he_ring/rings/
interpolate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
use std::time::Instant;

use dense_poly::DensePolyRing;
use feanor_math::algorithms::extension_invert::invert_over_local_zn;
use feanor_math::algorithms::linsolve::LinSolveRing;
use feanor_math::assert_el_eq;
use feanor_math::divisibility::DivisibilityRingStore;
use feanor_math::homomorphism::CanIsoFromTo;
use feanor_math::homomorphism::Homomorphism;
use feanor_math::homomorphism::SelfIso;
use feanor_math::local::PrincipalLocalRing;
use feanor_math::primitive_int::StaticRing;
use feanor_math::ring::*;
use feanor_math::rings::extension::extension_impl::FreeAlgebraImpl;
use feanor_math::rings::extension::*;
use feanor_math::rings::field::AsFieldBase;
use feanor_math::rings::local::AsLocalPIR;
use feanor_math::rings::poly::*;
use feanor_math::rings::zn::zn_64::Zn;
use feanor_math::rings::zn::FromModulusCreateableZnRing;
use feanor_math::rings::zn::ZnReductionMap;
use feanor_math::rings::zn::ZnRing;

///
/// Interpolation data for a list of moduli `f1, ..., fn` that can be used
/// to derive from remainders `r1, ..., rn` an "interpolation polynomial" `h`
/// such that `h = ri mod fi`.
/// 
/// Clearly this requires that the moduli `fi` are pairwise coprime. Additionally,
/// we currently require that all interpolation unit vectors `ei` (defined
/// by `ei = 1 mod fi`, `ei = 0 mod fj` for `j != i`) exist over the base
/// ring (e.g. they might not be integral, even if the base ring is `Z`).
/// 
pub struct FastPolyInterpolation<P>
    where P: RingStore,
        P::Type: PolyRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing
{
    poly_ring: P,
    input_degree: usize,
    unit_vectors: Vec<Vec<(El<P>, El<P>)>>,
    final_modulus: El<P>,
    n: usize
}

///
/// Computes a polynomial `h` of degree `< deg(fg)` such that `h = 1 mod f` and `h = 0 mod g`.
/// 
fn crt_unit_vectors<P>(poly_ring: P, f: &El<P>, g: &El<P>) -> El<P>
    where P: RingStore,
        P::Type: PolyRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing + FromModulusCreateableZnRing + ZnRing + PrincipalLocalRing,
        AsFieldBase<RingValue<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>>: CanIsoFromTo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type> + SelfIso
{
    assert!(poly_ring.base_ring().is_one(poly_ring.lc(f).unwrap()));
    assert!(poly_ring.base_ring().is_one(poly_ring.lc(g).unwrap()));
    let deg_f = poly_ring.degree(&f).unwrap();

    let mod_f_ring = FreeAlgebraImpl::new(poly_ring.base_ring(), deg_f, (0..deg_f).map(|i| poly_ring.base_ring().negate(poly_ring.base_ring().clone_el(poly_ring.coefficient_at(&f, i)))).collect::<Vec<_>>());
    let g_mod_f = poly_ring.div_rem_monic(poly_ring.clone_el(&g), &f).1;
    let g_mod_f = mod_f_ring.from_canonical_basis((0..deg_f).map(|i| poly_ring.base_ring().clone_el(poly_ring.coefficient_at(&g_mod_f, i))));

    let normalization_factor = invert_over_local_zn(RingRef::new(mod_f_ring.get_ring()), &g_mod_f);
    
    assert!(normalization_factor.is_some(), "crt unit vector modulo {} and {} does not exist", poly_ring.format(f), poly_ring.format(g));
    debug_assert!(mod_f_ring.is_one(&mod_f_ring.mul_ref(normalization_factor.as_ref().unwrap(), &g_mod_f)));
    let g_mod_f_inv = mod_f_ring.poly_repr(&poly_ring, &normalization_factor.unwrap(), poly_ring.base_ring().identity());
    let first_unit_vector = poly_ring.mul_ref_snd(g_mod_f_inv, &g);

