Expand description
RAG (Retrieval-Augmented Generation) system with vector stores and embeddings.
§RAG (Retrieval-Augmented Generation) Module
This module provides a flexible RAG system with:
- Multiple vector store backends (in-memory, Qdrant)
- Embedding generation (OpenAI API, local models)
- Document chunking and preprocessing
- Semantic search and retrieval
- Reranking capabilities
Structs§
- Document
- Represents a document in the RAG system
- InMemory
Vector Store - In-memory vector store using cosine similarity
- OpenAI
Embeddings - OpenAI embedding provider using text-embedding-ada-002 or text-embedding-3-small
- Qdrant
Vector Store - Qdrant vector store implementation
- RAGSystem
- Main RAG system that combines embedding provider and vector store
- Search
Result - Represents a search result from the RAG system
Traits§
- Embedding
Provider - Trait for embedding generation
- Vector
Store - Trait for vector storage backends