1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
#![warn(missing_docs)]
#![no_std]

//! # HeapArray
//! An Implementation of a variable length array, with its main benefit over [`Vec`] is taking up less space
//! as [`HeapArray`] is represented as (pointer, len) while [`Vec`] is a (pointer, len, capacity)
//! and is meant as a replacement for `Box<[T]>`
//!
//! nice to have: compatible with serde
//!
//! # Examples
//! ```
//! use heap_array::{heap_array, HeapArray};
//! let arr = heap_array![1, 2, 5, 8];
//!
//! assert_eq!(arr[0], 1);
//! assert_eq!(arr[1], 2);
//! assert_eq!(arr[2], 5);
//! assert_eq!(arr[3], 8);
//! assert_eq!(arr.len(), 4);
//!
//! let arr = HeapArray::from_fn(10, |i| i);
//! assert_eq!(*arr, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
//! ```
//!
//! [`Vec`]: std::vec::Vec
//! [`HeapArray`]: HeapArray

mod try_me;
mod guard;

#[cfg(feature = "serde")]
extern crate serde;
extern crate alloc;

use alloc::{boxed::Box, vec::Vec, alloc::{alloc, dealloc, handle_alloc_error}, vec::IntoIter, vec};
use core::{mem, ptr::{self, NonNull}, fmt::{Debug, Formatter}, mem::{ManuallyDrop, MaybeUninit}, ops::{Deref, DerefMut}, panic::{RefUnwindSafe, UnwindSafe}, alloc::Layout, fmt};
use core::cmp::Ordering;
use core::ops::ControlFlow;
use core::slice::{Iter, IterMut};
use likely_stable::{unlikely};
use crate::guard::Guard;
use crate::try_me::{NeverShortCircuit, Try};

/// # HeapArray
/// An Implementation of a variable length array, with its main benefit over [`Vec`] is taking up less space
/// as [`HeapArray`] is represented as (pointer, len) while [`Vec`] is a (pointer, len, capacity)
/// and is meant as a replacement for `Box<[T]>`
///
/// nice to have: compatible with serde
///
/// # Examples
/// ```
/// use heap_array::{heap_array, HeapArray};
/// let arr = heap_array![1, 2, 5, 8];
///
/// assert_eq!(arr[0], 1);
/// assert_eq!(arr[1], 2);
/// assert_eq!(arr[2], 5);
/// assert_eq!(arr[3], 8);
/// assert_eq!(arr.len(), 4);
///
/// let arr = HeapArray::from_fn(10, |i| i);
/// assert_eq!(*arr, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
/// ```
///
/// [`Vec`]: std::vec::Vec
/// [`HeapArray`]: HeapArray
pub struct HeapArray<T> {
    ptr: NonNull<T>,
    len: usize
}
impl<T> HeapArray<T> {
    /// Constructs a new, empty [`HeapArray`] without allocating.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![allow(unused_mut)]
    /// # use heap_array::HeapArray;
    /// let vec: HeapArray<i32> = HeapArray::new();
    /// ```
    /// [`HeapArray`]: HeapArray
    #[inline]
    pub const fn new() -> Self { Self { ptr: NonNull::dangling(), len: 0 } }

    /// Returns `true` if the vector contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::any::Any;
    /// # use heap_array::{heap_array, HeapArray};
    /// let av: HeapArray<&dyn Any> = HeapArray::new();
    /// assert!(av.is_empty());
    ///
    /// let av = heap_array![1, 2, 3];
    /// assert!(!av.is_empty());
    /// ```
    #[inline]
    pub const fn is_empty(&self) -> bool { self.len == 0 }

    /// Returns the number of elements in the heap-array, also referred to
    /// as its 'length'.
    ///
    /// # Examples
    ///
    /// ```
    /// # use heap_array::heap_array;
    /// let a = heap_array![1, 2, 3];
    /// assert_eq!(a.len(), 3);
    /// ```
    #[inline]
    pub const fn len(&self) -> usize { self.len }


