Expand description
Estimate empirical variograms.
Calculate the empirical variogram according to $$ \gamma(r_k) = \frac{1}{2N(r_k)} \sum_{i=1}^{N(r_k)}(f(x_i) - f(x_i^\prime))^2 $$ with
- $r_k \leq \lVert x_i - x_i^\prime \rVert < r_{k+1}$ being the bins
- $N(r_k)$ being the number of points in bin $r_k$
If the estimator type ‘c’ for Cressie was chosen, the variogram is calculated by $$ \gamma(r_k) = \frac{\frac{1}{2} \left( \frac{1}{N(r_k)} \sum_{i=1}^{N(r_k)}|f(x_i) - f(x_i^\prime)|^{0.5}\right)^4}{0.457 + 0.494 / N(r_k) + 0.045 / N^2(r_k)} $$
Functions§
- variogram_
directional - Directional variogram estimation on an unstructured grid.
- variogram_
ma_ structured - Variogram estimation of a masked field on a structured grid.
- variogram_
structured - Variogram estimation on a structured grid.
- variogram_
unstructured - Variogram estimation on an unstructured grid.