values[base + i] += 1;
200 }
201 }
202
203 #[target_feature(enable = "neon")]
206 pub unsafe fn unpack_8bit_delta_decode(
207 input: &[u8],
208 output: &mut [u32],
209 first_value: u32,
210 count: usize,
211 ) {
212 output[0] = first_value;
213 if count <= 1 {
214 return;
215 }
216
217 let ones = vdupq_n_u32(1);
218 let mut carry = vdupq_n_u32(first_value);
219
220 let full_groups = (count - 1) / 4;
221 let remainder = (count - 1) % 4;
222
223 for group in 0..full_groups {
224 let base = group * 4;
225
226 let b0 = input[base] as u32;
228 let b1 = input[base + 1] as u32;
229 let b2 = input[base + 2] as u32;
230 let b3 = input[base + 3] as u32;
231 let deltas = [b0, b1, b2, b3];
232 let d = vld1q_u32(deltas.as_ptr());
233
234 let gaps = vaddq_u32(d, ones);
236
237 let prefix = prefix_sum_4(gaps);
239
240 let result = vaddq_u32(prefix, carry);
242
243 vst1q_u32(output[base + 1..].as_mut_ptr(), result);
245
246 carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
248 }
249
250 let base = full_groups * 4;
252 let mut scalar_carry = vgetq_lane_u32(carry, 0);
253 for j in 0..remainder {
254 scalar_carry = scalar_carry
255 .wrapping_add(input[base + j] as u32)
256 .wrapping_add(1);
257 output[base + j + 1] = scalar_carry;
258 }
259 }
260
261 #[target_feature(enable = "neon")]
263 pub unsafe fn unpack_16bit_delta_decode(
264 input: &[u8],
265 output: &mut [u32],
266 first_value: u32,
267 count: usize,
268 ) {
269 output[0] = first_value;
270 if count <= 1 {
271 return;
272 }
273
274 let ones = vdupq_n_u32(1);
275 let mut carry = vdupq_n_u32(first_value);
276
277 let full_groups = (count - 1) / 4;
278 let remainder = (count - 1) % 4;
279
280 for group in 0..full_groups {
281 let base = group * 4;
282 let in_ptr = input.as_ptr().add(base * 2) as *const u16;
283
284 let vals = vld1_u16(in_ptr);
286 let d = vmovl_u16(vals);
287
288 let gaps = vaddq_u32(d, ones);
290
291 let prefix = prefix_sum_4(gaps);
293
294 let result = vaddq_u32(prefix, carry);
296
297 vst1q_u32(output[base + 1..].as_mut_ptr(), result);
299
300 carry = vdupq_n_u32(vgetq_lane_u32(result, 3));
302 }
303
304 let base = full_groups * 4;
306 let mut scalar_carry = vgetq_lane_u32(carry, 0);
307 for j in 0..remainder {
308 let idx = (base + j) * 2;
309 let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
310 scalar_carry = scalar_carry.wrapping_add(delta).wrapping_add(1);
311 output[base + j + 1] = scalar_carry;
312 }
313 }
314
315 #[inline]
317 pub fn is_available() -> bool {
318 true
319 }
320}
321
322#[cfg(target_arch = "x86_64")]
327#[allow(unsafe_op_in_unsafe_fn)]
328mod sse {
329 use std::arch::x86_64::*;
330
331 #[target_feature(enable = "sse2", enable = "sse4.1")]
333 pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
334 let chunks = count / 16;
335 let remainder = count % 16;
336
337 for chunk in 0..chunks {
338 let base = chunk * 16;
339 let in_ptr = input.as_ptr().add(base);
340
341 let bytes = _mm_loadu_si128(in_ptr as *const __m128i);
342
343 let v0 = _mm_cvtepu8_epi32(bytes);
345 let v1 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 4));
346 let v2 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 8));
347 let v3 = _mm_cvtepu8_epi32(_mm_srli_si128(bytes, 12));
348
349 let out_ptr = output.as_mut_ptr().add(base);
350 _mm_storeu_si128(out_ptr as *mut __m128i, v0);
351 _mm_storeu_si128(out_ptr.add(4) as *mut __m128i, v1);
352 _mm_storeu_si128(out_ptr.add(8) as *mut __m128i, v2);
353 _mm_storeu_si128(out_ptr.add(12) as *mut __m128i, v3);
354 }
355
356 let base = chunks * 16;
357 for i in 0..remainder {
358 output[base + i] = input[base + i] as u32;
359 }
360 }
361
362 #[target_feature(enable = "sse2", enable = "sse4.1")]
364 pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
365 let chunks = count / 8;
366 let remainder = count % 8;
367
368 for chunk in 0..chunks {
369 let base = chunk * 8;
370 let in_ptr = input.as_ptr().add(base * 2);
371
372 let vals = _mm_loadu_si128(in_ptr as *const __m128i);
373 let low = _mm_cvtepu16_epi32(vals);
374 let high = _mm_cvtepu16_epi32(_mm_srli_si128(vals, 8));
375
376 let out_ptr = output.as_mut_ptr().add(base);
377 _mm_storeu_si128(out_ptr as *mut __m128i, low);
378 _mm_storeu_si128(out_ptr.add(4) as *mut __m128i, high);
379 }
380
381 let base = chunks * 8;
382 for i in 0..remainder {
383 let idx = (base + i) * 2;
384 output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
385 }
386 }
387
388 #[target_feature(enable = "sse2")]
390 pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
391 let chunks = count / 4;
392 let remainder = count % 4;
393
394 let in_ptr = input.as_ptr() as *const __m128i;
395 let out_ptr = output.as_mut_ptr() as *mut __m128i;
396
397 for chunk in 0..chunks {
398 let vals = _mm_loadu_si128(in_ptr.add(chunk));
399 _mm_storeu_si128(out_ptr.add(chunk), vals);
400 }
401
402 let base = chunks * 4;
404 for i in 0..remainder {
405 let idx = (base + i) * 4;
406 output[base + i] =
407 u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
