1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//! Module with time related utilities.
//!
//! This module provides three types.
//!
//! - [`Timer`](Timer) is a stand-alone future that returns
//!   [`DeadlinePassed`](DeadlinePassed) once the deadline has passed.
//! - [`Deadline`](Deadline) wraps another [`Future`] and checks the deadline
//!   each time it's polled.
//! - [`Interval`](Interval) implements [`Stream`] which yields an item
//!   after the deadline has passed each interval.

use std::future::Future;
use std::mem::ManuallyDrop;
use std::pin::Pin;
use std::stream::Stream;
use std::task::{self, Poll};
use std::time::{Duration, Instant};
use std::{io, ptr};

use crate::{actor, rt};

/// Type returned when the deadline has passed.
///
/// Can be converted into [`io::ErrorKind::TimedOut`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct DeadlinePassed;

impl From<DeadlinePassed> for io::Error {
    fn from(_: DeadlinePassed) -> io::Error {
        io::ErrorKind::TimedOut.into()
    }
}

/// A [`Future`] that represents a timer.
///
/// If this future returns [`Poll::Ready`]`(`[`DeadlinePassed`]`)` it means that
/// the deadline has passed. If it returns [`Poll::Pending`] it's not yet
/// passed.
///
/// # Examples
///
/// ```
/// # #![feature(never_type)]
/// #
/// use std::time::Duration;
/// # use std::time::Instant;
///
/// use heph::actor;
/// # use heph::supervisor::NoSupervisor;
/// # use heph::{rt, ActorOptions, Runtime, RuntimeRef};
/// use heph::rt::ThreadLocal;
/// use heph::timer::Timer;
///
/// # fn main() -> Result<(), rt::Error> {
/// #     let mut runtime = Runtime::new()?;
/// #     runtime.run_on_workers(setup)?;
/// #     runtime.start()
/// # }
/// #
/// #
/// # fn setup(mut runtime_ref: RuntimeRef) -> Result<(), !> {
/// #   let actor = actor as fn(_) -> _;
/// #   let options = ActorOptions::default();
/// #   runtime_ref.spawn_local(NoSupervisor, actor, (), options);
/// #   Ok(())
/// # }
/// #
/// async fn actor(mut ctx: actor::Context<!, ThreadLocal>) {
/// #   let start = Instant::now();
///     // Create a timer, this will be ready once the timeout has passed.
///     let timeout = Timer::after(&mut ctx, Duration::from_millis(200));
/// #   assert!(timeout.deadline() >= start + Duration::from_millis(200));
///
///     // Wait for the timer to pass.
///     timeout.await;
/// #   assert!(Instant::now() >= start + Duration::from_millis(200));
///     println!("200 milliseconds have passed!");
/// }
/// ```
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Timer<RT: rt::Access> {
    deadline: Instant,
    rt: RT,
    // NOTE: when adding fields also add to [`Timer::wrap`].
}

impl<RT: rt::Access> Timer<RT> {
    /// Create a new `Timer`.
    pub fn at<M>(ctx: &mut actor::Context<M, RT>, deadline: Instant) -> Timer<RT>
    where
        RT: Clone,
    {
        let mut rt = ctx.runtime().clone();
        rt.add_deadline(deadline);
        Timer { deadline, rt }
    }

    /// Create a new timer, based on a timeout.
    ///
    /// Same as calling `Timer::at(&mut ctx, Instant::now() + timeout)`.
    pub fn after<M>(ctx: &mut actor::Context<M, RT>, timeout: Duration) -> Timer<RT>
    where
        RT: Clone,
    {
        Timer::at(ctx, Instant::now() + timeout)
    }

    /// Returns the deadline set for this `Timer`.
    pub const fn deadline(&self) -> Instant {
        self.deadline
    }

    /// Returns `true` if the deadline has passed.
    pub fn has_passed(&self) -> bool {
        self.deadline <= Instant::now()
    }

