hermes_core/structures/
horizontal_bp128.rs

1//! Bitpacking utilities for compact integer encoding
2//!
3//! Implements SIMD-friendly bitpacking for posting list compression.
4//! Uses PForDelta-style encoding with exceptions for outliers.
5//!
6//! Optimizations:
7//! - SIMD-accelerated unpacking (when available)
8//! - Hillis-Steele parallel prefix sum for delta decoding
9//! - Binary search within decoded blocks
10//! - Variable block sizes based on posting list length
11
12use super::simd;
13use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
14use std::io::{self, Read, Write};
15
16/// Block size for bitpacking (128 integers per block for SIMD alignment)
17pub const HORIZONTAL_BP128_BLOCK_SIZE: usize = 128;
18
19/// Small block size for short posting lists (better cache locality)
20pub const SMALL_BLOCK_SIZE: usize = 32;
21
22/// Threshold for using small blocks (posting lists shorter than this use small blocks)
23pub const SMALL_BLOCK_THRESHOLD: usize = 256;
24
25/// Pack a block of 128 u32 values using the specified bit width
26pub fn pack_block(
27    values: &[u32; HORIZONTAL_BP128_BLOCK_SIZE],
28    bit_width: u8,
29    output: &mut Vec<u8>,
30) {
31    if bit_width == 0 {
32        return;
33    }
34
35    let bytes_needed = (HORIZONTAL_BP128_BLOCK_SIZE * bit_width as usize).div_ceil(8);
36    let start = output.len();
37    output.resize(start + bytes_needed, 0);
38
39    let mut bit_pos = 0usize;
40    for &value in values {
41        let byte_idx = start + bit_pos / 8;
42        let bit_offset = bit_pos % 8;
43
44        // Write value across potentially multiple bytes
45        let mut remaining_bits = bit_width as usize;
46        let mut val = value;
47        let mut current_byte_idx = byte_idx;
48        let mut current_bit_offset = bit_offset;
49
50        while remaining_bits > 0 {
51            let bits_in_byte = (8 - current_bit_offset).min(remaining_bits);
52            let mask = ((1u32 << bits_in_byte) - 1) as u8;
53            output[current_byte_idx] |= ((val as u8) & mask) << current_bit_offset;
54            val >>= bits_in_byte;
55            remaining_bits -= bits_in_byte;
56            current_byte_idx += 1;
57            current_bit_offset = 0;
58        }
59
60        bit_pos += bit_width as usize;
61    }
62}
63
64/// Unpack a block of 128 u32 values
65/// Uses SIMD-optimized unpacking for common bit widths on supported architectures
66pub fn unpack_block(input: &[u8], bit_width: u8, output: &mut [u32; HORIZONTAL_BP128_BLOCK_SIZE]) {
67    if bit_width == 0 {
68        output.fill(0);
69        return;
70    }
71
72    // Fast path for byte-aligned bit widths with SIMD
73    match bit_width {
74        8 => simd::unpack_8bit(input, output, HORIZONTAL_BP128_BLOCK_SIZE),
75        16 => simd::unpack_16bit(input, output, HORIZONTAL_BP128_BLOCK_SIZE),
76        32 => simd::unpack_32bit(input, output, HORIZONTAL_BP128_BLOCK_SIZE),
77        _ => unpack_block_generic(input, bit_width, output),
78    }
79}
80
81/// Generic unpacking for arbitrary bit widths
82/// Optimized: reads 64 bits at a time using unaligned pointer read
83#[inline]
84fn unpack_block_generic(
85    input: &[u8],
86    bit_width: u8,
87    output: &mut [u32; HORIZONTAL_BP128_BLOCK_SIZE],
88) {
89    let mask = (1u64 << bit_width) - 1;
90    let bit_width_usize = bit_width as usize;
91    let mut bit_pos = 0usize;
92
93    // Ensure we have enough padding for the last read
94    // Max bytes needed: (127 * 32 + 32 + 7) / 8 = 516 bytes for 32-bit width
95    // For typical widths (1-20 bits), we need much less
96    let input_ptr = input.as_ptr();
97
98    for out in output.iter_mut() {
99        let byte_idx = bit_pos >> 3; // bit_pos / 8
100        let bit_offset = bit_pos & 7; // bit_pos % 8
101
102        // SAFETY: We read up to 8 bytes. The caller guarantees input has enough data.
