use std::cmp::{max, min};
use std::collections::HashMap;
use std::hash::Hash;
use geo_types::{Coordinate, Rect};
use log::debug;
use ndarray::{
ArrayView2,
Axis,
parallel::prelude::*,
};
use h3ron::{
collections::H3CompactedVec,
index::Index,
polyfill,
};
use crate::{
error::Error,
transform::Transform,
};
use crate::resolution::{nearest_h3_resolution, ResolutionSearchMode};
pub enum AxisOrder {
XY,
YX,
}
impl AxisOrder {
pub fn x_axis(&self) -> usize {
match self {
Self::XY => 0,
Self::YX => 1,
}
}
pub fn y_axis(&self) -> usize {
match self {
Self::XY => 1,
Self::YX => 0,
}
}
}
fn find_continuous_chunks_along_axis<T>(a: &ArrayView2<T>, axis: usize, nodata_value: &T) -> Vec<(usize, usize)> where T: Sized + PartialEq {
let mut chunks = Vec::new();
let mut current_chunk_start: Option<usize> = None;
for (r0pos, r0) in a.axis_iter(Axis(axis)).enumerate() {
if r0.iter().any(|v| v != nodata_value) {
if current_chunk_start.is_none() {
current_chunk_start = Some(r0pos);
}
} else if let Some(begin) = current_chunk_start {
chunks.push((begin, r0pos - 1));
current_chunk_start = None;
}
}
if let Some(begin) = current_chunk_start {
chunks.push((begin, a.shape()[axis] - 1));
}
chunks
}
fn find_boxes_containing_data<T>(a: &ArrayView2<T>, nodata_value: &T, axis_order: &AxisOrder) -> Vec<Rect<usize>> where T: Sized + PartialEq {
let mut boxes = Vec::new();
for chunk_x_raw_indexes in find_continuous_chunks_along_axis(a, axis_order.x_axis(), nodata_value) {
let sv = {
let x_raw_range = chunk_x_raw_indexes.0..=chunk_x_raw_indexes.1;
match axis_order {
AxisOrder::XY => a.slice(s![x_raw_range, ..]),
AxisOrder::YX => a.slice(s![.., x_raw_range]),
}
};
for chunks_y_raw_indexes in find_continuous_chunks_along_axis(&sv, axis_order.y_axis(), nodata_value) {
let sv2 = {
let x_raw_range = 0..=(chunk_x_raw_indexes.1 - chunk_x_raw_indexes.0);
let y_raw_range = chunks_y_raw_indexes.0..=chunks_y_raw_indexes.1;
match axis_order {
AxisOrder::XY => sv.slice(s![x_raw_range, y_raw_range]),
AxisOrder::YX => sv.slice(s![y_raw_range, x_raw_range]),
}
};
for chunks_x_indexes in find_continuous_chunks_along_axis(&sv2, axis_order.x_axis(), nodata_value) {
boxes.push(Rect::new(
Coordinate {
x: chunks_x_indexes.0 + chunk_x_raw_indexes.0,
y: chunks_y_raw_indexes.0,
},
Coordinate {
x: chunks_x_indexes.1 + chunk_x_raw_indexes.0,
y: chunks_y_raw_indexes.1,
},
))
}
}
}
boxes
}
pub struct H3Converter<'a, T> where T: Sized + PartialEq + Sync + Eq + Hash {
arr: &'a ArrayView2<'a, T>,
nodata_value: &'a Option<T>,
transform: &'a Transform,
axis_order: AxisOrder,
}
impl<'a, T> H3Converter<'a, T> where T: Sized + PartialEq + Sync + Eq + Hash {
pub fn new(arr: &'a ArrayView2<'a, T>, nodata_value: &'a Option<T>, transform: &'a Transform, axis_order: AxisOrder) -> Self {
Self {
arr,
nodata_value,
transform,
axis_order,
}
}
pub fn nearest_h3_resolution(&self, search_mode: ResolutionSearchMode) -> Result<u8, Error> {
nearest_h3_resolution(self.arr.shape(), self.transform, &self.axis_order, search_mode)
}
fn rects_with_data(&self, rect_size: usize) -> Vec<Rect<f64>> {
if let Some(nodata) = self.nodata_value {
self.arr.axis_chunks_iter(Axis(self.axis_order.x_axis()), rect_size)
.into_par_iter()
.enumerate()
.map(|(axis_x_chunk_i, axis_x_chunk)| {
let mut rects = Vec::new();
for chunk_x_rect in find_boxes_containing_data(&axis_x_chunk, nodata, &self.axis_order) {
let offset_x = (axis_x_chunk_i * rect_size) + chunk_x_rect.min().x;
let chunk_rect_view = {
let x_range = chunk_x_rect.min().x..chunk_x_rect.max().x;
let y_range = chunk_x_rect.min().y..chunk_x_rect.max().y;
match self.axis_order {
AxisOrder::XY => axis_x_chunk.slice(s![x_range, y_range]),
AxisOrder::YX => axis_x_chunk.slice(s![y_range, x_range]),
