hackrfone/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
//! HackRF One API.
//!
//! To get started take a look at [`HackRfOne::new`].
#![doc(html_root_url = "https://docs.rs/hackrfone/0.2.3")]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![deny(missing_docs)]
pub use rusb;
use rusb::{request_type, Direction, GlobalContext, Recipient, RequestType, UsbContext, Version};
use std::{convert::TryFrom, time::Duration};
#[cfg(feature = "num-complex")]
#[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
pub use num_complex;
/// HackRF USB vendor ID.
const HACKRF_USB_VID: u16 = 0x1D50;
/// HackRF One USB product ID.
const HACKRF_ONE_USB_PID: u16 = 0x6089;
#[allow(dead_code)]
#[repr(u8)]
enum Request {
SetTransceiverMode = 1,
Max2837Write = 2,
Max2837Read = 3,
Si5351CWrite = 4,
Si5351CRead = 5,
SampleRateSet = 6,
BasebandFilterBandwidthSet = 7,
Rffc5071Write = 8,
Rffc5071Read = 9,
SpiflashErase = 10,
SpiflashWrite = 11,
SpiflashRead = 12,
BoardIdRead = 14,
VersionStringRead = 15,
SetFreq = 16,
AmpEnable = 17,
BoardPartidSerialnoRead = 18,
SetLnaGain = 19,
SetVgaGain = 20,
SetTxvgaGain = 21,
AntennaEnable = 23,
SetFreqExplicit = 24,
UsbWcidVendorReq = 25,
InitSweep = 26,
OperacakeGetBoards = 27,
OperacakeSetPorts = 28,
SetHwSyncMode = 29,
Reset = 30,
OperacakeSetRanges = 31,
ClkoutEnable = 32,
SpiflashStatus = 33,
SpiflashClearStatus = 34,
OperacakeGpioTest = 35,
CpldChecksum = 36,
UiEnable = 37,
}
impl From<Request> for u8 {
fn from(r: Request) -> Self {
r as u8
}
}
#[allow(dead_code)]
#[repr(u8)]
enum TranscieverMode {
Off = 0,
Receive = 1,
Transmit = 2,
Ss = 3,
CpldUpdate = 4,
RxSweep = 5,
}
impl From<TranscieverMode> for u8 {
fn from(tm: TranscieverMode) -> Self {
tm as u8
}
}
impl From<TranscieverMode> for u16 {
fn from(tm: TranscieverMode) -> Self {
tm as u16
}
}
/// HackRF One errors.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Error {
/// USB error.
Usb(rusb::Error),
/// Failed to transfer all bytes in a control transfer.
CtrlTransfer {
/// Control transfer direction.
dir: Direction,
/// Actual amount of bytes transferred.
actual: usize,
/// Excepted number of bytes transferred.
expected: usize,
},
/// An API call is not supported by your hardware.
///
/// Try updating the firmware on your device.
Version {
/// Current device version.
device: Version,
/// Minimum version required.
min: Version,
},
/// A provided argument was out of range.
Argument,
}
impl From<rusb::Error> for Error {
fn from(e: rusb::Error) -> Self {
Error::Usb(e)
}
}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl std::error::Error for Error {}
/// Typestate for RX mode.
#[derive(Debug)]
pub struct RxMode;
/// Typestate for an unknown mode.
#[derive(Debug)]
pub struct UnknownMode;
/// HackRF One software defined radio.
