1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

use std::fmt;
use std::slice::Iter;
use std::iter::Enumerate;
use std::cmp::Ordering;
use log::*;

use super::{
    MeshElement, IsValid, IsActive, Storable, Index, ElementStatus, ElementData,
    Face, Edge, Vertex, Point, AddElement, RemoveElement, GetElement,
    EdgeData, FaceData, VertexData, PointData, FaceIndex, VertexIndex,
    Offset,
};

/// A pretty simple wrapper over a pair of 'Vec's.
pub struct ElementBuffer<D: ElementData + Default> {
    pub free_cells: Vec<Index<MeshElement<D>>>,
    pub buffer: Vec<MeshElement<D>>,
}

impl<D: ElementData + Default> Default for ElementBuffer<D> {
    fn default() -> Self {
        ElementBuffer {
            free_cells: Vec::new(),
            buffer: vec![Default::default()],
        }
    }
}

impl<D: ElementData + Default> fmt::Debug for ElementBuffer<D> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ElementBuffer<> {{ {} items }}", self.len())
    }
}

impl<D: ElementData + Default> ElementBuffer<D> {
    /// Returns the number of currently active cells.
    /// The actual number of items allocated by the buffer might
    /// be different.
    pub fn len(&self) -> usize {
        self.buffer.len() - self.free_cells.len()
    }

    pub fn has_inactive_cells(&self) -> bool {
        !self.free_cells.is_empty()
    }

    fn sort(&mut self) {
        self.buffer[1..].sort_by(|a, b| {
            use crate::ElementStatus::*;
            match (a.status(), b.status()) {
                (ACTIVE, INACTIVE) => Ordering::Less,
                (INACTIVE, ACTIVE) => Ordering::Greater,
                (_, _) => Ordering::Equal,
            }
        });
    }

    pub fn enumerate(&self) -> Enumerate<Iter<MeshElement<D>>> {
        let mut it = self.buffer.iter().enumerate();
        let _ = it.next(); // Always skip the first element since we know it's invalid
        return it;
    }

    pub fn active_cells(
        &self
    ) -> impl Iterator<Item=(usize, &MeshElement<D>)> {
        self.buffer.iter().enumerate()
            .filter(|elem| elem.1.is_active())
    }

    pub fn active_elements(
        &self
    ) -> impl Iterator<Item=&MeshElement<D>> {
        self.buffer.iter().filter(|elem| elem.is_active())
    }

    fn ensure_active_cell(element: &MeshElement<D>) -> Option<&MeshElement<D>> {
        if element.is_active() {
            Some(element)
        } else {
            None
        }
    }

    fn ensure_matching_generation<'mesh>(
        element: &'mesh MeshElement<D>,
        index: &Index<MeshElement<D>>
    ) -> Option<&'mesh MeshElement<D>> {
        if index.generation > 0 {
            if element.generation() == index.generation {
                Some(element)
            } else {
                None
            }
        } else {
            Some(element)
        }
    }

    pub fn get(
        &self,
        index: &Index<MeshElement<D>>
    ) -> Option<&MeshElement<D>> {
        if index.is_valid() {
            self.buffer.get(index.offset as usize)
                .and_then(ElementBuffer::ensure_active_cell)
                .and_then(|e| ElementBuffer::ensure_matching_generation(e, index))
        } else {
            None
        }
    }

    pub fn add(&mut self, element: MeshElement<D>) -> Index<MeshElement<D>> {
        if let Some(index) = self.free_cells.pop() {
            let cell = &mut self.buffer[index.offset as usize];
            *cell = element;
            cell.status.set(ElementStatus::ACTIVE);
            cell.generation.set(index.generation);
            return index;
        } else {
            let index = Index::with_generation(self.buffer.len() as u32, element.generation.get());
            self.buffer.push(element);
            if let Some(element) = self.buffer.get_mut(index.offset as usize) {
                element.status.set(ElementStatus::ACTIVE);
            }
            return index;
        }
    }