408 }
409 }
410
411 #[inline]
415 #[target_feature(enable = "sse2")]
416 unsafe fn prefix_sum_4(v: __m128i) -> __m128i {
417 let shifted1 = _mm_slli_si128(v, 4);
420 let sum1 = _mm_add_epi32(v, shifted1);
421
422 let shifted2 = _mm_slli_si128(sum1, 8);
425 _mm_add_epi32(sum1, shifted2)
426 }
427
428 #[target_feature(enable = "sse2", enable = "sse4.1")]
430 pub unsafe fn delta_decode(
431 output: &mut [u32],
432 deltas: &[u32],
433 first_doc_id: u32,
434 count: usize,
435 ) {
436 if count == 0 {
437 return;
438 }
439
440 output[0] = first_doc_id;
441 if count == 1 {
442 return;
443 }
444
445 let ones = _mm_set1_epi32(1);
446 let mut carry = _mm_set1_epi32(first_doc_id as i32);
447
448 let full_groups = (count - 1) / 4;
449 let remainder = (count - 1) % 4;
450
451 for group in 0..full_groups {
452 let base = group * 4;
453
454 let d = _mm_loadu_si128(deltas[base..].as_ptr() as *const __m128i);
456 let gaps = _mm_add_epi32(d, ones);
457
458 let prefix = prefix_sum_4(gaps);
460
461 let result = _mm_add_epi32(prefix, carry);
463
464 _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
466
467 carry = _mm_shuffle_epi32(result, 0xFF); }
470
471 let base = full_groups * 4;
473 let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
474 for j in 0..remainder {
475 scalar_carry = scalar_carry.wrapping_add(deltas[base + j]).wrapping_add(1);
476 output[base + j + 1] = scalar_carry;
477 }
478 }
479
480 #[target_feature(enable = "sse2")]
482 pub unsafe fn add_one(values: &mut [u32], count: usize) {
483 let ones = _mm_set1_epi32(1);
484 let chunks = count / 4;
485 let remainder = count % 4;
486
487 for chunk in 0..chunks {
488 let base = chunk * 4;
489 let ptr = values.as_mut_ptr().add(base) as *mut __m128i;
490 let v = _mm_loadu_si128(ptr);
491 let result = _mm_add_epi32(v, ones);
492 _mm_storeu_si128(ptr, result);
493 }
494
495 let base = chunks * 4;
496 for i in 0..remainder {
497 values[base + i] += 1;
498 }
499 }
500
501 #[target_feature(enable = "sse2", enable = "sse4.1")]
503 pub unsafe fn unpack_8bit_delta_decode(
504 input: &[u8],
505 output: &mut [u32],
506 first_value: u32,
507 count: usize,
508 ) {
509 output[0] = first_value;
510 if count <= 1 {
511 return;
512 }
513
514 let ones = _mm_set1_epi32(1);
515 let mut carry = _mm_set1_epi32(first_value as i32);
516
517 let full_groups = (count - 1) / 4;
518 let remainder = (count - 1) % 4;
519
520 for group in 0..full_groups {
521 let base = group * 4;
522
523 let bytes = _mm_cvtsi32_si128(std::ptr::read_unaligned(
525 input.as_ptr().add(base) as *const i32
526 ));
527 let d = _mm_cvtepu8_epi32(bytes);
528
529 let gaps = _mm_add_epi32(d, ones);
531
532 let prefix = prefix_sum_4(gaps);
534
535 let result = _mm_add_epi32(prefix, carry);
537
538 _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
540
541 carry = _mm_shuffle_epi32(result, 0xFF);
543 }
544
545 let base = full_groups * 4;
547 let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
548 for j in 0..remainder {
549 scalar_carry = scalar_carry
550 .wrapping_add(input[base + j] as u32)
551 .wrapping_add(1);
552 output[base + j + 1] = scalar_carry;
553 }
554 }
555
556 #[target_feature(enable = "sse2", enable = "sse4.1")]
558 pub unsafe fn unpack_16bit_delta_decode(
559 input: &[u8],
560 output: &mut [u32],
561 first_value: u32,
562 count: usize,
563 ) {
564 output[0] = first_value;
565 if count <= 1 {
566 return;
567 }
568
569 let ones = _mm_set1_epi32(1);
570 let mut carry = _mm_set1_epi32(first_value as i32);
571
572 let full_groups = (count - 1) / 4;
573 let remainder = (count - 1) % 4;
574
575 for group in 0..full_groups {
576 let base = group * 4;
577 let in_ptr = input.as_ptr().add(base * 2);
578
579 let vals = _mm_loadl_epi64(in_ptr as *const __m128i); let d = _mm_cvtepu16_epi32(vals);
582
583 let gaps = _mm_add_epi32(d, ones);
585
586 let prefix = prefix_sum_4(gaps);
588
589 let result = _mm_add_epi32(prefix, carry);
591
592 _mm_storeu_si128(output[base + 1..].as_mut_ptr() as *mut __m128i, result);
594
595 carry = _mm_shuffle_epi32(result, 0xFF);
597 }
598
599 let base = full_groups * 4;
601 let mut scalar_carry = _mm_extract_epi32(carry, 0) as u32;
602 for j in 0..remainder {
603 let idx = (base + j) * 2;
604 let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
605 scalar_carry = scalar_carry.wrapping_add(delta).wrapping_add(1);
606 output[base + j + 1] = scalar_carry;
607 }
608 }
609
610 #[inline]
612 pub fn is_available() -> bool {
613 is_x86_feature_detected!("sse4.1")
614 }
615}
616
617#[cfg(target_arch = "x86_64")]
622#[allow(unsafe_op_in_unsafe_fn)]
623mod avx2 {
624 use std::arch::x86_64::*;
625
626 #[target_feature(enable = "avx2")]
628 pub unsafe fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
629 let chunks = count / 32;
630 let remainder = count % 32;
631
632 for chunk in 0..chunks {
633 let base = chunk * 32;
634 let in_ptr = input.as_ptr().add(base);
635
636 let bytes_lo = _mm_loadu_si128(in_ptr as *const __m128i);