    /// Wrap a future creating a new `Deadline`.
    pub fn wrap<Fut>(self, future: Fut) -> Deadline<Fut, RT> {
        // We don't want to run the destructor as that would remove the
        // deadline, which we need in `Deadline` as well. As a bonus we can
        // safetly move `RT` without having to clone it (which normally can't be
        // done with `Drop` types).
        // Safety: See [`ManuallyDrop::take`], rather then taking the entire
        // thing struct at once we read (move out of) value by value.
        let this = ManuallyDrop::new(self);
        let deadline = unsafe { ptr::addr_of!(this.deadline).read() };
        let rt = unsafe { ptr::addr_of!(this.rt).read() };
        Deadline {
            deadline,
            future,
            rt,
        }
    }
}

impl<RT: rt::Access> Future for Timer<RT> {
    type Output = DeadlinePassed;

    fn poll(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> Poll<Self::Output> {
        if self.has_passed() {
            Poll::Ready(DeadlinePassed)
        } else {
            Poll::Pending
        }
    }
}

impl<RT: rt::Access> Unpin for Timer<RT> {}

impl<RT: rt::Access> actor::Bound<RT> for Timer<RT> {
    type Error = io::Error;

    fn bind_to<M>(&mut self, ctx: &mut actor::Context<M, RT>) -> io::Result<()> {
        let old_pid = self.rt.change_pid(ctx.runtime_ref().pid());
        self.rt.change_deadline(old_pid, self.deadline);
        Ok(())
    }
}

impl<RT: rt::Access> Drop for Timer<RT> {
    fn drop(&mut self) {
        self.rt.remove_deadline(self.deadline);
    }
}

/// A [`Future`] that wraps another future setting a deadline for it.
///
/// When this future is polled it first checks if the deadline has passed, if so
/// it returns [`Poll::Ready`]`(Err(`[`DeadlinePassed`]`.into()))`. Otherwise
/// this will poll the future it wraps.
///
/// # Notes
///
/// This type can also be created using [`Timer::wrap`], this is useful when
/// dealing with lifetime issue, e.g. when calling
/// [`actor::Context::receive_next`] and wrapping that in a `Deadline`.
///
/// # Examples
///
/// Setting a timeout for a future.
///
/// ```
/// use std::io;
/// # use std::future::Future;
/// # use std::pin::Pin;
/// # use std::task::{self, Poll};
/// use std::time::Duration;
/// # use std::time::Instant;
///
/// use heph::actor;
/// # use heph::supervisor::NoSupervisor;
/// use heph::rt::ThreadSafe;
/// # use heph::{rt, ActorOptions, Runtime};
/// use heph::timer::Deadline;
///
/// # fn main() -> Result<(), rt::Error> {
/// #     let actor = actor as fn(_) -> _;
/// #     let options = ActorOptions::default();
/// #     let mut rt = Runtime::new()?;
/// #     let _ = rt.spawn(NoSupervisor, actor, (), options);
/// #     rt.start()
/// # }
/// #
/// # struct IoFuture;
/// #
/// # impl Future for IoFuture {
/// #     type Output = io::Result<()>;
/// #     fn poll(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> Poll<Self::Output> {
/// #         Poll::Pending
/// #     }
/// # }
/// #
/// async fn actor(mut ctx: actor::Context<String, ThreadSafe>) {
///     // `OtherFuture` is a type that implements `Future`.
///     let future = IoFuture;
///     // Create our deadline.
/// #   let start = Instant::now();
///     let deadline_future = Deadline::after(&mut ctx, Duration::from_millis(100), future);
/// #   assert!(deadline_future.deadline() >= start + Duration::from_millis(100));
///
///     // Now we await the results.
///     let result = deadline_future.await;
/// #   assert!(Instant::now() >= start + Duration::from_millis(100));
///     // However the other future is rather slow, so the timeout will pass.
///     assert!(result.is_err());
///     assert_eq!(result.unwrap_err().kind(), io::ErrorKind::TimedOut);
/// }
/// ```
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Deadline<Fut, RT: rt::Access> {
    deadline: Instant,
    future: Fut,
    rt: RT,
    // NOTE: when adding fields also add to [`Deadline::into_inner`].
}

