Struct hal::SECP

source ·
pub struct SECP { /* private fields */ }
Expand description

A global secp256k1 context.

Methods from Deref<Target = Secp256k1<All>>§

source

pub fn sign_recoverable( &self, msg: &Message, sk: &SecretKey ) -> RecoverableSignature

👎Deprecated since 0.21.0: Use sign_ecdsa_recoverable instead.

Constructs a signature for msg using the secret key sk and RFC6979 nonce. Requires a signing-capable context.

source

pub fn sign_ecdsa_recoverable( &self, msg: &Message, sk: &SecretKey ) -> RecoverableSignature

Constructs a signature for msg using the secret key sk and RFC6979 nonce Requires a signing-capable context.

source

pub fn sign_ecdsa_recoverable_with_noncedata( &self, msg: &Message, sk: &SecretKey, noncedata: &[u8; 32] ) -> RecoverableSignature

Constructs a signature for msg using the secret key sk and RFC6979 nonce and includes 32 bytes of noncedata in the nonce generation via inclusion in one of the hash operations during nonce generation. This is useful when multiple signatures are needed for the same Message and SecretKey while still using RFC6979. Requires a signing-capable context.

source

pub fn recover( &self, msg: &Message, sig: &RecoverableSignature ) -> Result<PublicKey, Error>

👎Deprecated since 0.21.0: Use recover_ecdsa instead.

Determines the public key for which sig is a valid signature for msg. Requires a verify-capable context.

source

pub fn recover_ecdsa( &self, msg: &Message, sig: &RecoverableSignature ) -> Result<PublicKey, Error>

Determines the public key for which sig is a valid signature for msg. Requires a verify-capable context.

source

pub fn sign(&self, msg: &Message, sk: &SecretKey) -> Signature

👎Deprecated since 0.21.0: Use sign_ecdsa instead.

Constructs a signature for msg using the secret key sk and RFC6979 nonce Requires a signing-capable context.

source

pub fn sign_ecdsa(&self, msg: &Message, sk: &SecretKey) -> Signature

Constructs a signature for msg using the secret key sk and RFC6979 nonce Requires a signing-capable context.

source

pub fn sign_ecdsa_with_noncedata( &self, msg: &Message, sk: &SecretKey, noncedata: &[u8; 32] ) -> Signature

Constructs a signature for msg using the secret key sk and RFC6979 nonce and includes 32 bytes of noncedata in the nonce generation via inclusion in one of the hash operations during nonce generation. This is useful when multiple signatures are needed for the same Message and SecretKey while still using RFC6979. Requires a signing-capable context.

source

pub fn sign_grind_r( &self, msg: &Message, sk: &SecretKey, bytes_to_grind: usize ) -> Signature

👎Deprecated since 0.21.0: Use sign_ecdsa_grind_r instead.

Constructs a signature for msg using the secret key sk, RFC6979 nonce and “grinds” the nonce by passing extra entropy if necessary to produce a signature that is less than 71 - bytes_to_grind bytes. The number of signing operation performed by this function is exponential in the number of bytes grinded. Requires a signing capable context.

source

pub fn sign_ecdsa_grind_r( &self, msg: &Message, sk: &SecretKey, bytes_to_grind: usize ) -> Signature

Constructs a signature for msg using the secret key sk, RFC6979 nonce and “grinds” the nonce by passing extra entropy if necessary to produce a signature that is less than 71 - bytes_to_grind bytes. The number of signing operation performed by this function is exponential in the number of bytes grinded. Requires a signing capable context.

source

pub fn sign_low_r(&self, msg: &Message, sk: &SecretKey) -> Signature

👎Deprecated since 0.21.0: Use sign_ecdsa_low_r instead.

Constructs a signature for msg using the secret key sk, RFC6979 nonce and “grinds” the nonce by passing extra entropy if necessary to produce a signature that is less than 71 bytes and compatible with the low r signature implementation of bitcoin core. In average, this function will perform two signing operations. Requires a signing capable context.

source

pub fn sign_ecdsa_low_r(&self, msg: &Message, sk: &SecretKey) -> Signature

Constructs a signature for msg using the secret key sk, RFC6979 nonce and “grinds” the nonce by passing extra entropy if necessary to produce a signature that is less than 71 bytes and compatible with the low r signature implementation of bitcoin core. In average, this function will perform two signing operations. Requires a signing capable context.

source

pub fn verify( &self, msg: &Message, sig: &Signature, pk: &PublicKey ) -> Result<(), Error>

👎Deprecated since 0.21.0: Use verify_ecdsa instead

Checks that sig is a valid ECDSA signature for msg using the public key pubkey. Returns Ok(()) on success. Note that this function cannot be used for Bitcoin consensus checking since there may exist signatures which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a verify-capable context.