638 let bytes_hi = _mm_loadu_si128(in_ptr.add(16) as *const __m128i);
639
640 let v0 = _mm256_cvtepu8_epi32(bytes_lo);
642 let v1 = _mm256_cvtepu8_epi32(_mm_srli_si128(bytes_lo, 8));
643 let v2 = _mm256_cvtepu8_epi32(bytes_hi);
644 let v3 = _mm256_cvtepu8_epi32(_mm_srli_si128(bytes_hi, 8));
645
646 let out_ptr = output.as_mut_ptr().add(base);
647 _mm256_storeu_si256(out_ptr as *mut __m256i, v0);
648 _mm256_storeu_si256(out_ptr.add(8) as *mut __m256i, v1);
649 _mm256_storeu_si256(out_ptr.add(16) as *mut __m256i, v2);
650 _mm256_storeu_si256(out_ptr.add(24) as *mut __m256i, v3);
651 }
652
653 let base = chunks * 32;
655 for i in 0..remainder {
656 output[base + i] = input[base + i] as u32;
657 }
658 }
659
660 #[target_feature(enable = "avx2")]
662 pub unsafe fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
663 let chunks = count / 16;
664 let remainder = count % 16;
665
666 for chunk in 0..chunks {
667 let base = chunk * 16;
668 let in_ptr = input.as_ptr().add(base * 2);
669
670 let vals_lo = _mm_loadu_si128(in_ptr as *const __m128i);
672 let vals_hi = _mm_loadu_si128(in_ptr.add(16) as *const __m128i);
673
674 let v0 = _mm256_cvtepu16_epi32(vals_lo);
676 let v1 = _mm256_cvtepu16_epi32(vals_hi);
677
678 let out_ptr = output.as_mut_ptr().add(base);
679 _mm256_storeu_si256(out_ptr as *mut __m256i, v0);
680 _mm256_storeu_si256(out_ptr.add(8) as *mut __m256i, v1);
681 }
682
683 let base = chunks * 16;
685 for i in 0..remainder {
686 let idx = (base + i) * 2;
687 output[base + i] = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
688 }
689 }
690
691 #[target_feature(enable = "avx2")]
693 pub unsafe fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
694 let chunks = count / 8;
695 let remainder = count % 8;
696
697 let in_ptr = input.as_ptr() as *const __m256i;
698 let out_ptr = output.as_mut_ptr() as *mut __m256i;
699
700 for chunk in 0..chunks {
701 let vals = _mm256_loadu_si256(in_ptr.add(chunk));
702 _mm256_storeu_si256(out_ptr.add(chunk), vals);
703 }
704
705 let base = chunks * 8;
707 for i in 0..remainder {
708 let idx = (base + i) * 4;
709 output[base + i] =
710 u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
711 }
712 }
713
714 #[target_feature(enable = "avx2")]
716 pub unsafe fn add_one(values: &mut [u32], count: usize) {
717 let ones = _mm256_set1_epi32(1);
718 let chunks = count / 8;
719 let remainder = count % 8;
720
721 for chunk in 0..chunks {
722 let base = chunk * 8;
723 let ptr = values.as_mut_ptr().add(base) as *mut __m256i;
724 let v = _mm256_loadu_si256(ptr);
725 let result = _mm256_add_epi32(v, ones);
726 _mm256_storeu_si256(ptr, result);
727 }
728
729 let base = chunks * 8;
730 for i in 0..remainder {
731 values[base + i] += 1;
732 }
733 }
734
735 #[inline]
737 pub fn is_available() -> bool {
738 is_x86_feature_detected!("avx2")
739 }
740}
741
742#[allow(dead_code)]
747mod scalar {
748 #[inline]
750 pub fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
751 for i in 0..count {
752 output[i] = input[i] as u32;
753 }
754 }
755
756 #[inline]
758 pub fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
759 for (i, out) in output.iter_mut().enumerate().take(count) {
760 let idx = i * 2;
761 *out = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
762 }
763 }
764
765 #[inline]
767 pub fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
768 for (i, out) in output.iter_mut().enumerate().take(count) {
769 let idx = i * 4;
770 *out = u32::from_le_bytes([input[idx], input[idx + 1], input[idx + 2], input[idx + 3]]);
771 }
772 }
773
774 #[inline]
776 pub fn delta_decode(output: &mut [u32], deltas: &[u32], first_doc_id: u32, count: usize) {
777 if count == 0 {
778 return;
779 }
780
781 output[0] = first_doc_id;
782 let mut carry = first_doc_id;
783
784 for i in 0..count - 1 {
785 carry = carry.wrapping_add(deltas[i]).wrapping_add(1);
786 output[i + 1] = carry;
787 }
788 }
789
790 #[inline]
792 pub fn add_one(values: &mut [u32], count: usize) {
793 for val in values.iter_mut().take(count) {
794 *val += 1;
795 }
796 }
797}
798
799#[inline]
805pub fn unpack_8bit(input: &[u8], output: &mut [u32], count: usize) {
806 #[cfg(target_arch = "aarch64")]
807 {
808 if neon::is_available() {
809 unsafe {
810 neon::unpack_8bit(input, output, count);
811 }
812 return;
813 }
814 }
815
816 #[cfg(target_arch = "x86_64")]
817 {
818 if avx2::is_available() {
820 unsafe {
821 avx2::unpack_8bit(input, output, count);
822 }
823 return;
824 }
825 if sse::is_available() {
826 unsafe {
827 sse::unpack_8bit(input, output, count);
828 }
829 return;
830 }
831 }
832
833 scalar::unpack_8bit(input, output, count);
834}
835
836#[inline]
838pub fn unpack_16bit(input: &[u8], output: &mut [u32], count: usize) {
839 #[cfg(target_arch = "aarch64")]
840 {
841 if neon::is_available() {
842 unsafe {
843 neon::unpack_16bit(input, output, count);
844 }
845 return;
846 }
847 }
848
849 #[cfg(target_arch = "x86_64")]
850 {
851 if avx2::is_available() {
853 unsafe {
854 avx2::unpack_16bit(input, output, count);