103        // For 128 values at max 32 bits = 512 bytes, plus up to 7 bits offset = 513 bytes max.
104        let word = unsafe { (input_ptr.add(byte_idx) as *const u64).read_unaligned() };
105
106        *out = ((word >> bit_offset) & mask) as u32;
107        bit_pos += bit_width_usize;
108    }
109}
110
111/// Unpack a smaller block (for variable block sizes)
112/// Optimized: reads 64 bits at a time using unaligned pointer read
113#[inline]
114pub fn unpack_block_n(input: &[u8], bit_width: u8, output: &mut [u32], n: usize) {
115    if bit_width == 0 {
116        output[..n].fill(0);
117        return;
118    }
119
120    let mask = (1u64 << bit_width) - 1;
121    let bit_width_usize = bit_width as usize;
122    let mut bit_pos = 0usize;
123    let input_ptr = input.as_ptr();
124
125    for out in output[..n].iter_mut() {
126        let byte_idx = bit_pos >> 3;
127        let bit_offset = bit_pos & 7;
128
129        // SAFETY: Caller guarantees input has enough data for n values at bit_width bits each
130        let word = unsafe { (input_ptr.add(byte_idx) as *const u64).read_unaligned() };
131
132        *out = ((word >> bit_offset) & mask) as u32;
133        bit_pos += bit_width_usize;
134    }
135}
136
137/// Binary search within a decoded block to find first element >= target
138/// Returns the index within the block, or block.len() if not found
139#[inline]
140pub fn binary_search_block(block: &[u32], target: u32) -> usize {
141    match block.binary_search(&target) {
142        Ok(idx) => idx,
143        Err(idx) => idx,
144    }
145}
146
147/// Hillis-Steele inclusive prefix sum for 8 elements
148/// Computes: out[i] = sum(input[0..=i])
149/// This is the scalar fallback; SIMD version uses AVX2 intrinsics
150#[allow(dead_code)]
151#[inline]
152fn prefix_sum_8(deltas: &mut [u32; 8]) {
153    // Step 1: shift by 1
154    for i in (1..8).rev() {
155        deltas[i] = deltas[i].wrapping_add(deltas[i - 1]);
156    }
157    // Step 2: shift by 2
158    for i in (2..8).rev() {
159        deltas[i] = deltas[i].wrapping_add(deltas[i - 2]);
160    }
161    // Step 4: shift by 4
162    for i in (4..8).rev() {
163        deltas[i] = deltas[i].wrapping_add(deltas[i - 4]);
164    }
165}
166
167/// Bitpacked block with skip info for BlockWAND
168#[derive(Debug, Clone)]
169pub struct HorizontalBP128Block {
170    /// Delta-encoded doc_ids (bitpacked)
171    pub doc_deltas: Vec<u8>,
172    /// Bit width for doc deltas
173    pub doc_bit_width: u8,
174    /// Term frequencies (bitpacked)
175    pub term_freqs: Vec<u8>,
176    /// Bit width for term frequencies
177    pub tf_bit_width: u8,
178    /// First doc_id in this block (absolute)
179    pub first_doc_id: u32,
180    /// Last doc_id in this block (absolute)
181    pub last_doc_id: u32,
182    /// Number of docs in this block
183    pub num_docs: u16,
184    /// Maximum term frequency in this block (for BM25F upper bound calculation)
185    pub max_tf: u32,
186    /// Maximum impact score in this block (for MaxScore/WAND)
187    /// This is computed using BM25F with conservative length normalization
188    pub max_block_score: f32,
189}
190
191impl HorizontalBP128Block {
192    /// Serialize the block
193    pub fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
194        writer.write_u32::<LittleEndian>(self.first_doc_id)?;
195        writer.write_u32::<LittleEndian>(self.last_doc_id)?;
196        writer.write_u16::<LittleEndian>(self.num_docs)?;
197        writer.write_u8(self.doc_bit_width)?;
198        writer.write_u8(self.tf_bit_width)?;
199        writer.write_u32::<LittleEndian>(self.max_tf)?;
200        writer.write_f32::<LittleEndian>(self.max_block_score)?;
201
202        // Write doc deltas
203        writer.write_u16::<LittleEndian>(self.doc_deltas.len() as u16)?;
204        writer.write_all(&self.doc_deltas)?;
205
206        // Write term freqs
207        writer.write_u16::<LittleEndian>(self.term_freqs.len() as u16)?;
208        writer.write_all(&self.term_freqs)?;
209
210        Ok(())
211    }
212
213    /// Deserialize a block
214    pub fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