pub struct HackRfOne<MODE> {
dh: rusb::DeviceHandle<GlobalContext>,
desc: rusb::DeviceDescriptor,
#[allow(dead_code)]
mode: MODE,
to: Duration,
}
impl HackRfOne<UnknownMode> {
/// Open a new HackRF One.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// ```
pub fn new() -> Option<HackRfOne<UnknownMode>> {
let ctx: GlobalContext = GlobalContext {};
let devices = match ctx.devices() {
Ok(d) => d,
Err(_) => return None,
};
for device in devices.iter() {
let desc = match device.device_descriptor() {
Ok(d) => d,
Err(_) => continue,
};
if desc.vendor_id() == HACKRF_USB_VID && desc.product_id() == HACKRF_ONE_USB_PID {
match device.open() {
Ok(handle) => {
return Some(HackRfOne {
dh: handle,
desc,
mode: UnknownMode,
to: Duration::from_secs(1),
})
}
Err(_) => continue,
}
}
}
None
}
}
impl<MODE> HackRfOne<MODE> {
fn read_control<const N: usize>(
&self,
request: Request,
value: u16,
index: u16,
) -> Result<[u8; N], Error> {
let mut buf: [u8; N] = [0; N];
let n: usize = self.dh.read_control(
request_type(Direction::In, RequestType::Vendor, Recipient::Device),
request.into(),
value,
index,
&mut buf,
self.to,
)?;
if n != buf.len() {
Err(Error::CtrlTransfer {
dir: Direction::In,
actual: n,
expected: buf.len(),
})
} else {
Ok(buf)
}
}
fn write_control(
&mut self,
request: Request,
value: u16,
index: u16,
buf: &[u8],
) -> Result<(), Error> {
let n: usize = self.dh.write_control(
request_type(Direction::Out, RequestType::Vendor, Recipient::Device),
request.into(),
value,
index,
&buf,
self.to,
)?;
if n != buf.len() {
Err(Error::CtrlTransfer {
dir: Direction::Out,
actual: n,
expected: buf.len(),
})
} else {
Ok(())
}
}
fn check_api_version(&self, min: Version) -> Result<(), Error> {
fn version_to_u32(v: Version) -> u32 {
((v.major() as u32) << 16) | ((v.minor() as u32) << 8) | (v.sub_minor() as u32)
}
let v: Version = self.device_version();
let v_cmp: u32 = version_to_u32(v);
let min_cmp: u32 = version_to_u32(min);
if v_cmp >= min_cmp {
Ok(())
} else {
Err(Error::Version { device: v, min })
}
}
/// Get the device version from the USB descriptor.
///
/// The HackRF C API calls the equivalent of this function
/// `hackrf_usb_api_version_read`.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{rusb, HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// assert_eq!(radio.device_version(), rusb::Version(1, 0, 4));
/// ```
pub fn device_version(&self) -> Version {
self.desc.device_version()
}
/// Set the timeout for USB transfers.
///
/// # Example
///
/// Set a 100ms timeout.
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
/// use std::time::Duration;
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_timeout(Duration::from_millis(100))
/// ```
pub fn set_timeout(&mut self, duration: Duration) {
self.to = duration;
}
/// Read the board ID.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// assert_eq!(radio.board_id()?, 0x02);
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn board_id(&self) -> Result<u8, Error> {
let data: [u8; 1] = self.read_control(Request::BoardIdRead, 0, 0)?;
Ok(data[0])
}
/// Read the firmware version.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// assert_eq!(radio.version()?, "2021.03.1");
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn version(&self) -> Result<String, Error> {
let mut buf: [u8; 16] = [0; 16];
let n: usize = self.dh.read_control(
request_type(Direction::In, RequestType::Vendor, Recipient::Device),
Request::VersionStringRead.into(),
0,
0,
&mut buf,
self.to,
)?;
Ok(String::from_utf8_lossy(&buf[0..n]).into())
}
/// Set the center frequency.
///
/// # Example
///
/// Set the frequency to 915MHz.
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_freq(915_000_000)?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn set_freq(&mut self, hz: u64) -> Result<(), Error> {
let buf: [u8; 8] = freq_params(hz);
self.write_control(Request::SetFreq, 0, 0, &buf)
}
/// Enable the RX/TX RF amplifier.
///
/// In GNU radio this is used as the RF gain, where a value of 0 dB is off,
/// and a value of 14 dB is on.
///
/// # Example
///
/// Disable the amplifier.
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_amp_enable(false)?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn set_amp_enable(&mut self, en: bool) -> Result<(), Error> {
self.write_control(Request::AmpEnable, en.into(), 0, &[])
}
/// Set the baseband filter bandwidth.