}
};
chunk_rect_view.axis_chunks_iter(Axis(self.axis_order.y_axis()), rect_size)
.enumerate()
.for_each(|(axis_y_chunk_i, axis_y_chunk)| {
let offset_y = (axis_y_chunk_i * rect_size) + chunk_x_rect.min().y;
let window = Rect::new(
Coordinate {
x: offset_x as f64,
y: offset_y as f64,
},
Coordinate {
x: (offset_x + axis_y_chunk.shape()[self.axis_order.x_axis()] + 1) as f64,
y: (offset_y + axis_y_chunk.shape()[self.axis_order.y_axis()] + 1) as f64,
},
);
rects.push(window)
})
}
rects
})
.flatten()
.collect()
} else {
let x_size = self.arr.shape()[self.axis_order.x_axis()];
let y_size = self.arr.shape()[self.axis_order.y_axis()];
(0..((x_size as f64 / rect_size as f64).ceil() as usize)).map(|r_x| {
(0..((y_size as f64 / rect_size as f64).ceil() as usize)).map(|r_y| {
Rect::new(
Coordinate {
x: (r_x * rect_size) as f64,
y: (r_y * rect_size) as f64,
},
Coordinate {
x: (min(x_size, (r_x + 1) * rect_size)) as f64,
y: (min(y_size, (r_y + 1) * rect_size)) as f64,
},
)
})
.collect::<Vec<_>>()
})
.flatten()
.collect()
}
}
fn finalize_chunk_map(&self, chunk_map: &mut HashMap<&T, H3CompactedVec>, compact: bool) {
chunk_map.iter_mut()
.for_each(|(_value, compacted_vec)| {
if compact {
compacted_vec.compact();
} else {
compacted_vec.dedup();
}
});
}
pub fn to_h3(&self, h3_resolution: u8, compact: bool) -> Result<HashMap<&'a T, H3CompactedVec>, Error> {
let inverse_transform = self.transform.invert()?;
let rect_size = min(max(self.arr.shape()[self.axis_order.x_axis()] / 10, 10), 100);
let rects = self.rects_with_data(rect_size);
let n_rects = rects.len();
debug!("to_h3: found {} rects containing non-nodata values", n_rects);
let mut chunk_h3_maps = rects
.into_par_iter()
.enumerate()
.map(|(array_window_i, array_window)| {
debug!("to_h3: rect {}/{} with size {} x {}", array_window_i, n_rects, array_window.width(), array_window.height());
let window_box = self.transform * &array_window;
let mut chunk_h3_map = HashMap::<&T, H3CompactedVec>::new();
let h3indexes = polyfill(&window_box.to_polygon(), h3_resolution);
for h3index in h3indexes {
let arr_coord = {
let transformed = &inverse_transform * &Index::from(h3index).coordinate();
match self.axis_order {
AxisOrder::XY => [transformed.x.floor() as usize, transformed.y.floor() as usize],
AxisOrder::YX => [transformed.y.floor() as usize, transformed.x.floor() as usize],
}
};
if let Some(value) = self.arr.get(arr_coord) {
if let Some(nodata) = self.nodata_value {
if nodata == value {
continue;
}
}
chunk_h3_map.entry(value)
.or_insert_with(H3CompactedVec::new)
.add_index_to_resolution(h3index, h3_resolution, false);
}
}
self.finalize_chunk_map(&mut chunk_h3_map, compact);
chunk_h3_map
})
.collect::<Vec<_>>();
let mut h3_map = HashMap::new();
for mut chunk_h3_map in chunk_h3_maps.drain(..) {
for (value, mut compacted_vec) in chunk_h3_map.drain() {
h3_map.entry(value)
.or_insert_with(H3CompactedVec::new)
.append(&mut compacted_vec, false);
}
}
self.finalize_chunk_map(&mut h3_map, compact);
Ok(h3_map)
}
}
#[cfg(test)]
mod tests {
use crate::array::find_boxes_containing_data;
use crate::AxisOrder;
#[test]
fn test_find_boxes_containing_data() {
let arr = array![
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1],
];
let mut arr_copy = arr.clone();
let n_elements = arr_copy.shape()[0] * arr_copy.shape()[1];
let mut n_elements_in_boxes = 0;
for rect in find_boxes_containing_data(&arr.view(), &0, &AxisOrder::YX) {
n_elements_in_boxes += (rect.max().x - rect.min().x + 1) * (rect.max().y - rect.min().y + 1);
for x in rect.min().x..=rect.max().x {
for y in rect.min().y..=rect.max().y {
arr_copy[(y, x)] = 0;
}
}
}
assert!(n_elements_in_boxes < (n_elements / 2));
assert_eq!(arr_copy.sum(), 0);
}
}