    debug_assert!(poly_ring.is_one(&poly_ring.div_rem_monic(poly_ring.clone_el(&first_unit_vector), &f).1));
    debug_assert!(poly_ring.is_zero(&poly_ring.div_rem_monic(poly_ring.clone_el(&first_unit_vector), &g).1));

    return first_unit_vector;
}

impl<P> FastPolyInterpolation<P>
    where P: RingStore,
        P::Type: PolyRing,
        <<P::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing + FromModulusCreateableZnRing + ZnRing + PrincipalLocalRing,
        AsFieldBase<RingValue<<<P::Type as RingExtension>::BaseRing as RingStore>::Type>>: CanIsoFromTo<<<P::Type as RingExtension>::BaseRing as RingStore>::Type> + SelfIso
{
    pub fn new(poly_ring: P, moduli: Vec<El<P>>) -> Self {
        let n = moduli.len();
        let input_degree = moduli.iter().map(|f| poly_ring.degree(f).unwrap_or(0)).max().unwrap();
        let mut current = moduli.iter().map(|f| poly_ring.clone_el(f)).collect::<Vec<_>>();
        let mut result = Vec::new();
        while current.len() > 1 {
            let mut result_part = Vec::new();
            let mut new = Vec::new();
            let mut moduli_it = current.array_chunks::<2>();
            for [f, g] in moduli_it.by_ref() {
                let new_modulus = poly_ring.mul_ref(f, g);
                let unit_vectors = (crt_unit_vectors(&poly_ring, f, g), crt_unit_vectors(&poly_ring, g, f));
                result_part.push(unit_vectors);
                new.push(new_modulus);
            }
            if let Some(last) = moduli_it.remainder().get(0) {
                new.push(poly_ring.clone_el(last));
            }
            current = new;
            result.push(result_part);
        }
        return Self {
            final_modulus: current.pop().unwrap(),
            n: n,
            input_degree: input_degree,
            poly_ring: poly_ring,
            unit_vectors: result
        };
    }

    pub fn change_modulus<PNew>(&self, new_poly_ring: PNew) -> FastPolyInterpolation<PNew>
        where PNew: RingStore,
            PNew::Type: PolyRing,
            <<PNew::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing + FromModulusCreateableZnRing + ZnRing + PrincipalLocalRing,
            AsFieldBase<RingValue<<<PNew::Type as RingExtension>::BaseRing as RingStore>::Type>>: CanIsoFromTo<<<PNew::Type as RingExtension>::BaseRing as RingStore>::Type> + SelfIso
    {
        let red_map = ZnReductionMap::new(self.poly_ring().base_ring(), new_poly_ring.base_ring()).unwrap();
        let lifted_red_map = new_poly_ring.lifted_hom(self.poly_ring(), &red_map);
        let unit_vectors = self.unit_vectors.iter().map(|list| list.iter().map(|(e0, e1)| (lifted_red_map.map_ref(e0), lifted_red_map.map_ref(e1))).collect()).collect();
        let final_modulus = lifted_red_map.map_ref(&self.final_modulus);
        return FastPolyInterpolation {
            final_modulus: final_modulus,
            input_degree: self.input_degree,
            poly_ring: new_poly_ring,
            n: self.n,
            unit_vectors: unit_vectors
        };
    }

    pub fn poly_ring(&self) -> &P {
        &self.poly_ring
    }

    pub fn final_modulus(&self) -> &El<P> {
        &self.final_modulus
    }

    ///
    /// Computes a polynomial of degree `< 2 * deg(prod(moduli))` that is congruent
    /// to `remainders[i]` modulo `moduli[i]`.
    /// 
    /// It is unreduced, since we can reduce its degree to `< deg(prod(moduli))` by
    /// taking the remainder modulo `prod(moduli)`.
    /// 
    /// However, this can be computed really fast, in time `n log(n)^2` if FFT-based
    /// polynomial multiplication is used by the underlying polynomial ring. It is also
    /// very fast in practice, since we don't perform any polynomial division.
    /// 
    pub fn interpolate_unreduced(&self, remainders: Vec<El<P>>) -> El<P> {
        assert_eq!(self.n, remainders.len());
        for i in 0..self.n {
            assert!(self.poly_ring.degree(&remainders[i]).unwrap_or(0) < self.input_degree);
        }
        let mut current = remainders;
        for i in 0..self.unit_vectors.len() {
            let mut new = Vec::new();
            let mut current_it = current.array_chunks::<2>();
            for ([f0, f1], (e0, e1)) in current_it.by_ref().zip(self.unit_vectors[i].iter()) {
                new.push(self.poly_ring.add(
                    self.poly_ring.mul_ref(f0, e0),
                    self.poly_ring.mul_ref(f1, e1)
                ));
            }
            if let Some(last) = current_it.remainder().get(0) {
                new.push(self.poly_ring.clone_el(last));
            }
            current = new;
        }
        debug_assert_eq!(1, current.len());
        let result = current.pop().unwrap();
        debug_assert!(self.poly_ring.degree(&result).unwrap_or(0) < (self.input_degree << (self.unit_vectors.len() +  1)));
        return result;
    }
}