855 }
856 return;
857 }
858 if sse::is_available() {
859 unsafe {
860 sse::unpack_16bit(input, output, count);
861 }
862 return;
863 }
864 }
865
866 scalar::unpack_16bit(input, output, count);
867}
868
869#[inline]
871pub fn unpack_32bit(input: &[u8], output: &mut [u32], count: usize) {
872 #[cfg(target_arch = "aarch64")]
873 {
874 if neon::is_available() {
875 unsafe {
876 neon::unpack_32bit(input, output, count);
877 }
878 }
879 }
880
881 #[cfg(target_arch = "x86_64")]
882 {
883 if avx2::is_available() {
885 unsafe {
886 avx2::unpack_32bit(input, output, count);
887 }
888 } else {
889 unsafe {
891 sse::unpack_32bit(input, output, count);
892 }
893 }
894 }
895
896 #[cfg(not(any(target_arch = "aarch64", target_arch = "x86_64")))]
897 {
898 scalar::unpack_32bit(input, output, count);
899 }
900}
901
902#[inline]
908pub fn delta_decode(output: &mut [u32], deltas: &[u32], first_value: u32, count: usize) {
909 #[cfg(target_arch = "aarch64")]
910 {
911 if neon::is_available() {
912 unsafe {
913 neon::delta_decode(output, deltas, first_value, count);
914 }
915 return;
916 }
917 }
918
919 #[cfg(target_arch = "x86_64")]
920 {
921 if sse::is_available() {
922 unsafe {
923 sse::delta_decode(output, deltas, first_value, count);
924 }
925 return;
926 }
927 }
928
929 scalar::delta_decode(output, deltas, first_value, count);
930}
931
932#[inline]
936pub fn add_one(values: &mut [u32], count: usize) {
937 #[cfg(target_arch = "aarch64")]
938 {
939 if neon::is_available() {
940 unsafe {
941 neon::add_one(values, count);
942 }
943 }
944 }
945
946 #[cfg(target_arch = "x86_64")]
947 {
948 if avx2::is_available() {
950 unsafe {
951 avx2::add_one(values, count);
952 }
953 } else {
954 unsafe {
956 sse::add_one(values, count);
957 }
958 }
959 }
960
961 #[cfg(not(any(target_arch = "aarch64", target_arch = "x86_64")))]
962 {
963 scalar::add_one(values, count);
964 }
965}
966
967#[inline]
969pub fn bits_needed(val: u32) -> u8 {
970 if val == 0 {
971 0
972 } else {
973 32 - val.leading_zeros() as u8
974 }
975}
976
977#[derive(Debug, Clone, Copy, PartialEq, Eq)]
994#[repr(u8)]
995pub enum RoundedBitWidth {
996 Zero = 0,
997 Bits8 = 8,
998 Bits16 = 16,
999 Bits32 = 32,
1000}
1001
1002impl RoundedBitWidth {
1003 #[inline]
1005 pub fn from_exact(bits: u8) -> Self {
1006 match bits {
1007 0 => RoundedBitWidth::Zero,
1008 1..=8 => RoundedBitWidth::Bits8,
1009 9..=16 => RoundedBitWidth::Bits16,
1010 _ => RoundedBitWidth::Bits32,
1011 }
1012 }
1013
1014 #[inline]
1016 pub fn from_u8(bits: u8) -> Self {
1017 match bits {
1018 0 => RoundedBitWidth::Zero,
1019 8 => RoundedBitWidth::Bits8,
1020 16 => RoundedBitWidth::Bits16,
1021 32 => RoundedBitWidth::Bits32,
1022 _ => RoundedBitWidth::Bits32, }
1024 }
1025
1026 #[inline]
1028 pub fn bytes_per_value(self) -> usize {
1029 match self {
1030 RoundedBitWidth::Zero => 0,
1031 RoundedBitWidth::Bits8 => 1,
1032 RoundedBitWidth::Bits16 => 2,
1033 RoundedBitWidth::Bits32 => 4,
1034 }
1035 }
1036
1037 #[inline]
1039 pub fn as_u8(self) -> u8 {
1040 self as u8
1041 }
1042}
1043
1044#[inline]
1046pub fn round_bit_width(bits: u8) -> u8 {
1047 RoundedBitWidth::from_exact(bits).as_u8()
1048}
1049
1050#[inline]
1055pub fn pack_rounded(values: &[u32], bit_width: RoundedBitWidth, output: &mut [u8]) -> usize {
1056 let count = values.len();
1057 match bit_width {
1058 RoundedBitWidth::Zero => 0,
1059 RoundedBitWidth::Bits8 => {
1060 for (i, &v) in values.iter().enumerate() {
1061 output[i] = v as u8;
1062 }
1063 count
1064 }
1065 RoundedBitWidth::Bits16 => {
1066 for (i, &v) in values.iter().enumerate() {
1067 let bytes = (v as u16).to_le_bytes();
1068 output[i * 2] = bytes[0];
1069 output[i * 2 + 1] = bytes[1];
1070 }
1071 count * 2
1072 }
1073 RoundedBitWidth::Bits32 => {
1074 for (i, &v) in values.iter().enumerate() {
1075 let bytes = v.to_le_bytes();
1076 output[i * 4] = bytes[0];
1077 output[i * 4 + 1] = bytes[1];
1078 output[i * 4 + 2] = bytes[2];
1079 output[i * 4 + 3] = bytes[3];
1080 }
1081 count * 4
1082 }
1083 }
1084}
1085
1086#[inline]
1090pub fn unpack_rounded(input: &[u8], bit_width: RoundedBitWidth, output: &mut [u32], count: usize) {
1091 match bit_width {
1092 RoundedBitWidth::Zero => {
1093 for out in output.iter_mut().take(count) {
1094 *out = 0;
1095 }
1096 }
1097 RoundedBitWidth::Bits8 => unpack_8bit(input, output, count),
1098 RoundedBitWidth::Bits16 => unpack_16bit(input, output, count),
1099 RoundedBitWidth::Bits32 => unpack_32bit(input, output, count),
1100 }
1101}
1102
1103#[inline]
1107pub fn unpack_rounded_delta_decode(
1108 input: &[u8],
1109 bit_width: RoundedBitWidth,
1110 output: &mut [u32],
1111 first_value: u32,
1112 count: usize,
1113) {
1114 match bit_width {
1115 RoundedBitWidth::Zero => {
1116 let mut val = first_value;
1118 for out in output.iter_mut().take(count) {
1119 *out = val;
1120 val = val.wrapping_add(1);
1121 }
1122 }
1123 RoundedBitWidth::Bits8 => unpack_8bit_delta_decode(input, output, first_value, count),