    /// Converts `self` into a Box<[T]> without clones or allocation.
    ///
    /// The resulting box can be converted back into an [`HeapArray`] via
    /// `Box<[T]>`'s `into()` method or by calling `HeapArray::from(box)`.
    ///
    /// this is usually due to a library requiring `Box<[T]>` to be used
    /// as HeapArray is supposed to be the replacement for `Box<[T]>`
    ///
    /// # Examples
    ///
    /// ```
    /// # use heap_array::{heap_array, HeapArray};
    /// let s: HeapArray<u32> = heap_array![10, 40, 30];
    /// let x = s.into_boxed_slice();
    /// // `s` cannot be used anymore because it has been converted into `x`.
    ///
    /// let y: Box<[u32]> = Box::new([10, 40, 30]);
    /// assert_eq!(x, y);
    /// ```
    #[inline]
    pub fn into_boxed_slice(self) -> Box<[T]> { self.into() }

    /// Converts `self` into a vector without clones or allocation.
    ///
    /// The resulting vector can be converted back into an [`HeapArray`] via
    /// `Vec<T>`'s `into()` method or by calling `HeapArray::from(vec)`.
    ///
    /// Should only be used if you plan to resizing, other wise use `into_boxed_slice` for a smaller
    /// type
    /// # Examples
    ///
    /// ```
    /// # use heap_array::{heap_array, HeapArray};
    /// let s: HeapArray<u32> = heap_array![10, 40, 30];
    /// let x = s.into_vec();
    /// // `s` cannot be used anymore because it has been converted into `x`.
    ///
    /// assert_eq!(x, vec![10, 40, 30]);
    /// ```
    #[inline]
    pub fn into_vec(self) -> Vec<T> {
        self.into()
    }

    /// Creates a [`HeapArray`], where each element `T` is the returned value from `cb`
    /// using that element's index.
    ///
    /// # Arguments
    ///
    /// * `len`: length of the array.
    /// * `f`: function where the passed argument is the current array index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use heap_array::HeapArray;
    /// let array = HeapArray::from_fn(5, |i| i);
    /// // indexes are:     0  1  2  3  4
    /// assert_eq!(*array, [0, 1, 2, 3, 4]);
    ///
    /// let array2 = HeapArray::from_fn(8, |i| i * 2);
    /// // indexes are:     0  1  2  3  4  5   6   7
    /// assert_eq!(*array2, [0, 2, 4, 6, 8, 10, 12, 14]);
    ///
    /// let bool_arr = HeapArray::from_fn(5, |i| i % 2 == 0);
    /// // indexes are:       0     1      2     3      4
    /// assert_eq!(*bool_arr, [true, false, true, false, true]);
    /// ```
    /// [`HeapArray`]: HeapArray
    #[inline]
    pub fn from_fn(len: usize, f: impl FnMut(usize) -> T) -> Self {
        Self::try_from_fn(len, NeverShortCircuit::wrap_fn(f))
    }
    /// Creates a [`HeapArray`], where each element `T` is the returned value from `cb`
    /// using that element's index.
    /// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
    /// if any element creation was unsuccessful.
    ///
    /// The return type of this function depends on the return type of the closure.
    /// If you return `Result<T, E>` from the closure, you'll get a `Result<HeapArray<T>, E>`.
    /// If you return `Option<T>` from the closure, you'll get an `Option<HeapArray<T>>`.
    /// # Arguments
    ///
    /// * `len`: length of the array.
    /// * `f`: function where the passed argument is the current array index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use heap_array::HeapArray;
    /// let array: Result<HeapArray<u8>, _> = HeapArray::try_from_fn(5, |i| i.try_into());
    /// assert_eq!(array.as_deref(), Ok([0, 1, 2, 3, 4].as_ref()));
    ///
    /// let array: Result<HeapArray<i8>, _> = HeapArray::try_from_fn(200, |i| i.try_into());
    /// assert!(array.is_err());
    ///
    /// let array: Option<HeapArray<usize>> = HeapArray::try_from_fn(4, |i| i.checked_add(100));
    /// assert_eq!(array.as_deref(), Some([100, 101, 102, 103].as_ref()));
    ///
    /// let array: Option<HeapArray<usize>> = HeapArray::try_from_fn(4, |i| i.checked_sub(100));
    /// assert_eq!(array, None);
    /// ```
    /// [`HeapArray`]: HeapArray
    /// [`from_fn`]: HeapArray::from_fn
    #[inline]
    pub fn try_from_fn<R>(len: usize, mut f: impl FnMut(usize) -> R) -> R::TryType<Self>
        where R: Try<Output=T>,
    {
        let ptr = match unsafe { alloc_uninnit::<T>(len) } {
            Some(ptr) => ptr,
            None => return R::from_element(Self::new())
        };

