1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
//! Group of an integer which is a `$p$`-group.
//! `MOD` as the `$p$` is a prime number as the cardinality of the group.
//! Some prime numbers that are the max ones less than or equal to `u*::MAX` are provided as `PRIME_MAX_LE_U*_MAX`.
//!
//! - Associative operation: Integer addition modulo `MOD`, `$(a + b) \mod MOD$`
//! - Identity element: 0
//! - Inverse element: `-x`

use std::mem::size_of;
use std::ops::{Add, AddAssign};

use crate::Group;

macro_rules! decl_int_prime_group {
    ($t:ty, $t_impl:ident) => {
        /// See [`self`]
        #[derive(Debug, Clone, PartialEq, Eq)]
        pub struct $t_impl<const MOD: $t>(
            /// Always less than `MOD`
            $t,
        );

        impl<const MOD: $t> $t_impl<MOD> {
            pub fn new(x: $t) -> Self {
                $t_impl(x % MOD)
            }
        }

        impl<const MOD: $t> Add for $t_impl<MOD> {
            type Output = Self;

            fn add(self, rhs: Self) -> Self::Output {
                $t_impl(match self.0.checked_add(rhs.0) {
                    Some(x) => x % MOD,
                    None => {
                        (self.0.wrapping_add(rhs.0) % MOD)
                            .wrapping_add(<$t>::MAX % MOD)
                            .wrapping_add(1)
                            % MOD
                    }
                })
            }
        }

        impl<const MOD: $t> AddAssign for $t_impl<MOD> {
            fn add_assign(&mut self, rhs: Self) {
                self.0 = match self.0.checked_add(rhs.0) {
                    Some(x) => x % MOD,
                    None => {
                        self.0
                            .wrapping_add(rhs.0)
                            .wrapping_add(<$t>::MAX % MOD)
                            .wrapping_add(1)
                            % MOD
                    }
                };
            }
        }

        impl<const LAMBDA: usize, const MOD: $t> Group<LAMBDA> for $t_impl<MOD> {
            fn zero() -> Self {
                $t_impl(0)
            }

            fn add_inverse(mut self) -> Self {
                self.0 = match self.0.checked_add(MOD) {
                    Some(x) => x % MOD,
                    None => {
                        self.0
                            .wrapping_add(MOD)
                            .wrapping_add(<$t>::MAX % MOD)
                            .wrapping_add(1)
                            % MOD
                    }
                };
                self
            }
        }

        impl<const LAMBDA: usize, const MOD: $t> From<[u8; LAMBDA]> for $t_impl<MOD> {
            fn from(value: [u8; LAMBDA]) -> Self {
                if cfg!(not(feature = "int-be")) {
                    $t_impl(<$t>::from_le_bytes(
                        (&value[..size_of::<$t>()]).clone().try_into().unwrap(),
                    ))
                } else {
                    $t_impl(<$t>::from_be_bytes(
                        (&value[..size_of::<$t>()]).clone().try_into().unwrap(),
                    ))
                }
            }
        }

        impl<const LAMBDA: usize, const MOD: $t> From<$t_impl<MOD>> for [u8; LAMBDA] {
            fn from(value: $t_impl<MOD>) -> Self {
                let mut bs = [0; LAMBDA];
                if cfg!(not(feature = "int-be")) {
                    bs[..size_of::<$t>()].copy_from_slice(&value.0.to_le_bytes());
                } else {
                    bs[..size_of::<$t>()].copy_from_slice(&value.0.to_be_bytes());
                }
                bs
            }
        }
    };
}

decl_int_prime_group!(u8, U8Group);
decl_int_prime_group!(u16, U16Group);
decl_int_prime_group!(u32, U32Group);
decl_int_prime_group!(u64, U64Group);
decl_int_prime_group!(u128, U128Group);

pub const PRIME_MAX_LE_U8_MAX: u8 = u8::MAX - 5 + 1;
pub const PRIME_MAX_LE_U16_MAX: u16 = u16::MAX - 15 + 1;
pub const PRIME_MAX_LE_U32_MAX: u32 = u32::MAX - 5 + 1;
pub const PRIME_MAX_LE_U64_MAX: u64 = u64::MAX - 59 + 1;
pub const PRIME_MAX_LE_U128_MAX: u128 = u128::MAX - 159 + 1;