1124 RoundedBitWidth::Bits16 => unpack_16bit_delta_decode(input, output, first_value, count),
1125 RoundedBitWidth::Bits32 => {
1126 unpack_32bit(input, output, count);
1128 if count > 0 {
1131 let mut carry = first_value;
1132 output[0] = first_value;
1133 for item in output.iter_mut().take(count).skip(1) {
1134 carry = carry.wrapping_add(*item).wrapping_add(1);
1136 *item = carry;
1137 }
1138 }
1139 }
1140 }
1141}
1142
1143#[inline]
1152pub fn unpack_8bit_delta_decode(input: &[u8], output: &mut [u32], first_value: u32, count: usize) {
1153 if count == 0 {
1154 return;
1155 }
1156
1157 output[0] = first_value;
1158 if count == 1 {
1159 return;
1160 }
1161
1162 #[cfg(target_arch = "aarch64")]
1163 {
1164 if neon::is_available() {
1165 unsafe {
1166 neon::unpack_8bit_delta_decode(input, output, first_value, count);
1167 }
1168 return;
1169 }
1170 }
1171
1172 #[cfg(target_arch = "x86_64")]
1173 {
1174 if sse::is_available() {
1175 unsafe {
1176 sse::unpack_8bit_delta_decode(input, output, first_value, count);
1177 }
1178 return;
1179 }
1180 }
1181
1182 let mut carry = first_value;
1184 for i in 0..count - 1 {
1185 carry = carry.wrapping_add(input[i] as u32).wrapping_add(1);
1186 output[i + 1] = carry;
1187 }
1188}
1189
1190#[inline]
1192pub fn unpack_16bit_delta_decode(input: &[u8], output: &mut [u32], first_value: u32, count: usize) {
1193 if count == 0 {
1194 return;
1195 }
1196
1197 output[0] = first_value;
1198 if count == 1 {
1199 return;
1200 }
1201
1202 #[cfg(target_arch = "aarch64")]
1203 {
1204 if neon::is_available() {
1205 unsafe {
1206 neon::unpack_16bit_delta_decode(input, output, first_value, count);
1207 }
1208 return;
1209 }
1210 }
1211
1212 #[cfg(target_arch = "x86_64")]
1213 {
1214 if sse::is_available() {
1215 unsafe {
1216 sse::unpack_16bit_delta_decode(input, output, first_value, count);
1217 }
1218 return;
1219 }
1220 }
1221
1222 let mut carry = first_value;
1224 for i in 0..count - 1 {
1225 let idx = i * 2;
1226 let delta = u16::from_le_bytes([input[idx], input[idx + 1]]) as u32;
1227 carry = carry.wrapping_add(delta).wrapping_add(1);
1228 output[i + 1] = carry;
1229 }
1230}
1231
1232#[inline]
1237pub fn unpack_delta_decode(
1238 input: &[u8],
1239 bit_width: u8,
1240 output: &mut [u32],
1241 first_value: u32,
1242 count: usize,
1243) {
1244 if count == 0 {
1245 return;
1246 }
1247
1248 output[0] = first_value;
1249 if count == 1 {
1250 return;
1251 }
1252
1253 match bit_width {
1255 0 => {
1256 let mut val = first_value;
1258 for item in output.iter_mut().take(count).skip(1) {
1259 val = val.wrapping_add(1);
1260 *item = val;
1261 }
1262 }
1263 8 => unpack_8bit_delta_decode(input, output, first_value, count),
1264 16 => unpack_16bit_delta_decode(input, output, first_value, count),
1265 32 => {
1266 let mut carry = first_value;
1268 for i in 0..count - 1 {
1269 let idx = i * 4;
1270 let delta = u32::from_le_bytes([
1271 input[idx],
1272 input[idx + 1],
1273 input[idx + 2],
1274 input[idx + 3],
1275 ]);
1276 carry = carry.wrapping_add(delta).wrapping_add(1);
1277 output[i + 1] = carry;
1278 }
1279 }
1280 _ => {
1281 let mask = (1u64 << bit_width) - 1;
1283 let bit_width_usize = bit_width as usize;
1284 let mut bit_pos = 0usize;
1285 let input_ptr = input.as_ptr();
1286 let mut carry = first_value;
1287
1288 for i in 0..count - 1 {
1289 let byte_idx = bit_pos >> 3;
1290 let bit_offset = bit_pos & 7;
1291
1292 let word = unsafe { (input_ptr.add(byte_idx) as *const u64).read_unaligned() };
1294 let delta = ((word >> bit_offset) & mask) as u32;
1295
1296 carry = carry.wrapping_add(delta).wrapping_add(1);
1297 output[i + 1] = carry;
1298 bit_pos += bit_width_usize;
1299 }
1300 }
1301 }
1302}
1303
1304#[inline]
1312pub fn dequantize_uint8(input: &[u8], output: &mut [f32], scale: f32, min_val: f32, count: usize) {
1313 #[cfg(target_arch = "aarch64")]
1314 {
1315 if neon::is_available() {
1316 unsafe {
1317 dequantize_uint8_neon(input, output, scale, min_val, count);
1318 }
1319 return;
1320 }
1321 }
1322
1323 #[cfg(target_arch = "x86_64")]
1324 {
1325 if sse::is_available() {
1326 unsafe {
1327 dequantize_uint8_sse(input, output, scale, min_val, count);
1328 }
1329 return;
1330 }
1331 }
1332
1333 for i in 0..count {
1335 output[i] = input[i] as f32 * scale + min_val;
1336 }
1337}
1338
1339#[cfg(target_arch = "aarch64")]
1340#[target_feature(enable = "neon")]
1341#[allow(unsafe_op_in_unsafe_fn)]
1342unsafe fn dequantize_uint8_neon(
1343 input: &[u8],
1344 output: &mut [f32],
1345 scale: f32,
1346 min_val: f32,
1347 count: usize,
1348) {
1349 use std::arch::aarch64::*;
1350
1351 let scale_v = vdupq_n_f32(scale);
1352 let min_v = vdupq_n_f32(min_val);
1353
1354 let chunks = count / 16;
1355 let remainder = count % 16;
1356
1357 for chunk in 0..chunks {
1358 let base = chunk * 16;
1359 let in_ptr = input.as_ptr().add(base);
1360
1361 let bytes = vld1q_u8(in_ptr);
1363
1364 let low8 = vget_low_u8(bytes);
1366 let high8 = vget_high_u8(bytes);
1367
1368 let low16 = vmovl_u8(low8);