215        let first_doc_id = reader.read_u32::<LittleEndian>()?;
216        let last_doc_id = reader.read_u32::<LittleEndian>()?;
217        let num_docs = reader.read_u16::<LittleEndian>()?;
218        let doc_bit_width = reader.read_u8()?;
219        let tf_bit_width = reader.read_u8()?;
220        let max_tf = reader.read_u32::<LittleEndian>()?;
221        let max_block_score = reader.read_f32::<LittleEndian>()?;
222
223        let doc_deltas_len = reader.read_u16::<LittleEndian>()? as usize;
224        let mut doc_deltas = vec![0u8; doc_deltas_len];
225        reader.read_exact(&mut doc_deltas)?;
226
227        let term_freqs_len = reader.read_u16::<LittleEndian>()? as usize;
228        let mut term_freqs = vec![0u8; term_freqs_len];
229        reader.read_exact(&mut term_freqs)?;
230
231        Ok(Self {
232            doc_deltas,
233            doc_bit_width,
234            term_freqs,
235            tf_bit_width,
236            first_doc_id,
237            last_doc_id,
238            num_docs,
239            max_tf,
240            max_block_score,
241        })
242    }
243
244    /// Decode doc_ids from this block
245    pub fn decode_doc_ids(&self) -> Vec<u32> {
246        if self.num_docs == 0 {
247            return Vec::new();
248        }
249
250        let count = self.num_docs as usize;
251        let mut deltas = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
252        unpack_block(&self.doc_deltas, self.doc_bit_width, &mut deltas);
253
254        let mut output = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
255        simd::delta_decode(&mut output, &deltas, self.first_doc_id, count);
256
257        output[..count].to_vec()
258    }
259
260    /// Decode term frequencies from this block
261    pub fn decode_term_freqs(&self) -> Vec<u32> {
262        if self.num_docs == 0 {
263            return Vec::new();
264        }
265
266        let mut tfs = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
267        unpack_block(&self.term_freqs, self.tf_bit_width, &mut tfs);
268
269        // TF is stored as tf-1, so add 1 back
270        tfs[..self.num_docs as usize]
271            .iter()
272            .map(|&tf| tf + 1)
273            .collect()
274    }
275}
276
277/// Bitpacked posting list with block-level skip info
278#[derive(Debug, Clone)]
279pub struct HorizontalBP128PostingList {
280    /// Blocks of postings
281    pub blocks: Vec<HorizontalBP128Block>,
282    /// Total document count
283    pub doc_count: u32,
284    /// Maximum score across all blocks (for MaxScore pruning)
285    pub max_score: f32,
286}
287
288impl HorizontalBP128PostingList {
289    /// Create from raw doc_ids and term frequencies
290    pub fn from_postings(doc_ids: &[u32], term_freqs: &[u32], idf: f32) -> Self {
291        assert_eq!(doc_ids.len(), term_freqs.len());
292
293        if doc_ids.is_empty() {
294            return Self {
295                blocks: Vec::new(),
296                doc_count: 0,
297                max_score: 0.0,
298            };
299        }
300
301        let mut blocks = Vec::new();
302        let mut max_score = 0.0f32;
303        let mut i = 0;
304
305        while i < doc_ids.len() {
306            let block_end = (i + HORIZONTAL_BP128_BLOCK_SIZE).min(doc_ids.len());
307            let block_docs = &doc_ids[i..block_end];
308            let block_tfs = &term_freqs[i..block_end];
309
310            let block = Self::create_block(block_docs, block_tfs, idf);
311            max_score = max_score.max(block.max_block_score);
312            blocks.push(block);
313
314            i = block_end;
315        }
316
317        Self {
318            blocks,
319            doc_count: doc_ids.len() as u32,
320            max_score,
321        }
322    }
323
324    /// BM25F parameters for block-max score calculation
325    const K1: f32 = 1.2;
326    const B: f32 = 0.75;
327
328    /// Compute BM25F upper bound score for a given max_tf and IDF
329    /// Uses conservative length normalization (assumes shortest possible document)
330    #[inline]