        // We use Guard to avoid memory leak in panic's
        let mut guard = Guard { ptr, len, initialized: 0 };
        for i in 0..len {
            match f(i).branch() {
                ControlFlow::Continue(output) => unsafe { guard.push_unchecked(output) }
                ControlFlow::Break(r) => { return R::from_residual(r) }
            }
        }

        // SAFETY: All elements are initialized
        R::from_element(unsafe { guard.into_heap_array_unchecked() })
    }

    /// Create a [`HeapArray`] from a given element and size.
    ///
    ///
    /// This is a specialization of `HeapArray::from_fn(len, |_| element.clone())`
    /// and may result in a minor speed up over it.
    ///
    /// This will use `clone` to duplicate an expression, so one should be careful
    /// using this with types having a nonstandard `Clone` implementation. For
    /// example, `Self::from_element(5, Rc::new(1))` will create a heap-array of five references
    /// to the same boxed integer value, not five references pointing to independently
    /// boxed integers.
    ///
    /// Also, note that `Self::from_element(0, expr)` is allowed, and produces an empty HeapArray.
    /// This will still evaluate `expr`, however, and immediately drop the resulting value, so
    /// be mindful of side effects.
    ///
    /// Also, note `Self::from_element(n, expr)` can always be replaced with `heap_array![expr; n]`
    /// # Example
    ///
    /// ```rust
    /// # use heap_array::HeapArray;
    /// let array: HeapArray<u8> = HeapArray::from_element(5, 68);
    /// assert_eq!(*array, [68, 68, 68, 68, 68])
    /// ```
    /// [`HeapArray`]: HeapArray
    /// [`heap_array`]: heap_array
    #[inline]
    pub fn from_element(len: usize, element: T) -> HeapArray<T>
        where T: Clone
    {
        // We use vec![] rather than Self::from_fn(len, |_| element.clone())
        // as it has specialization traits for manny things Such as zero initialization
        // as well as avoid an extra copy (caused by not using element except for cloning)
        vec![element; len].into()
    }
    /// Returns an unsafe mutable pointer to the heap-array's buffer, or a dangling
    /// raw pointer valid for zero sized reads if the heap-array didn't allocate.
    ///
    /// The caller must ensure that the heap-array outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    /// making any pointers to it invalid.
    ///
    /// # Examples
    ///
    /// ```
    /// # use heap_array::HeapArray;
    /// let len = 6;
    /// let mut arr: HeapArray<u8> = HeapArray::from_element(len, 0);
    /// let arr_ptr = arr.as_mut_ptr();
    ///
    /// // Change elements via raw pointer writes
    /// for i in 0..len {
    ///     unsafe {*arr_ptr.add(i) = i as u8;}
    /// }
    /// assert_eq!(*arr, [0, 1, 2, 3, 4, 5]);
    /// ```
    pub fn as_mut_ptr(&mut self) -> *mut T {
        // We shadow the slice method of the same name to avoid going through
        // `deref_mut`, which creates an intermediate reference.
        self.ptr.as_ptr()
    }
    /// Returns a raw pointer to the heap-array's buffer, or a dangling raw pointer
    /// valid for zero sized reads if the heap-array didn't allocate.
    ///
    /// The caller must ensure that the heap-array outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    /// Modifying the heap-array may cause its buffer to be reallocated,
    /// which would also make any pointers to it invalid.
    ///
    /// The caller must also ensure that the memory the pointer (non-transitively) points to
    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
    ///
    /// # Examples
    ///
    /// ```
    /// # use heap_array::heap_array;
    /// let x = heap_array![0, 2, 4, 6, 8];
    /// let x_ptr = x.as_ptr();
    ///
    /// for i in 0..x.len() {
    ///     unsafe {assert_eq!(*x_ptr.add(i), i * 2);}
    /// }
    /// ```
    ///
    /// [`as_mut_ptr`]: HeapArray::as_mut_ptr
    pub fn as_ptr(&self) -> *const T {
        // We shadow the slice method of the same name to avoid going through
        // `deref`, which creates an intermediate reference.
        self.ptr.as_ptr()
    }