    pub fn remove(&mut self, index: Index<MeshElement<D>>) {
        if let Some(cell) = self.get(&index) {
            let removed_index ={
                let next_gen = cell.generation() + 1;
                if next_gen == u32::max_value() {
                    cell.set_generation(1);
                } else {
                    cell.set_generation(next_gen);
                }
                cell.set_status(ElementStatus::INACTIVE);
                Index::with_generation(index.offset, cell.generation())
            };
            self.free_cells.push(removed_index);
        }
    }

    fn truncate_inactive(&mut self) {
        let total = self.buffer.len();
        let inactive = self.free_cells.len();
        let active = total - inactive;
        self.free_cells.clear();
        self.buffer.truncate(active);
    }

    fn next_swap_pair(&self) -> Option<(Offset, Offset)> {
        let inactive_offset = self.enumerate()
            .find(|e| !e.1.is_active())
            .map(|e| e.0);
        let active_offset = self.enumerate()
            .rev().find(|e| e.1.is_active())
            .map(|e| e.0);
        if active_offset.is_none() || inactive_offset.is_none() {
            // If we can't find both an active and inactive cell
            // offset then we have nothing to do.
            debug!("No more swap pairs!");
            None
        } else {
            let inactive_offset = inactive_offset.unwrap();
            let active_offset = active_offset.unwrap();
            if active_offset < inactive_offset {
                debug!("Buffer appears to be successfully sorted!");
                // by the time this is true we should have sorted/swapped
                // all elements so that the inactive inactive elements
                // make up the tail of the buffer.
                None
            } else {
                Some((inactive_offset as u32, active_offset as u32))
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////////

/// Storage interface for Mesh types
#[derive(Debug, Default)]
pub struct Kernel {
    pub edge_buffer: ElementBuffer<EdgeData>,
    pub face_buffer: ElementBuffer<FaceData>,
    pub vertex_buffer: ElementBuffer<VertexData>,
    pub point_buffer: ElementBuffer<PointData>,
}

impl Kernel {
    fn defrag_faces(&mut self) {
        if self.face_buffer.has_inactive_cells() {
            self.face_buffer.sort();
            self.face_buffer
                .active_cells()
                .map(|(offset, face)| {
                    (FaceIndex::with_generation(offset as u32, face.generation.get()), face)
                })
                .filter(|(index, face)| {
                    let root_edge_index = face.data.borrow().edge_index;
                    if let Some(root_edge) = self.edge_buffer.get(&root_edge_index) {
                        let root_face_index = root_edge.data.borrow().face_index;
                        *index != root_face_index
                    } else {
                        warn!("The root edge of the face at {:?} points to invalid edge.",
                              root_edge_index);
                        false
                    }
                })
                .for_each(|(face_index, face)| {
                    let root_edge_index = face.data.borrow().edge_index;
                    let mut edge_index = root_edge_index;
                    loop {
                        let edge = &self.edge_buffer.buffer[edge_index.offset as usize];

                        let mut data = edge.data.borrow_mut();
                        // prevent an infinite loop for broken meshes
                        if data.face_index == face_index {
                            break;
                        }
                        data.face_index = face_index;

                        edge_index = data.next_index;
                        if edge_index == root_edge_index {
                            break;
                        }
                    }
                });
            self.face_buffer.truncate_inactive();
        }
    }