331    pub fn compute_bm25f_upper_bound(max_tf: u32, idf: f32, field_boost: f32) -> f32 {
332        let tf = max_tf as f32;
333        // Conservative upper bound: assume dl=0, so length_norm = 1 - b = 0.25
334        // This gives the maximum possible score for this tf
335        let min_length_norm = 1.0 - Self::B;
336        let tf_norm =
337            (tf * field_boost * (Self::K1 + 1.0)) / (tf * field_boost + Self::K1 * min_length_norm);
338        idf * tf_norm
339    }
340
341    fn create_block(doc_ids: &[u32], term_freqs: &[u32], idf: f32) -> HorizontalBP128Block {
342        let num_docs = doc_ids.len();
343        let first_doc_id = doc_ids[0];
344        let last_doc_id = *doc_ids.last().unwrap();
345
346        // Compute deltas (delta - 1 to save one bit since deltas are always >= 1)
347        let mut deltas = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
348        let mut max_delta = 0u32;
349        for j in 1..num_docs {
350            let delta = doc_ids[j] - doc_ids[j - 1] - 1;
351            deltas[j - 1] = delta;
352            max_delta = max_delta.max(delta);
353        }
354
355        // Compute max TF and prepare TF array (store tf-1)
356        let mut tfs = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
357        let mut max_tf = 0u32;
358
359        for (j, &tf) in term_freqs.iter().enumerate() {
360            tfs[j] = tf - 1; // Store tf-1
361            max_tf = max_tf.max(tf);
362        }
363
364        // BM25F upper bound score using conservative length normalization
365        // field_boost defaults to 1.0 at index time; can be adjusted at query time
366        let max_block_score = Self::compute_bm25f_upper_bound(max_tf, idf, 1.0);
367
368        let doc_bit_width = simd::bits_needed(max_delta);
369        let tf_bit_width = simd::bits_needed(max_tf.saturating_sub(1)); // Store tf-1
370
371        let mut doc_deltas = Vec::new();
372        pack_block(&deltas, doc_bit_width, &mut doc_deltas);
373
374        let mut term_freqs_packed = Vec::new();
375        pack_block(&tfs, tf_bit_width, &mut term_freqs_packed);
376
377        HorizontalBP128Block {
378            doc_deltas,
379            doc_bit_width,
380            term_freqs: term_freqs_packed,
381            tf_bit_width,
382            first_doc_id,
383            last_doc_id,
384            num_docs: num_docs as u16,
385            max_tf,
386            max_block_score,
387        }
388    }
389
390    /// Serialize the posting list
391    pub fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
392        writer.write_u32::<LittleEndian>(self.doc_count)?;
393        writer.write_f32::<LittleEndian>(self.max_score)?;
394        writer.write_u32::<LittleEndian>(self.blocks.len() as u32)?;
395
396        for block in &self.blocks {
397            block.serialize(writer)?;
398        }
399
400        Ok(())
401    }
402
403    /// Deserialize a posting list
404    pub fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
405        let doc_count = reader.read_u32::<LittleEndian>()?;
406        let max_score = reader.read_f32::<LittleEndian>()?;
407        let num_blocks = reader.read_u32::<LittleEndian>()? as usize;
408
409        let mut blocks = Vec::with_capacity(num_blocks);
410        for _ in 0..num_blocks {
411            blocks.push(HorizontalBP128Block::deserialize(reader)?);
412        }
413
414        Ok(Self {
415            blocks,
416            doc_count,
417            max_score,
418        })
419    }
420
421    /// Create an iterator
422    pub fn iterator(&self) -> HorizontalBP128Iterator<'_> {
423        HorizontalBP128Iterator::new(self)
424    }
425}
426
427/// Iterator over bitpacked posting list with block skipping support
428pub struct HorizontalBP128Iterator<'a> {
429    posting_list: &'a HorizontalBP128PostingList,
430    /// Current block index
431    current_block: usize,
432    /// Decoded doc_ids for current block
433    block_doc_ids: Vec<u32>,
434    /// Decoded term freqs for current block
435    block_term_freqs: Vec<u32>,
436    /// Position within current block
437    pos_in_block: usize,