    /// Consumes and leaks the [`HeapArray`], returning a mutable reference to the contents,
    /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
    /// `'a`. If the type has only static references, or none at all, then this
    /// may be chosen to be `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak.
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// # use heap_array::heap_array;
    /// let x = heap_array![1, 2, 3];
    /// let static_ref: &'static mut [usize] = x.leak();
    /// static_ref[0] += 1;
    /// assert_eq!(static_ref, &[2, 2, 3]);
    /// ```
    /// [`HeapArray`]: HeapArray
    pub fn leak(self) -> &'static mut [T] {
        let mut this = ManuallyDrop::new(self);
        unsafe { core::slice::from_raw_parts_mut(this.as_mut_ptr(), this.len) }
    }
    /// Decomposes a [`HeapArray`] into its raw components.
    ///
    /// Returns the raw pointer to the underlying data, the length of
    /// the heap-array (in elements) These are the same arguments in the same
    /// order as the arguments to [`from_raw_parts`].
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the [`HeapArray`]. The only way to do
    /// this is to convert the raw pointer, length back
    /// into a [`HeapArray`] with the [`from_raw_parts`] function, allowing
    /// the destructor to perform the cleanup.
    ///
    /// # Examples
    ///
    /// ```
    /// # use heap_array::{heap_array, HeapArray};
    /// let v: HeapArray<i32> = heap_array![-1, 0, 1];
    ///
    /// let (ptr, len) = v.into_raw_parts();
    ///
    /// let rebuilt = unsafe {
    ///     // We can now make changes to the components, such as
    ///     // transmuting the raw pointer to a compatible type.
    ///     let ptr = ptr.cast::<u32>();
    ///
    ///     HeapArray::from_raw_parts(ptr, len)
    /// };
    /// assert_eq!(*rebuilt, [4294967295, 0, 1]);
    /// ```
    /// [`from_raw_parts`]: HeapArray::from_raw_parts
    /// [`HeapArray`]: HeapArray
    pub fn into_raw_parts(self) -> (NonNull<T>, usize) {
        let this = ManuallyDrop::new(self);
        (this.ptr, this.len)
    }
    /// Composes a [`HeapArray`] from its raw components.
    ///
    /// After calling this function, the [`HeapArray`] is responsible for the
    /// memory management. The only way to get this back and get back
    /// the raw pointer and length back is with the [`into_raw_parts`] function, granting you
    /// control of the allocation again.
    ///
    /// # Examples
    ///
    /// ```
    /// # use heap_array::{heap_array, HeapArray};
    /// let v: HeapArray<i32> = heap_array![-1, 0, 1];
    ///
    /// let (ptr, len) = v.into_raw_parts();
    ///
    /// let rebuilt = unsafe {
    ///     // We can now make changes to the components, such as
    ///     // transmuting the raw pointer to a compatible type.
    ///     let ptr = ptr.cast::<u32>();
    ///
    ///     HeapArray::from_raw_parts(ptr, len)
    /// };
    /// assert_eq!(*rebuilt, [4294967295, 0, 1]);
    /// ```
    /// [`into_raw_parts`]: HeapArray::into_raw_parts
    /// [`HeapArray`]: HeapArray
    pub fn from_raw_parts(ptr: NonNull<T>, len: usize) -> Self {
        Self { ptr, len }
    }
    