    fn defrag_verts(&mut self) {
        if self.vertex_buffer.has_inactive_cells() {
            self.vertex_buffer.sort();
            self.vertex_buffer
                .active_cells()
                .map(|(offset, vertex)| {
                    (VertexIndex::with_generation(offset as u32, vertex.generation.get()), vertex)
                })
                .filter(|(vert_index, vertex)| {
                    let vert_edge_index = vertex.data.borrow().edge_index;
                    if let Some(edge) = self.edge_buffer.get(&vert_edge_index) {
                        *vert_index != edge.data.borrow().vertex_index
                    } else {
                        warn!("Vertex at {:?} has an invalid edge index.", vert_index);
                        false
                    }
                })
                .for_each(|(vertex_index, vertex)| {
                    let e0 = {
                        let eindex = vertex.data.borrow().edge_index;
                        &self.edge_buffer.buffer[eindex.offset as usize]
                    };
                    e0.data.borrow_mut().vertex_index = vertex_index;
                });
            self.vertex_buffer.truncate_inactive();
        }
    }

    fn defrag_edges(&mut self) {
        if self.edge_buffer.has_inactive_cells() {
            // The edge array can't be sorted as easily
            // as faces and vertices because an edge
            // refers to other elements in the same buffer.
            // Our aproach here needs to be incremental and
            // swap the first active cell from the end of the
            // buffer with first inactive cell from the front
            // of the buffer.
            loop {
                if let Some(offsets) = self.edge_buffer.next_swap_pair() {
                    let inactive_offset = offsets.0;
                    let active_offset = offsets.1;

                    self.edge_buffer.buffer.swap(inactive_offset as usize, active_offset as usize);
                    let swapped = &self.edge_buffer.buffer[inactive_offset as usize];
                    let swapped_data = swapped.data();
                    let swapped_index = Index::with_generation(inactive_offset as u32, swapped.generation.get());

                    if let Some(next_edge) = self.edge_buffer.get(&swapped_data.next_index) {
                        next_edge.data_mut().prev_index = swapped_index;
                    }
                    if let Some(prev_edge) = self.edge_buffer.get(&swapped_data.prev_index) {
                        prev_edge.data_mut().next_index = swapped_index;
                    }
                    if let Some(twin_edge) = self.edge_buffer.get(&swapped_data.twin_index) {
                        twin_edge.data_mut().twin_index = swapped_index;
                    }

                    // For faces and vertices we only want to update the
                    // associated edge index when it matched the original
                    // buffer location.
                    // I'm doing this in case the associated root edge
                    // index for these elements is meaningful or important.

                    if let Some(face) = self.face_buffer.get(&swapped_data.face_index) {
                        let mut face_data = face.data_mut();
                        if face_data.edge_index.offset == active_offset {
                            face_data.edge_index = swapped_index;
                        }
                    }
                    if let Some(vertex) = self.vertex_buffer.get(&swapped_data.vertex_index) {
                        let mut vertex_data = vertex.data_mut();
                        if vertex_data.edge_index.offset == active_offset {
                            vertex_data.edge_index = swapped_index;
                        }
                    }
                } else {
                    break;
                }
            }
            self.edge_buffer.truncate_inactive();
        }
    }

    fn defrag_points(&mut self) {
        if self.point_buffer.has_inactive_cells() {
            // The point structure is potentially
            // referenced from multiple vertices and
            // points do not hold any reference to
            // the vertices associated with them.
            // Because of this we have to search for
            // vertices with a reference to the point
            // at its original location.
            // This also means we can't use the more
            // convienient sort approach.
            loop {
                if let Some(offsets) = self.point_buffer.next_swap_pair() {
                    let inactive_offset = offsets.0;
                    let active_offset = offsets.1;

                    self.point_buffer.buffer.swap(inactive_offset as usize, active_offset as usize);
                    let swapped = &self.point_buffer.buffer[inactive_offset as usize];
                    let swapped_index = Index::with_generation(
                        inactive_offset as u32, swapped.generation.get());

                    self.vertex_buffer.buffer[1..].iter()
                        .filter(|v| v.is_active() && v.data().point_index.offset == active_offset)
                        .for_each(|v| {
                            v.data_mut().point_index = swapped_index;
                        });
                } else {
                    break;
                }
            }
            self.vertex_buffer.truncate_inactive();
        }
    }

