1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use std::cmp::Ordering;

use geo_types::LineString;
use serde::{Deserialize, Serialize};

use h3ron::to_geo::{ToLineString, ToMultiLineString};
use h3ron::{H3Cell, H3DirectedEdge, Index};

use crate::error::Error;

/// [DirectedEdgePath] describes a path between a cell and another.
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub enum DirectedEdgePath {
    /// path is empty as origin and destination are the same.
    OriginIsDestination(H3Cell),

    /// a sequence of edges describing the path.
    ///
    /// The edges in the vec are expected to be consecutive.
    ///
    /// The cost is the total cost summed for all of the edges.
    DirectedEdgeSequence(Vec<H3DirectedEdge>),
}

impl DirectedEdgePath {
    pub fn is_empty(&self) -> bool {
        match self {
            Self::OriginIsDestination(_) => true,
            Self::DirectedEdgeSequence(edges) => edges.is_empty(),
        }
    }

    /// Length of the path in number of edges
    pub fn len(&self) -> usize {
        match self {
            Self::OriginIsDestination(_) => 0,
            Self::DirectedEdgeSequence(edges) => edges.len(),
        }
    }

    pub fn origin_cell(&self) -> Result<H3Cell, Error> {
        match self {
            Self::OriginIsDestination(cell) => Ok(*cell),
            Self::DirectedEdgeSequence(edges) => {
                if let Some(edge) = edges.first() {
                    Ok(edge.origin_cell()?)
                } else {
                    Err(Error::EmptyPath)
                }
            }
        }
    }

    pub fn destination_cell(&self) -> Result<H3Cell, Error> {
        match self {
            Self::OriginIsDestination(cell) => Ok(*cell),
            Self::DirectedEdgeSequence(edges) => {
                if let Some(edge) = edges.last() {
                    Ok(edge.destination_cell()?)
                } else {
                    Err(Error::EmptyPath)
                }
            }
        }
    }

    pub fn to_linestring(&self) -> Result<LineString<f64>, Error> {
        match self {
            Self::OriginIsDestination(_) => Err(Error::InsufficientNumberOfEdges),
            Self::DirectedEdgeSequence(edges) => match edges.len() {
                0 => Err(Error::InsufficientNumberOfEdges),
                1 => Ok(edges[0].to_linestring()?),
                _ => {
                    let mut multilinesstring = edges.to_multilinestring()?;
                    match multilinesstring.0.len() {
                        0 => Err(Error::InsufficientNumberOfEdges),
                        1 => Ok(multilinesstring.0.remove(0)),
                        _ => Err(Error::SegmentedPath),
                    }
                }
            },
        }
    }

    pub fn edges(&self) -> &[H3DirectedEdge] {
        match self {
            Self::DirectedEdgeSequence(edges) => edges.as_slice(),
            Self::OriginIsDestination(_) => &[],
        }
    }

    /// return a vec of all [`H3Cell`] the path passes through.
    pub fn cells(&self) -> Result<Vec<H3Cell>, Error> {
        match self {
            Self::OriginIsDestination(cell) => Ok(vec![*cell]),
            Self::DirectedEdgeSequence(edges) => {
                let mut cells = Vec::with_capacity(edges.len() * 2);
                for edge in edges.iter() {
                    cells.push(edge.origin_cell()?);
                    cells.push(edge.destination_cell()?);
                }
                cells.dedup();
                cells.shrink_to_fit();
                Ok(cells)
            }
        }
    }

    /// calculate the length of the path in meters using the exact length of the
    /// contained edges
    pub fn length_m(&self) -> Result<f64, Error> {
        match self {
            Self::OriginIsDestination(_) => Ok(0.0),
            Self::DirectedEdgeSequence(edges) => {
                let mut length_m = 0.0;
                for edge in edges {
                    length_m += edge.length_m()?;
                }
                Ok(length_m)
            }
        }
    }
}