#[test]
fn test_interpolate() {
    let base_ring = AsLocalPIR::from_zn(Zn::new(257)).unwrap();
    let poly_ring = DensePolyRing::new(base_ring, "X");

    let moduli = poly_ring.with_wrapped_indeterminate(|X| [
        X.pow_ref(2) - 1,
        X.pow_ref(3) + X - 1,
        X.pow_ref(2) - X + 2,
        X.pow_ref(2) - 2 * X
    ]);
    let remainders = poly_ring.with_wrapped_indeterminate(|X| [
        -1 * X + 3,
        -5 * X.pow_ref(2) + 21 * X - 12,
        -728 * X + 16,
        720896 * X
    ]);
    let interpolation = FastPolyInterpolation::new(&poly_ring, moduli.iter().map(|f| poly_ring.clone_el(f)).collect());
    let result = interpolation.interpolate_unreduced(remainders.iter().map(|f| poly_ring.clone_el(f)).collect());
    for i in 0..4 {
        assert_el_eq!(&poly_ring, &remainders[i], poly_ring.div_rem_monic(poly_ring.clone_el(&result), &moduli[i]).1);
    }

    let moduli = poly_ring.with_wrapped_indeterminate(|X| [
        X.pow_ref(2) - 1,
        X.pow_ref(3) + X - 1,
        X.pow_ref(2) - X + 2
    ]);
    let remainders = poly_ring.with_wrapped_indeterminate(|X| [
        -1 * X + 3,
        -5 * X.pow_ref(2) + 21 * X - 12,
        -728 * X + 16
    ]);
    let interpolation = FastPolyInterpolation::new(&poly_ring, moduli.iter().map(|f| poly_ring.clone_el(f)).collect());
    let result = interpolation.interpolate_unreduced(remainders.iter().map(|f| poly_ring.clone_el(f)).collect());
    for i in 0..3 {
        assert_el_eq!(&poly_ring, &remainders[i], poly_ring.div_rem_monic(poly_ring.clone_el(&result), &moduli[i]).1);
    }
    
    let moduli = poly_ring.with_wrapped_indeterminate(|X| [
        X.pow_ref(2) - 1,
        X.pow_ref(2) - 2,
        X.pow_ref(2) - 3,
        X.pow_ref(2) - 4,
        X.pow_ref(2) - 5,
        X.pow_ref(2) - 6,
        X.pow_ref(2) - 7,
        X.pow_ref(2) - 8,
        X.pow_ref(2) - 9,
        X.pow_ref(2) - 10,
    ]);
    let remainders = poly_ring.with_wrapped_indeterminate(|X| [
        5 * X + 10,
        5 * X + 9,
        5 * X + 8,
        5 * X + 7,
        5 * X + 6,
        5 * X + 5,
        5 * X + 4,
        5 * X + 3,
        5 * X + 2,
        5 * X + 1,
    ]);
    let interpolation = FastPolyInterpolation::new(&poly_ring, moduli.iter().map(|f| poly_ring.clone_el(f)).collect());
    let result = interpolation.interpolate_unreduced(remainders.iter().map(|f| poly_ring.clone_el(f)).collect());
    for i in 0..10 {
        assert_el_eq!(&poly_ring, &remainders[i], poly_ring.div_rem_monic(poly_ring.clone_el(&result), &moduli[i]).1);
    }
}