    
    // Safety: Caller must up hold
    // only call on a Non empty HeapArray
    // Must ensure the HeapArray wont be dropped afterwards
    // and that it wont be accessed later
    pub(crate) unsafe fn dealloc(&mut self) {
        if self.len != 0 {
            // size is always less than isize::MAX we checked that already
            // By using Layout::array::<T> to allocate
            let size = mem::size_of::<T>().wrapping_mul(self.len);
            let align = mem::align_of::<T>();

            let layout = Layout::from_size_align_unchecked(size, align);
            dealloc(self.ptr.as_ptr().cast(), layout)
        }
    }
}
impl<T> Default for HeapArray<T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<T: Clone> From<&[T]> for HeapArray<T> {
    fn from(values: &[T]) -> Self {
        HeapArray::from_fn(values.len(), |i| unsafe {
            // Safety: from_fn provides values 0..len
            // and all values gotten should be within that range
            match cfg!(debug_asserions) {
                true => {values.get(i).expect("HeapArray cloning out of bounds").clone()}
                false => {values.get_unchecked(i).clone()}
            }
        })
    }
}
impl<T, const N: usize> From<[T; N]> for HeapArray<T> {
    fn from(values: [T; N]) -> Self {
        let ptr = match unsafe { alloc_uninnit::<T>(N) } {
            Some(ptr) => ptr,
            None => return Self::new()
        };

        let mut p = ptr.as_ptr() as *mut T;
        for value in values {unsafe {
            ptr::write(p, value);
            p = p.add(1);
        }}

        Self { ptr: ptr.cast(), len: N }
    }
}

impl<T> From<Box<[T]>> for HeapArray<T> {
    #[inline]
    fn from(value: Box<[T]>) -> Self {
        // A box pointer will be a properly aligned and non-null pointer.
        let parts = Box::into_raw(value);
        unsafe { Self { ptr: NonNull::new_unchecked(parts.cast()), len: (*parts).len() } }
    }
}
impl<T> From<Vec<T>> for HeapArray<T> {
    #[inline]
    fn from(value: Vec<T>) -> Self {
        Self::from(value.into_boxed_slice())
    }
}

impl<T> From<HeapArray<T>> for Vec<T> {
    #[inline]
    fn from(value: HeapArray<T>) -> Self {
        let value = ManuallyDrop::new(value);
        unsafe { Vec::from_raw_parts(value.ptr.as_ptr(), value.len, value.len) }
    }
}
impl<T> From<HeapArray<T>> for Box<[T]> {
    #[inline]
    fn from(value: HeapArray<T>) -> Self {
        let this = ManuallyDrop::new(value);
        let ptr = ptr::slice_from_raw_parts_mut(this.ptr.as_ptr(), this.len);
        unsafe { Box::from_raw(ptr) }
    }
}


impl<T, const N: usize> TryFrom<HeapArray<T>> for [T; N] {
    type Error = HeapArray<T>;

    fn try_from(value: HeapArray<T>) -> Result<Self, Self::Error> {
        if value.len != N {
            return Err(value)
        }

        if N == 0 {
            // Safety: N is 0, and so *const [T; N] is *const [T; 0]
            return Ok(unsafe { ptr::read((&[]) as *const [T; N]) })
        }

        let mut value = ManuallyDrop::new(value);
        let data = unsafe { ptr::read(value.as_ptr() as *const [T; N]) };
        // Safety: value is a ManuallyDrop and so it wort be dropped
        // and since we take ownership of value it wont be accessed after this
        unsafe { value.dealloc(); }

