1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use std::ops::{
    Neg, Add, Sub, Mul, Div, Rem, 
    AddAssign, SubAssign, MulAssign, DivAssign, RemAssign,
};
use num_traits::{Num, Float, Zero, One, Inv};
//use std::fmt::{Display, Formatter, Result as FmtResult};

use std::marker::PhantomData;

use crate::traits::{Conj, SqrAbs, Algebra};


/// Cayley–Dickson construction, a basic building block
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Construct<T: Float, A: Algebra<T>>(pub A, pub A, PhantomData<T>);

impl<T: Float, A: Algebra<T>> Construct<T, A> {
    /// Create from two parts
    pub fn new2(re: A, im: A) -> Self {
        Self(re, im, PhantomData)
    }
}

impl<T: Float, A: Algebra<T>> Conj for Construct<T, A> {
    fn conj(self) -> Self {
        Self::new2(self.0.conj(), -self.1)
    }
}

impl<T: Float, A: Algebra<T>> Neg for Construct<T, A> {
    type Output = Self;
    fn neg(self) -> Self {
        Self::new2(-self.0, -self.1)
    }
}

impl<T: Float, A: Algebra<T>> Add for Construct<T, A> {
    type Output = Self;
    fn add(self, other: Self) -> Self::Output {
        Self::new2(self.0 + other.0, self.1 + other.1)
    }
}

impl<T: Float, A: Algebra<T>> Sub for Construct<T, A> {
    type Output = Self;
    fn sub(self, other: Self) -> Self::Output {
        Self::new2(self.0 - other.0, self.1 - other.1)
    }
}

impl<T: Float, A: Algebra<T>> Mul<T> for Construct<T, A> {
    type Output = Self;
    fn mul(self, other: T) -> Self::Output {
        Self::new2(self.0*other, self.1*other)
    }
}

impl<T: Float, A: Algebra<T>> Div<T> for Construct<T, A> {
    type Output = Self;
    fn div(self, other: T) -> Self::Output {
        Self::new2(self.0/other, self.1/other)
    }
}

impl<T: Float, A: Algebra<T>> SqrAbs for Construct<T, A> {
    type Output = T;
    fn sqr_abs(self) -> T {
        self.0.sqr_abs() + self.1.sqr_abs()
    }
}

impl<T: Float, A: Algebra<T>> Construct<T, A> {
    pub fn abs(self) -> T {
        self.sqr_abs().sqrt()
    }
}

impl<T: Float, A: Algebra<T>> Inv for Construct<T, A> {
    type Output = Self;
    fn inv(self) -> Self {
        self.conj()/self.sqr_abs()
    }
}

macro_rules! rmul {
    ($F:ident) => (
        /// Workaround for reverse multiplication
        impl<A: Algebra<$F>> Mul<Construct<$F, A>> for $F {
            type Output = Construct<$F, A>;
            fn mul(self, other: Construct<$F, A>) -> Self::Output {
                other*self
            }
        }
    )
}
rmul!(f32);
rmul!(f64);

macro_rules! rdiv {
    ($F:ident) => (
        /// Workaround for reverse division
        impl<A: Algebra<$F>> Div<Construct<$F, A>> for $F {
            type Output = Construct<$F, A>;
            fn div(self, other: Construct<$F, A>) -> Self::Output {
                other.inv()*self
            }
        }
    )
}
rdiv!(f32);
rdiv!(f64);

impl<T: Float, A: Algebra<T>> Mul for Construct<T, A> {
    type Output = Self;
    fn mul(self, other: Self) -> Self::Output {
        Self::new2(
            self.0*other.0 - other.1.conj()*self.1,
            other.1*self.0 + self.1*other.0.conj(),
        )
    }
}

impl<T: Float, A: Algebra<T>> Div for Construct<T, A> {
    type Output = Self;
    fn div(self, other: Self) -> Self::Output {
        self*other.inv()
    }
}

impl<T: Float, A: Algebra<T>> Zero for Construct<T, A> {
    fn zero() -> Self {
        Self::new2(A::zero(), A::zero())
    }
    fn is_zero(&self) -> bool {
        self.0.is_zero() && self.1.is_zero()
    }
}

impl<T: Float, A: Algebra<T>> One for Construct<T, A> {
    fn one() -> Self {
        Self::new2(A::one(), A::zero())
    }
}

/// Not implemented yet
impl<T: Float, A: Algebra<T>> Rem for Construct<T, A> {
    type Output = Self;
    fn rem(self, _other: Self) -> Self::Output {
        unimplemented!()
    }
}

/// Not implemented yet
impl<T: Float, A: Algebra<T>> Num for Construct<T, A> {
    type FromStrRadixErr = ();
    fn from_str_radix(_str: &str, _radix: u32) -> Result<Self, Self::FromStrRadixErr> {
        unimplemented!()
    }
}

impl<T: Float, A: Algebra<T>> Algebra<T> for Construct<T, A> {}


impl<T: Float, A: Algebra<T>> AddAssign for Construct<T, A> {
    fn add_assign(&mut self, other: Self) -> () {
        *self = *self + other;
    }
}

impl<T: Float, A: Algebra<T>> SubAssign for Construct<T, A> {
    fn sub_assign(&mut self, other: Self) -> () {
        *self = *self - other;
    }
}

impl<T: Float, A: Algebra<T>> MulAssign for Construct<T, A> {
    fn mul_assign(&mut self, other: Self) -> () {
        *self = *self*other;
    }
}

impl<T: Float, A: Algebra<T>> DivAssign for Construct<T, A> {
    fn div_assign(&mut self, other: Self) -> () {
        *self = *self/other;
    }
}

impl<T: Float, A: Algebra<T>> RemAssign for Construct<T, A> {
    fn rem_assign(&mut self, other: Self) -> () {
        *self = *self % other;
    }
}

impl<T: Float, A: Algebra<T>> MulAssign<T> for Construct<T, A> {
    fn mul_assign(&mut self, other: T) -> () {
        *self = *self*other;
    }
}

impl<T: Float, A: Algebra<T>> DivAssign<T> for Construct<T, A> {
    fn div_assign(&mut self, other: T) -> () {
        *self = *self/other;
    }
}


impl<T: Float, A: Algebra<T>> Construct<T, A> {
    #[inline]
    pub fn re(self) -> A {
        self.0
    }
    #[inline]
    pub fn im(self) -> A {
        self.1
    }
}

impl<T: Float, A: Algebra<T>> Construct<T, Construct<T, A>> {
    /// Create from four parts
    pub fn new4(w: A, x: A, y: A, z: A) -> Self {
        Self::new2(Construct::new2(w, x), Construct::new2(y, z))
    }

    #[inline]
    pub fn w(self) -> A {
        self.re().re()
    }
    #[inline]
    pub fn x(self) -> A {
        self.re().im()
    }
    #[inline]
    pub fn y(self) -> A {
        self.im().re()
    }
    #[inline]
    pub fn z(self) -> A {
        self.im().im()
    }
}


/// Dummy test to force codecov look at this file
#[cfg(test)]
#[test]
fn dummy() {
    assert_eq!(1, 1);
}