1369 let high16 = vmovl_u8(high8);
1370
1371 let u32_0 = vmovl_u16(vget_low_u16(low16));
1373 let u32_1 = vmovl_u16(vget_high_u16(low16));
1374 let u32_2 = vmovl_u16(vget_low_u16(high16));
1375 let u32_3 = vmovl_u16(vget_high_u16(high16));
1376
1377 let f32_0 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_0), scale_v);
1379 let f32_1 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_1), scale_v);
1380 let f32_2 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_2), scale_v);
1381 let f32_3 = vfmaq_f32(min_v, vcvtq_f32_u32(u32_3), scale_v);
1382
1383 let out_ptr = output.as_mut_ptr().add(base);
1384 vst1q_f32(out_ptr, f32_0);
1385 vst1q_f32(out_ptr.add(4), f32_1);
1386 vst1q_f32(out_ptr.add(8), f32_2);
1387 vst1q_f32(out_ptr.add(12), f32_3);
1388 }
1389
1390 let base = chunks * 16;
1392 for i in 0..remainder {
1393 output[base + i] = input[base + i] as f32 * scale + min_val;
1394 }
1395}
1396
1397#[cfg(target_arch = "x86_64")]
1398#[target_feature(enable = "sse2", enable = "sse4.1")]
1399#[allow(unsafe_op_in_unsafe_fn)]
1400unsafe fn dequantize_uint8_sse(
1401 input: &[u8],
1402 output: &mut [f32],
1403 scale: f32,
1404 min_val: f32,
1405 count: usize,
1406) {
1407 use std::arch::x86_64::*;
1408
1409 let scale_v = _mm_set1_ps(scale);
1410 let min_v = _mm_set1_ps(min_val);
1411
1412 let chunks = count / 4;
1413 let remainder = count % 4;
1414
1415 for chunk in 0..chunks {
1416 let base = chunk * 4;
1417
1418 let b0 = input[base] as i32;
1420 let b1 = input[base + 1] as i32;
1421 let b2 = input[base + 2] as i32;
1422 let b3 = input[base + 3] as i32;
1423
1424 let ints = _mm_set_epi32(b3, b2, b1, b0);
1425 let floats = _mm_cvtepi32_ps(ints);
1426
1427 let scaled = _mm_add_ps(_mm_mul_ps(floats, scale_v), min_v);
1429
1430 _mm_storeu_ps(output.as_mut_ptr().add(base), scaled);
1431 }
1432
1433 let base = chunks * 4;
1435 for i in 0..remainder {
1436 output[base + i] = input[base + i] as f32 * scale + min_val;
1437 }
1438}
1439
1440#[inline]
1442pub fn dot_product_f32(a: &[f32], b: &[f32], count: usize) -> f32 {
1443 #[cfg(target_arch = "aarch64")]
1444 {
1445 if neon::is_available() {
1446 return unsafe { dot_product_f32_neon(a, b, count) };
1447 }
1448 }
1449
1450 #[cfg(target_arch = "x86_64")]
1451 {
1452 if sse::is_available() {
1453 return unsafe { dot_product_f32_sse(a, b, count) };
1454 }
1455 }
1456
1457 let mut sum = 0.0f32;
1459 for i in 0..count {
1460 sum += a[i] * b[i];
1461 }
1462 sum
1463}
1464
1465#[cfg(target_arch = "aarch64")]
1466#[target_feature(enable = "neon")]
1467#[allow(unsafe_op_in_unsafe_fn)]
1468unsafe fn dot_product_f32_neon(a: &[f32], b: &[f32], count: usize) -> f32 {
1469 use std::arch::aarch64::*;
1470
1471 let chunks = count / 4;
1472 let remainder = count % 4;
1473
1474 let mut acc = vdupq_n_f32(0.0);
1475
1476 for chunk in 0..chunks {
1477 let base = chunk * 4;
1478 let va = vld1q_f32(a.as_ptr().add(base));
1479 let vb = vld1q_f32(b.as_ptr().add(base));
1480 acc = vfmaq_f32(acc, va, vb);
1481 }
1482
1483 let mut sum = vaddvq_f32(acc);
1485
1486 let base = chunks * 4;
1488 for i in 0..remainder {
1489 sum += a[base + i] * b[base + i];
1490 }
1491
1492 sum
1493}
1494
1495#[cfg(target_arch = "x86_64")]
1496#[target_feature(enable = "sse")]
1497#[allow(unsafe_op_in_unsafe_fn)]
1498unsafe fn dot_product_f32_sse(a: &[f32], b: &[f32], count: usize) -> f32 {
1499 use std::arch::x86_64::*;
1500
1501 let chunks = count / 4;
1502 let remainder = count % 4;
1503
1504 let mut acc = _mm_setzero_ps();
1505
1506 for chunk in 0..chunks {
1507 let base = chunk * 4;
1508 let va = _mm_loadu_ps(a.as_ptr().add(base));
1509 let vb = _mm_loadu_ps(b.as_ptr().add(base));
1510 acc = _mm_add_ps(acc, _mm_mul_ps(va, vb));
1511 }
1512
1513 let shuf = _mm_shuffle_ps(acc, acc, 0b10_11_00_01); let sums = _mm_add_ps(acc, shuf); let shuf2 = _mm_movehl_ps(sums, sums); let final_sum = _mm_add_ss(sums, shuf2); let mut sum = _mm_cvtss_f32(final_sum);
1520
1521 let base = chunks * 4;
1523 for i in 0..remainder {
1524 sum += a[base + i] * b[base + i];
1525 }
1526
1527 sum
1528}
1529
1530#[inline]
1532pub fn max_f32(values: &[f32], count: usize) -> f32 {
1533 if count == 0 {
1534 return f32::NEG_INFINITY;
1535 }
1536
1537 #[cfg(target_arch = "aarch64")]
1538 {
1539 if neon::is_available() {
1540 return unsafe { max_f32_neon(values, count) };
1541 }
1542 }
1543
1544 #[cfg(target_arch = "x86_64")]
1545 {
1546 if sse::is_available() {
1547 return unsafe { max_f32_sse(values, count) };
1548 }
1549 }
1550
1551 values[..count]
1553 .iter()
1554 .cloned()
1555 .fold(f32::NEG_INFINITY, f32::max)
1556}
1557
1558#[cfg(target_arch = "aarch64")]
1559#[target_feature(enable = "neon")]
1560#[allow(unsafe_op_in_unsafe_fn)]
1561unsafe fn max_f32_neon(values: &[f32], count: usize) -> f32 {
1562 use std::arch::aarch64::*;
1563
1564 let chunks = count / 4;
1565 let remainder = count % 4;
1566
1567 let mut max_v = vdupq_n_f32(f32::NEG_INFINITY);
1568
1569 for chunk in 0..chunks {