438    /// Whether we've exhausted all postings
439    exhausted: bool,
440}
441
442impl<'a> HorizontalBP128Iterator<'a> {
443    pub fn new(posting_list: &'a HorizontalBP128PostingList) -> Self {
444        let mut iter = Self {
445            posting_list,
446            current_block: 0,
447            block_doc_ids: Vec::new(),
448            block_term_freqs: Vec::new(),
449            pos_in_block: 0,
450            exhausted: posting_list.blocks.is_empty(),
451        };
452
453        if !iter.exhausted {
454            iter.decode_current_block();
455        }
456
457        iter
458    }
459
460    fn decode_current_block(&mut self) {
461        let block = &self.posting_list.blocks[self.current_block];
462        self.block_doc_ids = block.decode_doc_ids();
463        self.block_term_freqs = block.decode_term_freqs();
464        self.pos_in_block = 0;
465    }
466
467    /// Current document ID
468    pub fn doc(&self) -> u32 {
469        if self.exhausted {
470            u32::MAX
471        } else {
472            self.block_doc_ids[self.pos_in_block]
473        }
474    }
475
476    /// Current term frequency
477    pub fn term_freq(&self) -> u32 {
478        if self.exhausted {
479            0
480        } else {
481            self.block_term_freqs[self.pos_in_block]
482        }
483    }
484
485    /// Advance to next document
486    pub fn advance(&mut self) -> u32 {
487        if self.exhausted {
488            return u32::MAX;
489        }
490
491        self.pos_in_block += 1;
492
493        if self.pos_in_block >= self.block_doc_ids.len() {
494            self.current_block += 1;
495            if self.current_block >= self.posting_list.blocks.len() {
496                self.exhausted = true;
497                return u32::MAX;
498            }
499            self.decode_current_block();
500        }
501
502        self.doc()
503    }
504
505    /// Seek to first doc >= target (with block skipping and binary search)
506    pub fn seek(&mut self, target: u32) -> u32 {
507        if self.exhausted {
508            return u32::MAX;
509        }
510
511        // Binary search to find the right block
512        let block_idx = self.posting_list.blocks[self.current_block..].binary_search_by(|block| {
513            if block.last_doc_id < target {
514                std::cmp::Ordering::Less
515            } else if block.first_doc_id > target {
516                std::cmp::Ordering::Greater
517            } else {
518                std::cmp::Ordering::Equal
519            }
520        });
521
522        let target_block = match block_idx {
523            Ok(idx) => self.current_block + idx,
524            Err(idx) => {
525                if self.current_block + idx >= self.posting_list.blocks.len() {
526                    self.exhausted = true;
527                    return u32::MAX;
528                }
529                self.current_block + idx
530            }
531        };
532
533        // Move to target block if different
534        if target_block != self.current_block {
535            self.current_block = target_block;
536            self.decode_current_block();
537        } else if self.block_doc_ids.is_empty() {
538            self.decode_current_block();
539        }
540
541        // Binary search within the block
542        let pos = binary_search_block(&self.block_doc_ids[self.pos_in_block..], target);
543        self.pos_in_block += pos;
544
545        if self.pos_in_block >= self.block_doc_ids.len() {
546            // Target not in this block, move to next
547            self.current_block += 1;
548            if self.current_block >= self.posting_list.blocks.len() {
549                self.exhausted = true;
550                return u32::MAX;
551            }
552            self.decode_current_block();
553        }
554
555        self.doc()
556    }
557
558    /// Get max score for remaining blocks (for MaxScore optimization)
559    pub fn max_remaining_score(&self) -> f32 {
560        if self.exhausted {
561            return 0.0;
562        }
563
564        self.posting_list.blocks[self.current_block..]