    /// Sorts buffers and drops all inactive elements.
    pub fn defrag(&mut self) {
        if self.inactive_element_count() > 0 {
            self.defrag_faces();
            self.defrag_verts();
            self.defrag_points();
            self.defrag_edges();
        }
    }

    pub fn inactive_element_count(&self) -> usize {
        self.face_buffer.free_cells.len() +
            self.edge_buffer.free_cells.len() +
            self.vertex_buffer.free_cells.len() +
            self.point_buffer.free_cells.len()
    }

    pub fn active_element_count(&self) -> usize {
        self.face_buffer.len() +
            self.edge_buffer.len() +
            self.vertex_buffer.len() +
            self.point_buffer.len()
    }
}

impl GetElement<Point> for Kernel {
    fn get_element(&self, index: &Index<Point>) -> Option<&Point> {
        self.point_buffer.get(index)
    }
}

impl GetElement<Vertex> for Kernel {
    fn get_element(&self, index: &Index<Vertex>) -> Option<&Vertex> {
        self.vertex_buffer.get(index)
    }
}

impl GetElement<Edge> for Kernel {
    fn get_element(&self, index: &Index<Edge>) -> Option<&Edge> {
        self.edge_buffer.get(index)
    }
}

impl GetElement<Face> for Kernel {
    fn get_element(&self, index: &Index<Face>) -> Option<&Face> {
        self.face_buffer.get(index)
    }
}

impl AddElement<Point> for Kernel {
    fn add_element(&mut self, element: Point) -> Index<Point> {
        self.point_buffer.add(element)
    }
}

impl AddElement<Vertex> for Kernel {
    fn add_element(&mut self, element: Vertex) -> Index<Vertex> {
        self.vertex_buffer.add(element)
    }
}

impl AddElement<Edge> for Kernel {
    fn add_element(&mut self, element: Edge) -> Index<Edge> {
        self.edge_buffer.add(element)
    }
}

impl AddElement<Face> for Kernel {
    fn add_element(&mut self, element: Face) -> Index<Face> {
        self.face_buffer.add(element)
    }
}

impl RemoveElement<Point> for Kernel {
    fn remove_element(&mut self, index: Index<Point>) {
        self.point_buffer.remove(index)
    }
}

impl RemoveElement<Vertex> for Kernel {
    fn remove_element(&mut self, index: Index<Vertex>) {
        self.vertex_buffer.remove(index)
    }
}

impl RemoveElement<Edge> for Kernel {
    fn remove_element(&mut self, index: Index<Edge>) {
        self.edge_buffer.remove(index)
    }
}

impl RemoveElement<Face> for Kernel {
    fn remove_element(&mut self, index: Index<Face>) {
        self.face_buffer.remove(index)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::EdgeIndex;

    fn new_edge(kernel: &mut Kernel) -> EdgeIndex {
        let e0 = kernel.add_element(Edge::default());
        let e1 = kernel.add_element(Edge::default());
        match (kernel.get_element(&e0),
               kernel.get_element(&e1)) {
            (Some(edge0), Some(edge1)) => {
                edge0.data.borrow_mut().twin_index = e1;
                edge1.data.borrow_mut().twin_index = e0;
            },
            _ => panic!("Invalid edge indexes specified: {:?}, {:?}", e0, e1),
        }
        e0
    }

    fn make_twin_edge(kernel: &mut Kernel, twin_index: EdgeIndex) -> EdgeIndex {
        let e0 = kernel.add_element(Edge::with_data(
            EdgeData {
                twin_index,
                ..EdgeData::default()
            }
        ));
        kernel.edge_buffer.buffer[twin_index.offset as usize].data.borrow_mut().twin_index = e0;
        e0
    }

    fn get_twin(kernel: &Kernel, edge_index: EdgeIndex) -> EdgeIndex {
        kernel.edge_buffer.buffer[edge_index.offset as usize].data.borrow().twin_index
    }

    fn get_next(kernel: &Kernel, edge_index: EdgeIndex) -> EdgeIndex {
        kernel.edge_buffer.buffer[edge_index.offset as usize].data.borrow().next_index
    }