1570 let base = chunk * 4;
1571 let v = vld1q_f32(values.as_ptr().add(base));
1572 max_v = vmaxq_f32(max_v, v);
1573 }
1574
1575 let mut max_val = vmaxvq_f32(max_v);
1577
1578 let base = chunks * 4;
1580 for i in 0..remainder {
1581 max_val = max_val.max(values[base + i]);
1582 }
1583
1584 max_val
1585}
1586
1587#[cfg(target_arch = "x86_64")]
1588#[target_feature(enable = "sse")]
1589#[allow(unsafe_op_in_unsafe_fn)]
1590unsafe fn max_f32_sse(values: &[f32], count: usize) -> f32 {
1591 use std::arch::x86_64::*;
1592
1593 let chunks = count / 4;
1594 let remainder = count % 4;
1595
1596 let mut max_v = _mm_set1_ps(f32::NEG_INFINITY);
1597
1598 for chunk in 0..chunks {
1599 let base = chunk * 4;
1600 let v = _mm_loadu_ps(values.as_ptr().add(base));
1601 max_v = _mm_max_ps(max_v, v);
1602 }
1603
1604 let shuf = _mm_shuffle_ps(max_v, max_v, 0b10_11_00_01); let max1 = _mm_max_ps(max_v, shuf); let shuf2 = _mm_movehl_ps(max1, max1); let final_max = _mm_max_ss(max1, shuf2); let mut max_val = _mm_cvtss_f32(final_max);
1611
1612 let base = chunks * 4;
1614 for i in 0..remainder {
1615 max_val = max_val.max(values[base + i]);
1616 }
1617
1618 max_val
1619}
1620
1621#[cfg(test)]
1622mod tests {
1623 use super::*;
1624
1625 #[test]
1626 fn test_unpack_8bit() {
1627 let input: Vec<u8> = (0..128).collect();
1628 let mut output = vec![0u32; 128];
1629 unpack_8bit(&input, &mut output, 128);
1630
1631 for (i, &v) in output.iter().enumerate() {
1632 assert_eq!(v, i as u32);
1633 }
1634 }
1635
1636 #[test]
1637 fn test_unpack_16bit() {
1638 let mut input = vec![0u8; 256];
1639 for i in 0..128 {
1640 let val = (i * 100) as u16;
1641 input[i * 2] = val as u8;
1642 input[i * 2 + 1] = (val >> 8) as u8;
1643 }
1644
1645 let mut output = vec![0u32; 128];
1646 unpack_16bit(&input, &mut output, 128);
1647
1648 for (i, &v) in output.iter().enumerate() {
1649 assert_eq!(v, (i * 100) as u32);
1650 }
1651 }
1652
1653 #[test]
1654 fn test_unpack_32bit() {
1655 let mut input = vec![0u8; 512];
1656 for i in 0..128 {
1657 let val = (i * 1000) as u32;
1658 let bytes = val.to_le_bytes();
1659 input[i * 4..i * 4 + 4].copy_from_slice(&bytes);
1660 }
1661
1662 let mut output = vec![0u32; 128];
1663 unpack_32bit(&input, &mut output, 128);
1664
1665 for (i, &v) in output.iter().enumerate() {
1666 assert_eq!(v, (i * 1000) as u32);
1667 }
1668 }
1669
1670 #[test]
1671 fn test_delta_decode() {
1672 let deltas = vec![4u32, 4, 9, 19];
1676 let mut output = vec![0u32; 5];
1677
1678 delta_decode(&mut output, &deltas, 10, 5);
1679
1680 assert_eq!(output, vec![10, 15, 20, 30, 50]);
1681 }
1682
1683 #[test]
1684 fn test_add_one() {
1685 let mut values = vec![0u32, 1, 2, 3, 4, 5, 6, 7];
1686 add_one(&mut values, 8);
1687
1688 assert_eq!(values, vec![1, 2, 3, 4, 5, 6, 7, 8]);
1689 }
1690
1691 #[test]
1692 fn test_bits_needed() {
1693 assert_eq!(bits_needed(0), 0);
1694 assert_eq!(bits_needed(1), 1);
1695 assert_eq!(bits_needed(2), 2);
1696 assert_eq!(bits_needed(3), 2);
1697 assert_eq!(bits_needed(4), 3);
1698 assert_eq!(bits_needed(255), 8);
1699 assert_eq!(bits_needed(256), 9);
1700 assert_eq!(bits_needed(u32::MAX), 32);
1701 }
1702
1703 #[test]
1704 fn test_unpack_8bit_delta_decode() {
1705 let input: Vec<u8> = vec![4, 4, 9, 19];
1709 let mut output = vec![0u32; 5];
1710
1711 unpack_8bit_delta_decode(&input, &mut output, 10, 5);
1712
1713 assert_eq!(output, vec![10, 15, 20, 30, 50]);
1714 }
1715
1716 #[test]
1717 fn test_unpack_16bit_delta_decode() {
1718 let mut input = vec![0u8; 8];
1722 for (i, &delta) in [499u16, 499, 999, 1999].iter().enumerate() {
1723 input[i * 2] = delta as u8;
1724 input[i * 2 + 1] = (delta >> 8) as u8;
1725 }
1726 let mut output = vec![0u32; 5];
1727
1728 unpack_16bit_delta_decode(&input, &mut output, 100, 5);
1729
1730 assert_eq!(output, vec![100, 600, 1100, 2100, 4100]);
1731 }
1732
1733 #[test]
1734 fn test_fused_vs_separate_8bit() {
1735 let input: Vec<u8> = (0..127).collect();
1737 let first_value = 1000u32;
1738 let count = 128;
1739
1740 let mut unpacked = vec![0u32; 128];
1742 unpack_8bit(&input, &mut unpacked, 127);
1743 let mut separate_output = vec![0u32; 128];
1744 delta_decode(&mut separate_output, &unpacked, first_value, count);
1745
1746 let mut fused_output = vec![0u32; 128];
1748 unpack_8bit_delta_decode(&input, &mut fused_output, first_value, count);
1749
1750 assert_eq!(separate_output, fused_output);
1751 }
1752
1753 #[test]
1754 fn test_round_bit_width() {
1755 assert_eq!(round_bit_width(0), 0);
1756 assert_eq!(round_bit_width(1), 8);
1757 assert_eq!(round_bit_width(5), 8);
1758 assert_eq!(round_bit_width(8), 8);
1759 assert_eq!(round_bit_width(9), 16);
1760 assert_eq!(round_bit_width(12), 16);
1761 assert_eq!(round_bit_width(16), 16);
1762 assert_eq!(round_bit_width(17), 32);
1763 assert_eq!(round_bit_width(24), 32);
1764 assert_eq!(round_bit_width(32), 32);
1765 }
1766
1767 #[test]
1768 fn test_rounded_bitwidth_from_exact() {
1769 assert_eq!(RoundedBitWidth::from_exact(0), RoundedBitWidth::Zero);