/// [Path] describes a path between a cell and another with an associated cost
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub struct Path<W> {
    /// The cell the path starts at.
    ///
    /// This is the cell the path was calculated from. The actual start cell of the
    /// path may differ in case `origin_cell` is not directly connected to the graph
    pub origin_cell: H3Cell,

    /// The cell the path ends at.
    ///
    /// This is the cell the path was calculated to. The actual end cell of the
    /// path may differ in case `destination_cell` is not directly connected to the graph
    pub destination_cell: H3Cell,

    pub cost: W,

    /// describes the path
    pub directed_edge_path: DirectedEdgePath,
}

impl<W> Path<W> {
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.directed_edge_path.is_empty()
    }

    #[inline]
    pub fn len(&self) -> usize {
        self.directed_edge_path.len()
    }
}

impl<W> TryFrom<(DirectedEdgePath, W)> for Path<W> {
    type Error = Error;

    fn try_from((path_directed_edges, cost): (DirectedEdgePath, W)) -> Result<Self, Self::Error> {
        let origin_cell = path_directed_edges.origin_cell()?;
        let destination_cell = path_directed_edges.destination_cell()?;
        Ok(Self {
            origin_cell,
            destination_cell,
            cost,
            directed_edge_path: path_directed_edges,
        })
    }
}

impl PartialOrd<Self> for DirectedEdgePath {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for DirectedEdgePath {
    fn cmp(&self, other: &Self) -> Ordering {
        let cmp_origin = index_or_zero(self.origin_cell()).cmp(&index_or_zero(other.origin_cell()));
        if cmp_origin == Ordering::Equal {
            index_or_zero(self.destination_cell()).cmp(&index_or_zero(other.destination_cell()))
        } else {
            cmp_origin
        }
    }
}

/// order by cost, origin index and destination_index.
///
/// This ordering can used to bring `Vec`s of routes in a deterministic order to make them
/// comparable
impl<W> Ord for Path<W>
where
    W: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        let cmp_cost = self.cost.cmp(&other.cost);
        if cmp_cost == Ordering::Equal {
            self.directed_edge_path.cmp(&other.directed_edge_path)
        } else {
            cmp_cost
        }
    }
}

impl<W> PartialOrd for Path<W>
where
    W: Ord,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

#[inline]
fn index_or_zero(cell: Result<H3Cell, Error>) -> u64 {
    cell.map(|c| c.h3index()).unwrap_or(0)
}

#[cfg(test)]
mod tests {
    use h3ron::{H3DirectedEdge, Index};

    use super::{DirectedEdgePath, Path};

    #[test]
    fn pathdirectededges_deterministic_ordering() {
        let r1 =
            DirectedEdgePath::DirectedEdgeSequence(vec![H3DirectedEdge::new(0x1176b49474ffffff)]);
        let r2 =
            DirectedEdgePath::DirectedEdgeSequence(vec![H3DirectedEdge::new(0x1476b49474ffffff)]);
        let mut paths = vec![r2.clone(), r1.clone()];
        paths.sort_unstable();
        assert_eq!(paths[0], r1);
        assert_eq!(paths[1], r2);
    }

    #[test]
    fn paths_deterministic_ordering() {
        let r1: Path<_> = (
            DirectedEdgePath::DirectedEdgeSequence(vec![H3DirectedEdge::new(0x1176b49474ffffff)]),
            1,
        )
            .try_into()
            .unwrap();
        let r2: Path<_> = (
            DirectedEdgePath::DirectedEdgeSequence(vec![H3DirectedEdge::new(0x1476b49474ffffff)]),
            3,
        )
            .try_into()
            .unwrap();
        let r3: Path<_> = (
            DirectedEdgePath::DirectedEdgeSequence(vec![H3DirectedEdge::new(0x1476b4b2c2ffffff)]),
            3,
        )
            .try_into()
            .unwrap();
        let mut paths = vec![r3.clone(), r1.clone(), r2.clone()];
        paths.sort_unstable();
        assert_eq!(paths[0], r1);
        assert_eq!(paths[1], r2);
        assert_eq!(paths[2], r3);
    }
}