        Ok(data)
    }
}

impl<T, const N: usize> TryFrom<HeapArray<T>> for Box<[T; N]> {
    type Error = HeapArray<T>;

    fn try_from(value: HeapArray<T>) -> Result<Self, Self::Error> {
        if value.len != N {
            Err(value)
        } else {
            let value = ManuallyDrop::new(value);
            // SAFETY: we literally just checked if value.len != N
            Ok(unsafe { Box::from_raw(value.ptr.as_ptr() as *mut [T; N]) })
        }
    }
}

impl<T> Deref for HeapArray<T> {
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        unsafe { core::slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
    }
}
impl<T> DerefMut for HeapArray<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { core::slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
    }
}
impl<T> AsRef<[T]> for HeapArray<T> {
    fn as_ref(&self) -> &[T] {
        self
    }
}
impl<T> AsMut<[T]> for HeapArray<T> {
    fn as_mut(&mut self) -> &mut [T] {
        self
    }
}
impl<T: Debug> Debug for HeapArray<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        self.deref().fmt(f)
    }
}
impl<T: Clone> Clone for HeapArray<T> {
    fn clone(&self) -> Self {
        HeapArray::from(self.deref())
    }
}



impl<T: PartialEq> PartialEq for HeapArray<T> {
    fn eq(&self, other: &Self) -> bool { self.deref().eq(other.deref()) }
}
impl<T: Eq> Eq for HeapArray<T>{}

impl<T: PartialOrd> PartialOrd for HeapArray<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.deref().partial_cmp(other)
    }
}
impl<T: Ord> Ord for HeapArray<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.deref().cmp(other)
    }
}


#[allow(missing_docs)]
impl<T> Drop for HeapArray<T> {
    fn drop(&mut self) {
        unsafe {
            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), self.len));

            if !self.is_empty() {
                self.dealloc()
            }
        }
    }
}


// Safety: the pointer we hold is unique to us and so send data is ok to be sent
// and sync data is ok to be synced same goes for Unpin, RefUnwindSafe and UnwindSafe
unsafe impl<T: Send> Send for HeapArray<T>{}
unsafe impl<T: Sync> Sync for HeapArray<T>{}

impl<T: Unpin> Unpin for HeapArray<T>{}
impl<T: RefUnwindSafe> RefUnwindSafe for HeapArray<T>{}
impl<T: UnwindSafe> UnwindSafe for HeapArray<T>{}

// vec dependent impls
#[allow(missing_docs)]
impl<T> FromIterator<T> for HeapArray<T> {
    fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self {
        Vec::from_iter(iter).into()
    }
}

#[allow(missing_docs)]
impl<T> IntoIterator for HeapArray<T> {
    type Item = T;
    type IntoIter = IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.into_vec().into_iter()
    }
}

#[allow(missing_docs)]
impl<'a, T> IntoIterator for &'a HeapArray<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

#[allow(missing_docs)]
impl<'a, T> IntoIterator for &'a mut HeapArray<T> {
    type Item = &'a mut T;
    type IntoIter = IterMut<'a, T>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

#[allow(missing_docs)]
#[doc(hidden)]
#[inline(always)]
unsafe fn alloc_uninnit<T>(len: usize) -> Option<NonNull<MaybeUninit<T>>> {
    if len == 0 {
        return None
    }

    // We avoid `unwrap_or_else` here because it bloats the LLVM IR generated
    let layout = match Layout::array::<T>(len) {
        Ok(layout) => layout,
        Err(_) => panic!("capacity overflow"),
    };

    if usize::BITS < 64 && unlikely(layout.size() > isize::MAX as usize) {
        panic!("capacity overflow")
    }