///
/// This is automatically set when the sample rate is changed with
/// [`set_sample_rate`].
///
/// # Example
///
/// Set the filter bandwidth to 70% of the sample rate.
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// const SAMPLE_HZ: u32 = 20_000_000;
/// const SAMPLE_DIV: u32 = 2;
/// const FILTER_BW: u32 = (0.7 * (SAMPLE_HZ as f32) / (SAMPLE_DIV as f32)) as u32;
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_sample_rate(SAMPLE_HZ, SAMPLE_DIV)?;
/// radio.set_baseband_filter_bandwidth(FILTER_BW)?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
///
/// [`set_sample_rate`]: crate::HackRfOne::set_sample_rate
pub fn set_baseband_filter_bandwidth(&mut self, hz: u32) -> Result<(), Error> {
self.write_control(
Request::BasebandFilterBandwidthSet,
(hz & 0xFFFF) as u16,
(hz >> 16) as u16,
&[],
)
}
/// Set the sample rate.
///
/// For anti-aliasing, the baseband filter bandwidth is automatically set to
/// the widest available setting that is no more than 75% of the sample rate.
/// This happens every time the sample rate is set.
/// If you want to override the baseband filter selection, you must do so
/// after setting the sample rate.
///
/// Limits are 8MHz - 20MHz.
/// Preferred rates are 8, 10, 12.5, 16, 20MHz due to less jitter.
///
/// # Example
///
/// Set the sample rate to 10 MHz.
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_sample_rate(20_000_000, 2)?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn set_sample_rate(&mut self, hz: u32, div: u32) -> Result<(), Error> {
let hz: u32 = hz.to_le();
let div: u32 = div.to_le();
let buf: [u8; 8] = [
(hz & 0xFF) as u8,
((hz >> 8) & 0xFF) as u8,
((hz >> 16) & 0xFF) as u8,
((hz >> 24) & 0xFF) as u8,
(div & 0xFF) as u8,
((div >> 8) & 0xFF) as u8,
((div >> 16) & 0xFF) as u8,
((div >> 24) & 0xFF) as u8,
];
self.write_control(Request::SampleRateSet, 0, 0, &buf)?;
self.set_baseband_filter_bandwidth((0.75 * (hz as f32) / (div as f32)) as u32)
}
/// Set the LNA (low noise amplifier) gain.
///
/// Range 0 to 40dB in 8dB steps.
///
/// This is also known as the IF gain.
///
/// # Example
///
/// Set the LNA gain to 16 dB (generally a reasonable gain to start with).
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_lna_gain(16)?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn set_lna_gain(&mut self, gain: u16) -> Result<(), Error> {
if gain > 40 {
Err(Error::Argument)
} else {
let buf: [u8; 1] = self.read_control(Request::SetLnaGain, 0, gain & !0x07)?;
if buf[0] == 0 {
Err(Error::Argument)
} else {
Ok(())
}
}
}
/// Set the VGA (variable gain amplifier) gain.
///
/// Range 0 to 62dB in 2dB steps.
///
/// This is also known as the baseband (BB) gain.
///
/// # Example
///
/// Set the VGA gain to 16 dB (generally a reasonable gain to start with).
///
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// radio.set_vga_gain(16)?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn set_vga_gain(&mut self, gain: u16) -> Result<(), Error> {
if gain > 62 {
Err(Error::Argument)
} else {
let buf: [u8; 1] = self.read_control(Request::SetVgaGain, 0, gain & !0b1)?;
if buf[0] == 0 {
Err(Error::Argument)
} else {
Ok(())
}
}
}
/// Set the transmit VGA gain.
///
/// Range 0 to 47dB in 1db steps.
pub fn set_txvga_gain(&mut self, gain: u16) -> Result<(), Error> {
if gain > 47 {
Err(Error::Argument)
} else {
let buf: [u8; 1] = self.read_control(Request::SetTxvgaGain, 0, gain)?;
if buf[0] == 0 {
Err(Error::Argument)
} else {
Ok(())
}
}
}
/// Antenna power port control.