impl<Fut, RT: rt::Access> Deadline<Fut, RT> {
    /// Create a new `Deadline`.
    pub fn at<M>(
        ctx: &mut actor::Context<M, RT>,
        deadline: Instant,
        future: Fut,
    ) -> Deadline<Fut, RT>
    where
        RT: Clone,
    {
        let mut rt = ctx.runtime().clone();
        rt.add_deadline(deadline);
        Deadline {
            deadline,
            future,
            rt,
        }
    }

    /// Create a new deadline based on a timeout.
    ///
    /// Same as calling `Deadline::at(&mut ctx, Instant::now() + timeout,
    /// future)`.
    pub fn after<M>(
        ctx: &mut actor::Context<M, RT>,
        timeout: Duration,
        future: Fut,
    ) -> Deadline<Fut, RT>
    where
        RT: Clone,
    {
        Deadline::at(ctx, Instant::now() + timeout, future)
    }

    /// Returns the deadline set for this `Deadline`.
    pub const fn deadline(&self) -> Instant {
        self.deadline
    }

    /// Returns `true` if the deadline has passed.
    pub fn has_passed(&self) -> bool {
        self.deadline <= Instant::now()
    }

    /// Returns a reference to the wrapped future.
    pub const fn get_ref(&self) -> &Fut {
        &self.future
    }

    /// Returns a mutable reference to the wrapped future.
    pub fn get_mut(&mut self) -> &mut Fut {
        &mut self.future
    }

    /// Returns the wrapped future.
    pub fn into_inner(mut self) -> Fut {
        self.rt.remove_deadline(self.deadline);
        // Safety: See [`ManuallyDrop::take`], rather then taking the entire
        // thing struct at once we read (move out of) value by value.
        let mut this = ManuallyDrop::new(self);
        unsafe { ptr::addr_of_mut!(this.deadline).drop_in_place() }
        unsafe { ptr::addr_of_mut!(this.rt).drop_in_place() }
        unsafe { ptr::addr_of!(this.future).read() }
    }
}

/* TODO: add this once `specialization` feature is stabilised.
impl<Fut> Future for Deadline<Fut>
where
    Fut: Future,
{
    type Output = Result<Fut::Output, DeadlinePassed>;

    fn poll(self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<Self::Output> {
        if self.has_passed() {
            Poll::Ready(Err(DeadlinePassed))
        } else {
            // Safety: this is safe because we're not moving the future.
            let future = unsafe {
                Pin::map_unchecked_mut(self, |this| &mut this.future)
            };
            future.poll(ctx).map(Ok)
        }
    }
}
*/

impl<Fut, RT: rt::Access, T, E> Future for Deadline<Fut, RT>
where
    Fut: Future<Output = Result<T, E>>,
    E: From<DeadlinePassed>,
{
    type Output = Result<T, E>;

    fn poll(self: Pin<&mut Self>, ctx: &mut task::Context<'_>) -> Poll<Self::Output> {
        if self.has_passed() {
            Poll::Ready(Err(DeadlinePassed.into()))
        } else {
            // Safety: this is safe because we're not moving the future.
            let future = unsafe { Pin::map_unchecked_mut(self, |this| &mut this.future) };
            future.poll(ctx)
        }
    }
}

impl<Fut: Unpin, RT: rt::Access> Unpin for Deadline<Fut, RT> {}

impl<Fut, RT: rt::Access> actor::Bound<RT> for Deadline<Fut, RT> {
    type Error = io::Error;

    fn bind_to<M>(&mut self, ctx: &mut actor::Context<M, RT>) -> io::Result<()> {
        let old_pid = self.rt.change_pid(ctx.runtime_ref().pid());
        self.rt.change_deadline(old_pid, self.deadline);
        Ok(())
    }
}

impl<Fut, RT: rt::Access> Drop for Deadline<Fut, RT> {
    fn drop(&mut self) {
        self.rt.remove_deadline(self.deadline);
    }
}