    Some(unsafe {
        match NonNull::new(alloc(layout)) {
            Some(ptr) => ptr.cast(),
            None => handle_alloc_error(layout)
        }
    })
}


#[cfg(feature = "serde")]
use serde::{
    Deserialize, Deserializer, Serialize, Serializer,
    de::{SeqAccess, Visitor, Error, Expected},
};

#[cfg(feature = "serde")]
impl<T: Serialize> Serialize for HeapArray<T> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer {
        serializer.collect_seq(self)
    }
}

#[cfg(feature = "serde")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for HeapArray<T> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de> {
        use core::marker::PhantomData;

        struct HeapArrayVisitor<T> {
            marker: PhantomData<T>,
        }

        #[repr(transparent)]
        struct ExpectedLen(usize);

        impl Expected for ExpectedLen {
            #[inline]
            fn fmt(&self, formatter: &mut Formatter) -> fmt::Result {
                formatter.write_str("a length of ")?;
                fmt::Display::fmt(&self.0, formatter)
            }
        }

        impl<'a, T: Deserialize<'a>> Visitor<'a> for HeapArrayVisitor<T> {
            type Value = HeapArray<T>;

            fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
                formatter.write_str("a sequence")
            }

            fn visit_seq<Arr>(self, mut seq: Arr) -> Result<Self::Value, Arr::Error>
                where
                    Arr: SeqAccess<'a>,
            {
                if let Some(len) = seq.size_hint() {
                    HeapArray::try_from_fn(len, |i| {
                        seq.next_element::<T>().and_then(|res| match res {
                            Some(out) => Ok(out),
                            None => Err(Error::invalid_length(i+1, &ExpectedLen(len)))
                        })
                    })
                } else {
                    let mut values = Vec::<T>::new();
                    while let Some(value) = seq.next_element()? {
                        values.push(value);
                    }

                    Ok(HeapArray::from(values))
                }
            }
        }

        let visitor = HeapArrayVisitor::<T> {
            marker: PhantomData,
        };

        deserializer.deserialize_seq(visitor)
    }
}

/// Creates a [`HeapArray`] containing the arguments.
///
/// `heap_array!` allows `HeapArray`'s to be defined with the same syntax as array expressions.
/// There are two forms of this macro:
///
/// - Create a [`HeapArray`] containing a given list of elements:
///
/// ```
/// # use heap_array::heap_array;
/// let v = heap_array![1, 2, 3];
/// assert_eq!(v[0], 1);
/// assert_eq!(v[1], 2);
/// assert_eq!(v[2], 3);
/// ```
///
/// - Create a [`HeapArray`] from a given element and size:
///
/// ```
/// # use heap_array::heap_array;
/// let v = heap_array![1; 3];
/// assert_eq!(*v, [1, 1, 1]);
/// ```
///
/// Note that unlike array expressions this syntax supports all elements
/// which implement [`Clone`] and the number of elements doesn't have to be
/// a constant.
///
/// This will use `clone` to duplicate an expression, so one should be careful
/// using this with types having a nonstandard `Clone` implementation. For
/// example, `heap_array![Rc::new(1); 5]` will create a heap-array of five references
/// to the same boxed integer value, not five references pointing to independently
/// boxed integers.
///
/// Also, note that `heap_array![expr; 0]` is allowed, and produces an empty HeapArray.
/// This will still evaluate `expr`, however, and immediately drop the resulting value, so
/// be mindful of side effects.
///
/// [`HeapArray`]: HeapArray
#[macro_export]
macro_rules! heap_array {
    () => { $crate::HeapArray::new() };
    ($($x:expr),+) => { $crate::HeapArray::from([$($x),+]) };
    ($elem:expr; 0) => {{$elem; $crate::HeapArray::new()}};
    ($elem:expr; $n:expr) => { $crate::HeapArray::from_element($n, $elem) };
}