1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
use futures::prelude::*; use std::sync::Arc; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering; use std::cell::RefCell; use std::collections::HashMap; type BoxUnitFuture = Box<Future<Item=(), Error=()>>; struct GtkEventLoopAsyncExecutorBackend { next_id: AtomicUsize, spawns: RefCell<HashMap<usize, futures::executor::Spawn<BoxUnitFuture>>>, } /// An executor that executes futures on Gtk+ main loop. /// This allows executing asynchronous code that manipulates Gtk+ widgets. /// /// Usage: /// 1) Create with GtkEventLoopAsyncExecutor::new() /// 2) Clone as necessary (all clones refer to the same executor) /// 3) Use GtkEventLoopAsyncExecutor::spawn() to launch new async GUI code /// /// GtkEventLoopAsyncExecutor ensures memory- and thread-safety by being not shareable or sendable between threads. /// This is a requirement for GUI code. /// /// Example: /// ```rust /// use futures::prelude::*; /// use futures::future; /// use futures_cpupool::CpuPool; /// /// use gtk_future_executor::GtkEventLoopAsyncExecutor; /// use gtk_future_executor::Promise; /// use gtk::prelude::*; /// /// // An examples that computes Fibonacci numbers in background /// /// fn main() -> Result<(), String> { /// /// gtk::init().map_err(|_| "Failed to initialize Gtk+".to_string())?; /// /// // Constuct new executor /// let gtk_executor = GtkEventLoopAsyncExecutor::new(); /// // This examples uses CPU pool for invoking long-running computation in background /// let cpu_pool = CpuPool::new_num_cpus(); /// /// let fut_main = gui_main(cpu_pool.clone(), gtk_executor.clone()) /// .then(|_| { /// // Exit main loop when gui_main() finishes /// gtk::main_quit(); /// /// future::ok(()) /// }); /// /// // This executes the async main function inside Gtk+ event loop /// gtk_executor.spawn(fut_main); /// /// gtk::main(); /// /// Result::Ok(()) /// } /// /// // An async function that shows a window. Returned future will resolve when user closes the window. /// fn gui_main(cpu_pool: CpuPool, gtk_executor: GtkEventLoopAsyncExecutor) -> impl Future<Item=(), Error=String> { /// /// let promise = Promise::new(); /// /// let window = gtk::Window::new(gtk::WindowType::Toplevel); /// let vbox = gtk::Box::new(gtk::Orientation::Vertical, 5); /// let label = gtk::Label::new("Enter n:"); /// let result_label = gtk::Label::new("<result>"); /// let textbox = gtk::Entry::new(); /// let button = gtk::Button::new_with_label("OK"); /// /// window.add(&vbox); /// vbox.pack_start(&label, false, true, 0); /// vbox.pack_start(&textbox, false, true, 0); /// vbox.pack_start(&button, false, true, 0); /// vbox.pack_start(&result_label, false, true, 0); /// /// window.set_title("Fib"); /// window.set_position(gtk::WindowPosition::Center); /// /// { /// let promise = promise.clone(); /// window.connect_delete_event(move |_, _| { /// promise.resolve(()); /// /// Inhibit(false) /// }); /// } /// /// { /// let cpu_pool = cpu_pool.clone(); /// let gtk_executor = gtk_executor.clone(); /// let textbox = textbox.clone(); /// let result_label = result_label.clone(); /// button.connect_clicked(move |_| { /// /// let opt_text = textbox.get_text(); /// let text = opt_text.as_ref().map(|s| s.as_str()).unwrap_or(""); /// let n: u64 = match text.parse() { /// Ok(x) => x, /// Err(x) => { /// eprintln!("Error: {}", x); /// return; /// } /// }; /// result_label.set_text("computing..."); /// let result_label = result_label.clone(); /// /// // With GtkEventLoopAsyncExecutor we can await the long running async computation /// // and continue manipulating GUI widgets on the main thread. /// gtk_executor.spawn( /// // cpu_pool execute `compute_fib` in background thread_pool /// cpu_pool.spawn_fn(move || future::ok(compute_fib(n))) /// .and_then(move |r| { /// // this code is executed on main thread /// result_label.set_text(&format!("fib({}) = {}", n, r)); /// /// future::ok(()) /// }) /// ); /// }); /// } /// /// window.show_all(); /// /// promise /// } /// /// // Fibonacci function. This function will take very long time for large values of `n`. /// fn compute_fib(n: u64) -> u64 { /// if n < 2 { /// 1 /// } else { /// compute_fib(n - 2) + compute_fib(n - 1) /// } /// } /// ``` #[derive(Clone)] pub struct GtkEventLoopAsyncExecutor { backend: Arc<GtkEventLoopAsyncExecutorBackend>, } #[derive(Clone)] struct GtkEventLoopAsyncExecutorNotifier { executor: GtkEventLoopAsyncExecutor, } impl GtkEventLoopAsyncExecutorNotifier { pub fn new(executor: GtkEventLoopAsyncExecutor) -> Self { GtkEventLoopAsyncExecutorNotifier { executor } } } impl GtkEventLoopAsyncExecutor { /// Instantiates new executor. May only be called from Gtk+ main thread. Gtk+ must be initialized. /// *Panics* if called before Gtk+ initialization or from non-main thread. pub fn new() -> Self { assert!(gtk::is_initialized_main_thread(), "GtkEventLoopAsyncExecutor::new() may only be called on Gtk+ main thread"); GtkEventLoopAsyncExecutor { backend: Arc::new( GtkEventLoopAsyncExecutorBackend { next_id: AtomicUsize::new(0), spawns: RefCell::new(HashMap::new()) } ) } } /// Executes specified future on Gtk+ main thread (using event loop to schedule callbacks) pub fn spawn<F: Future<Item=(), Error=()> + Sized + 'static>(&self, f: F) { let id = self.backend.next_id.fetch_add(1, Ordering::SeqCst); { let mut spawns = self.backend.spawns.borrow_mut(); let spawn = futures::executor::spawn(Box::new(f) as BoxUnitFuture); spawns.insert(id, spawn); } let handle = GtkEventLoopAsyncExecutorNotifier::new(self.clone()); use futures::executor::Notify; handle.notify(id); } fn invoke(&self, id: usize) { let opt_spawn = self.backend.spawns.borrow_mut().remove(&id); match opt_spawn { None => { eprintln!("Attempted to invoke non-existing spawn {}", id); }, Some(mut spawn) => { let result = spawn.poll_future_notify( &futures::executor::NotifyHandle::from( Arc::new(GtkEventLoopAsyncExecutorNotifier::new(self.clone())) ), id ); match result { Ok(Async::Ready(_)) => { // Do nothing }, Ok(Async::NotReady) => { self.backend.spawns.borrow_mut().insert(id, spawn); }, Err(_) => { eprintln!("Spawned future {} returned error", id); } } } } } } // safety rationale: // GtkEventLoopAsyncExecutorNotifier ensures that GtkEventLoopAsyncExecutor is only ever called from Gtk+ main loop. // GtkEventLoopAsyncExecutor may only be created on Gtk+ main thread and main loop runs on main thread. // Hence dereference of `executor` Arc happens only happens on the same thread that created GtkEventLoopAsyncExecutor. unsafe impl Send for GtkEventLoopAsyncExecutorNotifier{} unsafe impl Sync for GtkEventLoopAsyncExecutorNotifier{} impl futures::executor::Notify for GtkEventLoopAsyncExecutorNotifier { fn notify(&self, id: usize) { let handle = self.clone(); glib::source::idle_add(move || { handle.executor.invoke(id); glib::source::Continue(false) }); } }