let message = Message::from_slice(&[0xab; 32]).expect("32 bytes");
let sig = secp.sign(&message, &secret_key);
assert_eq!(secp.verify(&message, &sig, &public_key), Ok(()));

let message = Message::from_slice(&[0xcd; 32]).expect("32 bytes");
assert_eq!(secp.verify(&message, &sig, &public_key), Err(Error::IncorrectSignature));
source

pub fn verify_ecdsa( &self, msg: &Message, sig: &Signature, pk: &PublicKey ) -> Result<(), Error>

Checks that sig is a valid ECDSA signature for msg using the public key pubkey. Returns Ok(()) on success. Note that this function cannot be used for Bitcoin consensus checking since there may exist signatures which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a verify-capable context.

let message = Message::from_slice(&[0xab; 32]).expect("32 bytes");
let sig = secp.sign_ecdsa(&message, &secret_key);
assert_eq!(secp.verify_ecdsa(&message, &sig, &public_key), Ok(()));

let message = Message::from_slice(&[0xcd; 32]).expect("32 bytes");
assert_eq!(secp.verify_ecdsa(&message, &sig, &public_key), Err(Error::IncorrectSignature));
source

pub fn schnorrsig_sign(&self, msg: &Message, keypair: &KeyPair) -> Signature

👎Deprecated since 0.21.0: Use sign_schnorr instead.

Create a schnorr signature internally using the ThreadRng random number generator to generate the auxiliary random data.

source

pub fn sign_schnorr(&self, msg: &Message, keypair: &KeyPair) -> Signature

Create a schnorr signature internally using the ThreadRng random number generator to generate the auxiliary random data.

source

pub fn schnorrsig_sign_no_aux_rand( &self, msg: &Message, keypair: &KeyPair ) -> Signature

👎Deprecated since 0.21.0: Use sign_schnorr_no_aux_rand instead.

Create a schnorr signature without using any auxiliary random data.

source

pub fn sign_schnorr_no_aux_rand( &self, msg: &Message, keypair: &KeyPair ) -> Signature

Create a schnorr signature without using any auxiliary random data.

source

pub fn schnorrsig_sign_with_aux_rand( &self, msg: &Message, keypair: &KeyPair, aux_rand: &[u8; 32] ) -> Signature

👎Deprecated since 0.21.0: Use sign_schnorr_with_aux_rand instead.

Create a Schnorr signature using the given auxiliary random data.

source

pub fn sign_schnorr_with_aux_rand( &self, msg: &Message, keypair: &KeyPair, aux_rand: &[u8; 32] ) -> Signature

Create a Schnorr signature using the given auxiliary random data.

source

pub fn schnorrsig_sign_with_rng<R>( &self, msg: &Message, keypair: &KeyPair, rng: &mut R ) -> Signaturewhere R: Rng + CryptoRng,

👎Deprecated since 0.21.0: Use sign_schnorr_with_rng instead.

Create a schnorr signature using the given random number generator to generate the auxiliary random data.

source

pub fn sign_schnorr_with_rng<R>( &self, msg: &Message, keypair: &KeyPair, rng: &mut R ) -> Signaturewhere R: Rng + CryptoRng,

Create a schnorr signature using the given random number generator to generate the auxiliary random data.

source

pub fn schnorrsig_verify( &self, sig: &Signature, msg: &Message, pubkey: &XOnlyPublicKey ) -> Result<(), Error>

👎Deprecated since 0.21.0: Use verify_schnorr instead.

Verify a Schnorr signature.

source

pub fn verify_schnorr( &self, sig: &Signature, msg: &Message, pubkey: &XOnlyPublicKey ) -> Result<(), Error>

Verify a Schnorr signature.

source

pub fn generate_schnorrsig_keypair<R>( &self, rng: &mut R ) -> (KeyPair, XOnlyPublicKey)where R: Rng + ?Sized,

👎Deprecated since 0.21.0: Use kp = KeyPair::new() and kp.x_only_public_key().0

Generates a random Schnorr KeyPair and its associated Schnorr XOnlyPublicKey.

Convenience function for KeyPair::new and KeyPair::public_key. Requires a signing-capable context.

source

pub fn ctx(&self) -> &*mut Context

Getter for the raw pointer to the underlying secp256k1 context. This shouldn’t be needed with normal usage of the library. It enables extending the Secp256k1 with more cryptographic algorithms outside of this crate.

source

pub fn generate_keypair<R>(&self, rng: &mut R) -> (SecretKey, PublicKey)where R: Rng + ?Sized,

Generates a random keypair. Convenience function for SecretKey::new and PublicKey::from_secret_key.

Trait Implementations§

source§

impl Deref for SECP

§

type Target = Secp256k1<All>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Secp256k1<All>

Dereferences the value.
source§

impl LazyStatic for SECP

Auto Trait Implementations§

§

impl RefUnwindSafe for SECP

§

impl Send for SECP

§

impl Sync for SECP

§

impl Unpin for SECP

§

impl UnwindSafe for SECP

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V