///
/// The source docs are a little lacking in terms of explanations here.
pub fn set_antenna_enable(&mut self, value: u8) -> Result<(), Error> {
self.write_control(Request::AntennaEnable, value.into(), 0, &[])
}
/// CLKOUT enable.
///
/// The source docs are a little lacking in terms of explanations here.
pub fn set_clkout_enable(&mut self, en: bool) -> Result<(), Error> {
self.check_api_version(Version::from_bcd(0x0103))?;
self.write_control(Request::ClkoutEnable, en.into(), 0, &[])
}
/// Reset the HackRF radio.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// let mut radio: HackRfOne<UnknownMode> = radio.reset()?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn reset(mut self) -> Result<HackRfOne<UnknownMode>, Error> {
self.check_api_version(Version::from_bcd(0x0102))?;
self.write_control(Request::Reset, 0, 0, &[])?;
Ok(HackRfOne {
dh: self.dh,
desc: self.desc,
mode: UnknownMode,
to: self.to,
})
}
fn set_transceiver_mode(&mut self, mode: TranscieverMode) -> Result<(), Error> {
self.write_control(Request::SetTransceiverMode, mode.into(), 0, &[])
}
/// Change the radio mode to RX.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, RxMode, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// let mut radio: HackRfOne<RxMode> = radio.into_rx_mode()?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn into_rx_mode(mut self) -> Result<HackRfOne<RxMode>, Error> {
self.set_transceiver_mode(TranscieverMode::Receive)?;
self.dh.claim_interface(0)?;
Ok(HackRfOne {
dh: self.dh,
desc: self.desc,
mode: RxMode,
to: self.to,
})
}
}
impl HackRfOne<RxMode> {
/// Receive data from the radio.
///
/// This uses a bulk transfer to get one MTU (maximum transmission unit)
/// of data in a single shot. The data format is pairs of signed 8-bit IQ.
/// Use the [`iq_to_cplx_i8`] or [`iq_to_cplx_f32`] helpers to convert the
/// data to a more manageable format.
///
/// Unlike `libhackrf` this does not spawn a sampling thread.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, RxMode, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// let mut radio: HackRfOne<RxMode> = radio.into_rx_mode()?;
/// let data: Vec<u8> = radio.rx()?;
/// radio.stop_rx()?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
///
/// [`iq_to_cplx_i8`]: crate::iq_to_cplx_i8
/// [`iq_to_cplx_f32`]: crate::iq_to_cplx_f32
pub fn rx(&mut self) -> Result<Vec<u8>, Error> {
const ENDPOINT: u8 = 0x81;
const MTU: usize = 128 * 1024;
let mut buf: Vec<u8> = vec![0; MTU];
let n: usize = self.dh.read_bulk(ENDPOINT, &mut buf, self.to)?;
buf.truncate(n);
Ok(buf)
}
/// Stop receiving.