    #[allow(dead_code)]
    fn get_prev(kernel: &Kernel, edge_index: EdgeIndex) -> EdgeIndex {
        kernel.edge_buffer.buffer[edge_index.offset as usize].data.borrow().prev_index
    }

    fn connect_edges(
        kernel: &mut Kernel,
        prev_index: EdgeIndex,
        next_index: EdgeIndex
    ) -> VertexIndex {
        let v0 = kernel.add_element(Vertex::default());
        match (kernel.get_element(&prev_index),
               kernel.get_element(&next_index)) {
            (Some(prev), Some(next)) => {
                prev.data.borrow_mut().next_index = next_index;
                next.data.borrow_mut().prev_index = prev_index;
                next.data.borrow_mut().vertex_index = v0;
            },
            _ => panic!("Invalid edge indexes specified: {:?}, {:?}",
                        prev_index, next_index),
        }
        v0
    }

    fn set_face_to_loop(kernel: &Kernel, root_edge: EdgeIndex, face_index: FaceIndex) {
        let face = kernel.face_buffer.get(&face_index).unwrap();
        face.data.borrow_mut().edge_index = root_edge;
        let mut edge_index = root_edge;
        loop {
            let edge = &kernel.edge_buffer.buffer[edge_index.offset as usize];
            let mut data = edge.data.borrow_mut();
            if data.face_index == face_index {
                break;
            }
            data.face_index = face_index;
            if data.next_index == root_edge {
                break;
            }
            edge_index = data.next_index;
        }
    }

    fn make_face(kernel: &mut Kernel, root_edge: EdgeIndex) -> FaceIndex {
        let face_index = kernel.add_element(
            Face::with_data(FaceData {
                edge_index: root_edge
            })
        );
        set_face_to_loop(kernel, root_edge, face_index);
        face_index
    }

    fn make_triangle(kernel: &mut Kernel) -> FaceIndex {
        let e0 = new_edge(kernel);
        let e1 = new_edge(kernel);
        let e2 = new_edge(kernel);

        let _ = connect_edges(kernel, e0, e1);
        let _ = connect_edges(kernel, e1, e2);
        let _ = connect_edges(kernel, e2, e0);

        make_face(kernel, e0)
    }

    #[test]
    fn defrag_faces() {
        let _ = env_logger::try_init();
        let mut kernel = Kernel::default();

        let f0 = make_triangle(&mut kernel);
        let root_edge = kernel.face_buffer.buffer[f0.offset as usize].data.borrow().edge_index;

        let f1 = make_face(&mut kernel, root_edge);
        let f2 = make_face(&mut kernel, root_edge);
        assert_eq!(kernel.face_buffer.len(), 4);
        assert_eq!(f2.offset, 3);
        assert_eq!(f2.generation, 1);

        kernel.remove_element(f0);
        kernel.remove_element(f1);

        assert!(kernel.face_buffer.has_inactive_cells());
        assert_eq!(kernel.face_buffer.len(), 2);
        assert_eq!(kernel.face_buffer.free_cells.len(), 2);

        let root_face_index = kernel.edge_buffer
            .buffer[root_edge.offset as usize]
            .data.borrow().face_index;
        assert_eq!(root_face_index, f2);

        kernel.defrag_faces();
        assert_eq!(kernel.face_buffer.len(), 2);
        assert_eq!(kernel.face_buffer.free_cells.len(), 0);
        assert!(!kernel.face_buffer.has_inactive_cells());
        assert!(kernel.get_element(&f2).is_none());

        let root_face_index = kernel.edge_buffer
            .buffer[root_edge.offset as usize]
            .data.borrow().face_index;
        assert_ne!(root_face_index, f2);
        assert!(kernel.get_element(&root_face_index).is_some());
        let face_edge_index = kernel.face_buffer
            .buffer[root_face_index.offset as usize]
            .data.borrow().edge_index;
        assert_eq!(face_edge_index, root_edge);
    }