/// A [`Stream`] that yields an item after an interval has passed.
///
/// This stream will never return `None`, it will always set another deadline
/// and yield another item after the deadline has passed.
///
/// # Notes
///
/// The next deadline will always will be set after this returns `Poll::Ready`.
/// This means that if the interval is very short and the stream is not polled
/// often enough it's possible that the actual time between yielding two values
/// can become bigger then the specified interval.
///
/// # Examples
///
/// The following example will print hello world (roughly) every 200
/// milliseconds.
///
/// ```
/// # #![feature(never_type)]
/// #
/// use std::time::Duration;
/// # use std::time::Instant;
///
/// use heph::actor;
/// # use heph::supervisor::NoSupervisor;
/// # use heph::{rt, ActorOptions, Runtime, RuntimeRef};
/// use heph::rt::ThreadLocal;
/// use heph::timer::Interval;
/// use heph::util::next;
/// #
/// # fn main() -> Result<(), rt::Error> {
/// #     let mut runtime = Runtime::new()?;
/// #     runtime.run_on_workers(setup)?;
/// #     runtime.start()
/// # }
/// #
/// # fn setup(mut runtime_ref: RuntimeRef) -> Result<(), !> {
/// #   let actor = actor as fn(_) -> _;
/// #   let options = ActorOptions::default();
/// #   runtime_ref.spawn_local(NoSupervisor, actor, (), options);
/// #   Ok(())
/// # }
///
/// async fn actor(mut ctx: actor::Context<!, ThreadLocal>) {
/// #   let start = Instant::now();
///     let mut interval = Interval::every(&mut ctx, Duration::from_millis(200));
/// #   assert!(interval.next_deadline() >= start + Duration::from_millis(200));
///     loop {
///         // Wait until the next timer expires.
///         let _ = next(&mut interval).await;
/// #       assert!(start.elapsed() >= Duration::from_millis(200));
///         println!("Hello world");
/// #       break;
///     }
/// }
/// ```
#[derive(Debug)]
#[must_use = "streams do nothing unless polled"]
pub struct Interval<RT: rt::Access> {
    deadline: Instant,
    interval: Duration,
    rt: RT,
}

impl<RT: rt::Access> Interval<RT> {
    /// Create a new `Interval`.
    pub fn every<M>(ctx: &mut actor::Context<M, RT>, interval: Duration) -> Interval<RT>
    where
        RT: Clone,
    {
        let deadline = Instant::now() + interval;
        let mut rt = ctx.runtime().clone();
        rt.add_deadline(deadline);
        Interval {
            deadline,
            interval,
            rt,
        }
    }

    /// Returns the next deadline for this `Interval`.
    pub const fn next_deadline(&self) -> Instant {
        self.deadline
    }
}

impl<RT: rt::Access> Stream for Interval<RT> {
    type Item = DeadlinePassed;

    fn poll_next(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
        if self.deadline <= Instant::now() {
            // Determine the next deadline.
            let next_deadline = Instant::now() + self.interval;
            let this = Pin::get_mut(self);
            this.deadline = next_deadline;
            this.rt.add_deadline(next_deadline);
            Poll::Ready(Some(DeadlinePassed))
        } else {
            Poll::Pending
        }
    }
}

impl<RT: rt::Access> Unpin for Interval<RT> {}

impl<RT: rt::Access> actor::Bound<RT> for Interval<RT> {
    type Error = !;

    fn bind_to<M>(&mut self, ctx: &mut actor::Context<M, RT>) -> Result<(), !> {
        let old_pid = self.rt.change_pid(ctx.runtime_ref().pid());
        self.rt.change_deadline(old_pid, self.deadline);
        Ok(())
    }
}

impl<RT: rt::Access> Drop for Interval<RT> {
    fn drop(&mut self) {
        self.rt.remove_deadline(self.deadline);
    }
}