565            .iter()
566            .map(|b| b.max_block_score)
567            .fold(0.0f32, |a, b| a.max(b))
568    }
569
570    /// Skip to next block (for BlockWAND)
571    pub fn skip_to_block_with_doc(&mut self, target: u32) -> Option<(u32, f32)> {
572        while self.current_block < self.posting_list.blocks.len() {
573            let block = &self.posting_list.blocks[self.current_block];
574            if block.last_doc_id >= target {
575                return Some((block.first_doc_id, block.max_block_score));
576            }
577            self.current_block += 1;
578        }
579        self.exhausted = true;
580        None
581    }
582
583    /// Get current block's max score
584    pub fn current_block_max_score(&self) -> f32 {
585        if self.exhausted {
586            0.0
587        } else {
588            self.posting_list.blocks[self.current_block].max_block_score
589        }
590    }
591
592    /// Get current block's max term frequency (for BM25F upper bound recalculation)
593    pub fn current_block_max_tf(&self) -> u32 {
594        if self.exhausted {
595            0
596        } else {
597            self.posting_list.blocks[self.current_block].max_tf
598        }
599    }
600}
601
602#[cfg(test)]
603mod tests {
604    use super::*;
605
606    #[test]
607    fn test_bits_needed() {
608        assert_eq!(simd::bits_needed(0), 0);
609        assert_eq!(simd::bits_needed(1), 1);
610        assert_eq!(simd::bits_needed(2), 2);
611        assert_eq!(simd::bits_needed(3), 2);
612        assert_eq!(simd::bits_needed(255), 8);
613        assert_eq!(simd::bits_needed(256), 9);
614    }
615
616    #[test]
617    fn test_pack_unpack() {
618        let mut values = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
619        for (i, value) in values.iter_mut().enumerate() {
620            *value = (i * 3) as u32;
621        }
622
623        let max_val = values.iter().max().copied().unwrap();
624        let bit_width = simd::bits_needed(max_val);
625
626        let mut packed = Vec::new();
627        pack_block(&values, bit_width, &mut packed);
628
629        let mut unpacked = [0u32; HORIZONTAL_BP128_BLOCK_SIZE];
630        unpack_block(&packed, bit_width, &mut unpacked);
631
632        assert_eq!(values, unpacked);
633    }
634
635    #[test]
636    fn test_bitpacked_posting_list() {
637        let doc_ids: Vec<u32> = (0..200).map(|i| i * 2).collect();
638        let term_freqs: Vec<u32> = (0..200).map(|i| (i % 10) + 1).collect();
639
640        let posting_list = HorizontalBP128PostingList::from_postings(&doc_ids, &term_freqs, 1.0);
641
642        assert_eq!(posting_list.doc_count, 200);
643        assert_eq!(posting_list.blocks.len(), 2); // 128 + 72
644
645        // Test iteration
646        let mut iter = posting_list.iterator();
647        for (i, &expected_doc) in doc_ids.iter().enumerate() {
648            assert_eq!(iter.doc(), expected_doc, "Mismatch at position {}", i);
649            assert_eq!(iter.term_freq(), term_freqs[i]);
650            if i < doc_ids.len() - 1 {
651                iter.advance();
652            }
653        }
654    }
655
656    #[test]
657    fn test_bitpacked_seek() {
658        let doc_ids: Vec<u32> = vec![10, 20, 30, 100, 200, 300, 1000, 2000];