    #[test]
    fn defrag_vertices() {
        let _ = env_logger::try_init();
        let mut kernel = Kernel::default();

        let e0 = new_edge(&mut kernel);
        let e1 = new_edge(&mut kernel);
        let e2 = new_edge(&mut kernel);

        let v0_0 = connect_edges(&mut kernel, e0, e1);
        let v0_1 = connect_edges(&mut kernel, e1, e2);
        let v0_2 = connect_edges(&mut kernel, e2, e0);

        let v1_0 = connect_edges(&mut kernel, e0, e1);
        let v1_1 = connect_edges(&mut kernel, e1, e2);
        let v1_2 = connect_edges(&mut kernel, e2, e0);

        let v2_0 = connect_edges(&mut kernel, e0, e1);
        let v2_1 = connect_edges(&mut kernel, e1, e2);
        let v2_2 = connect_edges(&mut kernel, e2, e0);

        assert_eq!(kernel.vertex_buffer.len(), 10);

        kernel.remove_element(v0_0);
        kernel.remove_element(v0_1);
        kernel.remove_element(v0_2);
        kernel.remove_element(v1_0);
        kernel.remove_element(v1_1);
        kernel.remove_element(v1_2);

        assert_eq!(kernel.vertex_buffer.len(), 4);
        assert_eq!(kernel.vertex_buffer.buffer.len(), 10);

        assert!(kernel.vertex_buffer.get(&v2_0).is_some());
        assert!(kernel.vertex_buffer.get(&v2_1).is_some());
        assert!(kernel.vertex_buffer.get(&v2_2).is_some());

        kernel.defrag_verts();
        assert!(kernel.vertex_buffer.get(&v2_0).is_none());
        assert!(kernel.vertex_buffer.get(&v2_1).is_none());
        assert!(kernel.vertex_buffer.get(&v2_2).is_none());
    }

    #[test]
    fn defrag_edges() {
        let _ = env_logger::try_init();
        let mut kernel = Kernel::default();

        let e0 = new_edge(&mut kernel);
        let e1 = new_edge(&mut kernel);
        let e2 = new_edge(&mut kernel);
        let _v0 = connect_edges(&mut kernel, e0, e1);
        let _v1 = connect_edges(&mut kernel, e1, e2);
        let _v2 = connect_edges(&mut kernel, e2, e0);

        let e3 = get_twin(&kernel, e0);
        let e4 = new_edge(&mut kernel);
        let e5 = new_edge(&mut kernel);
        let _v3 = connect_edges(&mut kernel, e3, e4);
        let _v4 = connect_edges(&mut kernel, e4, e5);
        let _v5 = connect_edges(&mut kernel, e5, e3);

        let e6 = get_twin(&kernel, e4);
        let e7 = get_twin(&kernel, e2);
        let e8 = new_edge(&mut kernel);
        let _v6 = connect_edges(&mut kernel, e6, e7);
        let _v7 = connect_edges(&mut kernel, e7, e8);
        let _v8 = connect_edges(&mut kernel, e8, e6);

        let e9  = get_twin(&kernel, e8);
        let e10 = get_twin(&kernel, e1);
        let e11 = get_twin(&kernel, e5);
        let _v9  = connect_edges(&mut kernel, e9, e10);
        let _v10 = connect_edges(&mut kernel, e10, e11);
        let _v11 = connect_edges(&mut kernel, e11, e9);

        let f0 = make_face(&mut kernel, e0);
        let _f1 = make_face(&mut kernel, e3);
        let _f2 = make_face(&mut kernel, e6);
        let _f3 = make_face(&mut kernel, e9);

        assert_eq!(kernel.active_element_count(), 32);
        assert_eq!(kernel.inactive_element_count(), 0);