1770 assert_eq!(RoundedBitWidth::from_exact(1), RoundedBitWidth::Bits8);
1771 assert_eq!(RoundedBitWidth::from_exact(8), RoundedBitWidth::Bits8);
1772 assert_eq!(RoundedBitWidth::from_exact(9), RoundedBitWidth::Bits16);
1773 assert_eq!(RoundedBitWidth::from_exact(16), RoundedBitWidth::Bits16);
1774 assert_eq!(RoundedBitWidth::from_exact(17), RoundedBitWidth::Bits32);
1775 assert_eq!(RoundedBitWidth::from_exact(32), RoundedBitWidth::Bits32);
1776 }
1777
1778 #[test]
1779 fn test_pack_unpack_rounded_8bit() {
1780 let values: Vec<u32> = (0..128).map(|i| i % 256).collect();
1781 let mut packed = vec![0u8; 128];
1782
1783 let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits8, &mut packed);
1784 assert_eq!(bytes_written, 128);
1785
1786 let mut unpacked = vec![0u32; 128];
1787 unpack_rounded(&packed, RoundedBitWidth::Bits8, &mut unpacked, 128);
1788
1789 assert_eq!(values, unpacked);
1790 }
1791
1792 #[test]
1793 fn test_pack_unpack_rounded_16bit() {
1794 let values: Vec<u32> = (0..128).map(|i| i * 100).collect();
1795 let mut packed = vec![0u8; 256];
1796
1797 let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits16, &mut packed);
1798 assert_eq!(bytes_written, 256);
1799
1800 let mut unpacked = vec![0u32; 128];
1801 unpack_rounded(&packed, RoundedBitWidth::Bits16, &mut unpacked, 128);
1802
1803 assert_eq!(values, unpacked);
1804 }
1805
1806 #[test]
1807 fn test_pack_unpack_rounded_32bit() {
1808 let values: Vec<u32> = (0..128).map(|i| i * 100000).collect();
1809 let mut packed = vec![0u8; 512];
1810
1811 let bytes_written = pack_rounded(&values, RoundedBitWidth::Bits32, &mut packed);
1812 assert_eq!(bytes_written, 512);
1813
1814 let mut unpacked = vec![0u32; 128];
1815 unpack_rounded(&packed, RoundedBitWidth::Bits32, &mut unpacked, 128);
1816
1817 assert_eq!(values, unpacked);
1818 }
1819
1820 #[test]
1821 fn test_unpack_rounded_delta_decode() {
1822 let input: Vec<u8> = vec![4, 4, 9, 19];
1827 let mut output = vec![0u32; 5];
1828
1829 unpack_rounded_delta_decode(&input, RoundedBitWidth::Bits8, &mut output, 10, 5);
1830
1831 assert_eq!(output, vec![10, 15, 20, 30, 50]);
1832 }
1833
1834 #[test]
1835 fn test_unpack_rounded_delta_decode_zero() {
1836 let input: Vec<u8> = vec![];
1838 let mut output = vec![0u32; 5];
1839
1840 unpack_rounded_delta_decode(&input, RoundedBitWidth::Zero, &mut output, 100, 5);
1841
1842 assert_eq!(output, vec![100, 101, 102, 103, 104]);
1843 }
1844
1845 #[test]
1850 fn test_dequantize_uint8() {
1851 let input: Vec<u8> = vec![0, 128, 255, 64, 192];
1852 let mut output = vec![0.0f32; 5];
1853 let scale = 0.1;
1854 let min_val = 1.0;
1855
1856 dequantize_uint8(&input, &mut output, scale, min_val, 5);
1857
1858 assert!((output[0] - 1.0).abs() < 1e-6); assert!((output[1] - 13.8).abs() < 1e-6); assert!((output[2] - 26.5).abs() < 1e-6); assert!((output[3] - 7.4).abs() < 1e-6); assert!((output[4] - 20.2).abs() < 1e-6); }
1865
1866 #[test]
1867 fn test_dequantize_uint8_large() {
1868 let input: Vec<u8> = (0..128).collect();
1870 let mut output = vec![0.0f32; 128];
1871 let scale = 2.0;
1872 let min_val = -10.0;
1873
1874 dequantize_uint8(&input, &mut output, scale, min_val, 128);
1875
1876 for (i, &out) in output.iter().enumerate().take(128) {
1877 let expected = i as f32 * scale + min_val;
1878 assert!(
1879 (out - expected).abs() < 1e-5,
1880 "Mismatch at {}: expected {}, got {}",
1881 i,
1882 expected,
1883 out
1884 );
1885 }
1886 }
1887
1888 #[test]
1889 fn test_dot_product_f32() {
1890 let a = vec![1.0f32, 2.0, 3.0, 4.0, 5.0];
1891 let b = vec![2.0f32, 3.0, 4.0, 5.0, 6.0];
1892
1893 let result = dot_product_f32(&a, &b, 5);
1894
1895 assert!((result - 70.0).abs() < 1e-5);
1897 }
1898
1899 #[test]
1900 fn test_dot_product_f32_large() {
1901 let a: Vec<f32> = (0..128).map(|i| i as f32).collect();
1903 let b: Vec<f32> = (0..128).map(|i| (i + 1) as f32).collect();
1904
1905 let result = dot_product_f32(&a, &b, 128);
1906
1907 let expected: f32 = (0..128).map(|i| (i as f32) * ((i + 1) as f32)).sum();
1909 assert!(
1910 (result - expected).abs() < 1e-3,
1911 "Expected {}, got {}",
1912 expected,
1913 result
1914 );
1915 }
1916
1917 #[test]
1918 fn test_max_f32() {
1919 let values = vec![1.0f32, 5.0, 3.0, 9.0, 2.0, 7.0];
1920 let result = max_f32(&values, 6);
1921 assert!((result - 9.0).abs() < 1e-6);
1922 }
1923
1924 #[test]
1925 fn test_max_f32_large() {
1926 let mut values: Vec<f32> = (0..128).map(|i| i as f32).collect();
1928 values[77] = 1000.0;
1929
1930 let result = max_f32(&values, 128);
1931 assert!((result - 1000.0).abs() < 1e-5);
1932 }
1933
1934 #[test]
1935 fn test_max_f32_negative() {
1936 let values = vec![-5.0f32, -2.0, -10.0, -1.0, -3.0];
1937 let result = max_f32(&values, 5);
1938 assert!((result - (-1.0)).abs() < 1e-6);
1939 }
1940
1941 #[test]
1942 fn test_max_f32_empty() {
1943 let values: Vec<f32> = vec![];
1944 let result = max_f32(&values, 0);
1945 assert_eq!(result, f32::NEG_INFINITY);
1946 }
1947}