///
/// # Example
///
/// ```no_run
/// use hackrfone::{HackRfOne, RxMode, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// let mut radio: HackRfOne<RxMode> = radio.into_rx_mode()?;
/// let data: Vec<u8> = radio.rx()?;
/// radio.stop_rx()?;
/// # Ok::<(), hackrfone::Error>(())
/// ```
pub fn stop_rx(mut self) -> Result<HackRfOne<UnknownMode>, Error> {
self.dh.release_interface(0)?;
self.set_transceiver_mode(TranscieverMode::Off)?;
Ok(HackRfOne {
dh: self.dh,
desc: self.desc,
mode: UnknownMode,
to: self.to,
})
}
}
// Helper for set_freq
fn freq_params(hz: u64) -> [u8; 8] {
const MHZ: u64 = 1_000_000;
let l_freq_mhz: u32 = u32::try_from(hz / MHZ).unwrap_or(u32::MAX).to_le();
let l_freq_hz: u32 = u32::try_from(hz - u64::from(l_freq_mhz) * MHZ)
.unwrap_or(u32::MAX)
.to_le();
[
(l_freq_mhz & 0xFF) as u8,
((l_freq_mhz >> 8) & 0xFF) as u8,
((l_freq_mhz >> 16) & 0xFF) as u8,
((l_freq_mhz >> 24) & 0xFF) as u8,
(l_freq_hz & 0xFF) as u8,
((l_freq_hz >> 8) & 0xFF) as u8,
((l_freq_hz >> 16) & 0xFF) as u8,
((l_freq_hz >> 24) & 0xFF) as u8,
]
}
#[cfg(test)]
mod freq_params {
use super::freq_params;
#[test]
fn nominal() {
assert_eq!(freq_params(915_000_000), [0x93, 0x03, 0, 0, 0, 0, 0, 0]);
assert_eq!(freq_params(915_000_001), [0x93, 0x03, 0, 0, 1, 0, 0, 0]);
assert_eq!(
freq_params(123456789),
[0x7B, 0, 0, 0, 0x55, 0xF8, 0x06, 0x00]
);
}
#[test]
fn min() {
assert_eq!(freq_params(0), [0; 8]);
}
#[test]
fn max() {
assert_eq!(freq_params(u64::MAX), [0xFF; 8]);
}
}
/// Convert an IQ sample pair to a complex number.
///
/// # Example
///
/// Post-processing sample data.
///
/// ```no_run
/// use hackrfone::{iq_to_cplx_i8, HackRfOne, RxMode, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// let mut radio: HackRfOne<RxMode> = radio.into_rx_mode()?;
/// let data: Vec<u8> = radio.rx()?;
/// radio.stop_rx()?;
///
/// for iq in data.chunks_exact(2) {
/// let cplx: num_complex::Complex<i8> = iq_to_cplx_i8(iq[0], iq[1]);
/// // .. do whatever you want with cplx here
/// }
///
/// # Ok::<(), hackrfone::Error>(())
/// ```
///
/// Guide level explanation.
///
/// ```
/// use hackrfone::iq_to_cplx_i8;
/// use num_complex::Complex;
///
/// assert_eq!(iq_to_cplx_i8(255, 1), Complex::new(-1, 1));
/// ```
#[cfg(feature = "num-complex")]
#[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
pub fn iq_to_cplx_i8(i: u8, q: u8) -> num_complex::Complex<i8> {
num_complex::Complex::new(i as i8, q as i8)
}
/// Convert an IQ sample pair to a floating point complex number.
///
/// Generally you will want to use [`iq_to_cplx_i8`] for storing or transfering
/// data because the samples are 2-bytes in the native i8, vs 8-bytes in f32.
///
/// Floats are easier to work with for running samples through digital signal
/// processing algorithms (e.g. discrete fourier transform) where the i8 can
/// easily saturate.
///
/// # Example
///
/// Post-processing sample data.
///
/// ```no_run
/// use hackrfone::{iq_to_cplx_f32, HackRfOne, RxMode, UnknownMode};
///
/// let mut radio: HackRfOne<UnknownMode> = HackRfOne::new().unwrap();
/// let mut radio: HackRfOne<RxMode> = radio.into_rx_mode()?;
/// let data: Vec<u8> = radio.rx()?;
/// radio.stop_rx()?;
///
/// for iq in data.chunks_exact(2) {
/// let cplx: num_complex::Complex<f32> = iq_to_cplx_f32(iq[0], iq[1]);
/// // .. do whatever you want with cplx here
/// }
///
/// # Ok::<(), hackrfone::Error>(())
/// ```
///
/// Guide level explanation.
///
/// ```
/// use hackrfone::iq_to_cplx_f32;
/// use num_complex::Complex;
///
/// assert_eq!(iq_to_cplx_f32(255, 1), Complex::new(-1.0, 1.0));
/// ```
#[cfg(feature = "num-complex")]
#[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
pub fn iq_to_cplx_f32(i: u8, q: u8) -> num_complex::Complex<f32> {
num_complex::Complex::new(i as i8 as f32, q as i8 as f32)
}