659        let term_freqs: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8];
660
661        let posting_list = HorizontalBP128PostingList::from_postings(&doc_ids, &term_freqs, 1.0);
662        let mut iter = posting_list.iterator();
663
664        assert_eq!(iter.seek(25), 30);
665        assert_eq!(iter.seek(100), 100);
666        assert_eq!(iter.seek(500), 1000);
667        assert_eq!(iter.seek(3000), u32::MAX);
668    }
669
670    #[test]
671    fn test_serialization() {
672        let doc_ids: Vec<u32> = (0..50).map(|i| i * 3).collect();
673        let term_freqs: Vec<u32> = (0..50).map(|_| 1).collect();
674
675        let posting_list = HorizontalBP128PostingList::from_postings(&doc_ids, &term_freqs, 1.5);
676
677        let mut buffer = Vec::new();
678        posting_list.serialize(&mut buffer).unwrap();
679
680        let restored = HorizontalBP128PostingList::deserialize(&mut &buffer[..]).unwrap();
681
682        assert_eq!(restored.doc_count, posting_list.doc_count);
683        assert_eq!(restored.blocks.len(), posting_list.blocks.len());
684
685        // Verify iteration produces same results
686        let mut iter1 = posting_list.iterator();
687        let mut iter2 = restored.iterator();
688
689        while iter1.doc() != u32::MAX {
690            assert_eq!(iter1.doc(), iter2.doc());
691            assert_eq!(iter1.term_freq(), iter2.term_freq());
692            iter1.advance();
693            iter2.advance();
694        }
695    }
696
697    #[test]
698    fn test_hillis_steele_prefix_sum() {
699        // Test the prefix_sum_8 function directly
700        let mut deltas = [1u32, 2, 3, 4, 5, 6, 7, 8];
701        prefix_sum_8(&mut deltas);
702        // Expected: [1, 1+2, 1+2+3, 1+2+3+4, ...]
703        assert_eq!(deltas, [1, 3, 6, 10, 15, 21, 28, 36]);
704
705        // Test simd::delta_decode
706        let deltas2 = [0u32; 16]; // gaps of 1 (stored as 0)
707        let mut output2 = [0u32; 16];
708        simd::delta_decode(&mut output2, &deltas2, 100, 8);
709        // first_doc_id=100, then +1 each
710        assert_eq!(&output2[..8], &[100, 101, 102, 103, 104, 105, 106, 107]);
711
712        // Test with varying deltas (stored as gap-1)
713        // gaps: 2, 1, 3, 1, 5, 1, 1 → stored as: 1, 0, 2, 0, 4, 0, 0
714        let deltas3 = [1u32, 0, 2, 0, 4, 0, 0, 0];
715        let mut output3 = [0u32; 8];
716        simd::delta_decode(&mut output3, &deltas3, 10, 8);
717        // 10, 10+2=12, 12+1=13, 13+3=16, 16+1=17, 17+5=22, 22+1=23, 23+1=24
718        assert_eq!(&output3[..8], &[10, 12, 13, 16, 17, 22, 23, 24]);
719    }
720
721    #[test]
722    fn test_delta_decode_large_block() {
723        // Test with a full 128-element block
724        let doc_ids: Vec<u32> = (0..128).map(|i| i * 5 + 100).collect();
725        let term_freqs: Vec<u32> = vec![1; 128];
726
727        let posting_list = HorizontalBP128PostingList::from_postings(&doc_ids, &term_freqs, 1.0);
728        let decoded = posting_list.blocks[0].decode_doc_ids();
729
730        assert_eq!(decoded.len(), 128);
731        for (i, (&expected, &actual)) in doc_ids.iter().zip(decoded.iter()).enumerate() {
732            assert_eq!(expected, actual, "Mismatch at position {}", i);
733        }
734    }
735}