        let e12 = make_twin_edge(&mut kernel, e3);
        let e13 = make_twin_edge(&mut kernel, e10);
        let e14 = make_twin_edge(&mut kernel, e7);
        let _v12 = connect_edges(&mut kernel, e12, e13);
        let _v13 = connect_edges(&mut kernel, e13, e14);
        let _v14 = connect_edges(&mut kernel, e14, e12);

        set_face_to_loop(&kernel, e12, f0);
        kernel.remove_element(e0);
        kernel.remove_element(e1);
        kernel.remove_element(e2);

        assert_eq!(kernel.active_element_count(), 35);
        assert_eq!(kernel.inactive_element_count(), 3);

        let face0 = &kernel.face_buffer.buffer[f0.offset as usize];
        let f0e0 = face0.data.borrow().edge_index;
        let f0e1 = get_next(&kernel, f0e0);
        let f0e2 = get_next(&kernel, f0e1);
        assert_eq!(f0e0, get_next(&kernel, f0e2));
        assert_eq!(13, f0e0.offset);
        assert_eq!(14, f0e1.offset);
        assert_eq!(15, f0e2.offset);

        kernel.defrag_edges();
        assert_eq!(kernel.active_element_count(), 35);
        assert_eq!(kernel.inactive_element_count(), 0);

        // Because of how the edge defrag is implemented
        // we expect the offsets for the edges of f0
        // to be at the head of the edge buffer again
        // and basically reversed.
        let face0 = &kernel.face_buffer.buffer[f0.offset as usize];
        let f0e0 = face0.data.borrow().edge_index;
        let f0e1 = get_next(&kernel, f0e0);
        let f0e2 = get_next(&kernel, f0e1);
        assert_eq!(f0e0, get_next(&kernel, f0e2));
        assert_eq!(5, f0e0.offset);
        assert_eq!(3, f0e1.offset);
        assert_eq!(1, f0e2.offset);
    }

    #[test]
    fn defrag_points() {
        let _ = env_logger::try_init();
        let mut kernel = Kernel::default();

        let p0 = kernel.add_element(Point::default());
        let p1 = kernel.add_element(Point::default());
        let p2 = kernel.add_element(Point::default());
        let p3 = kernel.add_element(Point::default());

        let v0 = kernel.add_element(Vertex::with_data(
            VertexData {
                point_index: p1,
                ..VertexData::default()
            }));
        let v1 = kernel.add_element(Vertex::with_data(
            VertexData {
                point_index: p1,
                ..VertexData::default()
            }));
        let v2 = kernel.add_element(Vertex::with_data(
            VertexData {
                point_index: p3,
                ..VertexData::default()
            }));
        let v3 = kernel.add_element(Vertex::with_data(
            VertexData {
                point_index: p3,
                ..VertexData::default()
            }));

        assert_eq!(kernel.vertex_buffer.buffer[v0.offset as usize].data().point_index.offset, 2);
        assert_eq!(kernel.vertex_buffer.buffer[v1.offset as usize].data().point_index.offset, 2);
        assert_eq!(kernel.vertex_buffer.buffer[v2.offset as usize].data().point_index.offset, 4);
        assert_eq!(kernel.vertex_buffer.buffer[v3.offset as usize].data().point_index.offset, 4);

        kernel.remove_element(p0);
        kernel.remove_element(p2);
        kernel.defrag_points();

        assert_eq!(kernel.vertex_buffer.buffer[v0.offset as usize].data().point_index.offset, 2);
        assert_eq!(kernel.vertex_buffer.buffer[v1.offset as usize].data().point_index.offset, 2);
        assert_eq!(kernel.vertex_buffer.buffer[v2.offset as usize].data().point_index.offset, 1);
        assert_eq!(kernel.vertex_buffer.buffer[v3.offset as usize].data().point_index.offset, 1);
    }
}