1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// Copyright 2021 The Grin Developers
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Implementation of the persistent Backend for the prunable MMR tree.

use std::fs;
use std::{io, time};

use crate::grin_core::core::hash::{Hash, Hashed};
use crate::grin_core::core::pmmr::{self, family, Backend};
use crate::grin_core::core::BlockHeader;
use crate::grin_core::ser::{PMMRable, ProtocolVersion};
use crate::leaf_set::LeafSet;
use crate::prune_list::PruneList;
use crate::types::{AppendOnlyFile, DataFile, SizeEntry, SizeInfo};
use croaring::Bitmap;
use std::convert::TryInto;
use std::path::{Path, PathBuf};

const PMMR_HASH_FILE: &str = "pmmr_hash.bin";
const PMMR_DATA_FILE: &str = "pmmr_data.bin";
const PMMR_LEAF_FILE: &str = "pmmr_leaf.bin";
const PMMR_PRUN_FILE: &str = "pmmr_prun.bin";
const PMMR_SIZE_FILE: &str = "pmmr_size.bin";
const REWIND_FILE_CLEANUP_DURATION_SECONDS: u64 = 60 * 60 * 24; // 24 hours as seconds

/// The list of PMMR_Files for internal purposes
pub const PMMR_FILES: [&str; 4] = [
	PMMR_HASH_FILE,
	PMMR_DATA_FILE,
	PMMR_LEAF_FILE,
	PMMR_PRUN_FILE,
];

/// PMMR persistent backend implementation. Relies on multiple facilities to
/// handle writing, reading and pruning.
///
/// * A main storage file appends Hash instances as they come.
/// This AppendOnlyFile is also backed by a mmap for reads.
/// * An in-memory backend buffers the latest batch of writes to ensure the
/// PMMR can always read recent values even if they haven't been flushed to
/// disk yet.
/// * A leaf_set tracks unpruned (unremoved) leaf positions in the MMR..
/// * A prune_list tracks the positions of pruned (and compacted) roots in the
/// MMR.
pub struct PMMRBackend<T: PMMRable> {
	data_dir: PathBuf,
	prunable: bool,
	hash_file: DataFile<Hash>,
	data_file: DataFile<T::E>,
	leaf_set: LeafSet,
	prune_list: PruneList,
}

impl<T: PMMRable> Backend<T> for PMMRBackend<T> {
	/// Append the provided data and hashes to the backend storage.
	/// Add the new leaf pos to our leaf_set if this is a prunable MMR.
	fn append(&mut self, data: &T, hashes: &[Hash]) -> Result<(), String> {
		let size = self
			.data_file
			.append(&data.as_elmt())
			.map_err(|e| format!("Failed to append data to file. {}", e))?;

		self.hash_file
			.extend_from_slice(hashes)
			.map_err(|e| format!("Failed to append hash to file. {}", e))?;

		if self.prunable {
			// (Re)calculate the latest pos given updated size of data file
			// and the total leaf_shift, and add to our leaf_set.
			let pos =
				pmmr::insertion_to_pmmr_index(size + self.prune_list.get_total_leaf_shift() - 1);
			self.leaf_set.add(pos);
		}

		Ok(())
	}

	// Supports appending a pruned subtree (single root hash) to an existing hash file.
	// Update the prune_list "shift cache" to reflect the new pruned leaf pos in the subtree.
	fn append_pruned_subtree(&mut self, hash: Hash, pos0: u64) -> Result<(), String> {
		if !self.prunable {
			return Err("Not prunable, cannot append pruned subtree.".into());
		}

		self.hash_file
			.append(&hash)
			.map_err(|e| format!("Failed to append subtree hash to file. {}", e))?;

		self.prune_list.append(pos0);

		Ok(())
	}

	fn append_hash(&mut self, hash: Hash) -> Result<(), String> {
		self.hash_file
			.append(&hash)
			.map_err(|e| format!("Failed to append hash to file. {}", e))?;
		Ok(())
	}

	fn get_from_file(&self, pos0: u64) -> Option<Hash> {
		if self.is_compacted(pos0) {
			return None;
		}
		let shift = self.prune_list.get_shift(pos0);
		self.hash_file.read(1 + pos0 - shift)
	}

	fn get_peak_from_file(&self, pos0: u64) -> Option<Hash> {
		let shift = self.prune_list.get_shift(pos0);
		self.hash_file.read(1 + pos0 - shift)
	}

	fn get_data_from_file(&self, pos0: u64) -> Option<T::E> {
		if !pmmr::is_leaf(pos0) {
			return None;
		}
		if self.is_compacted(pos0) {
			return None;
		}
		let flatfile_pos = pmmr::n_leaves(pos0 + 1);
		let shift = self.prune_list.get_leaf_shift(1 + pos0);
		self.data_file.read(flatfile_pos - shift)
	}

	/// Get the hash at pos.
	/// Return None if pos is a leaf and it has been removed (or pruned or
	/// compacted).
	fn get_hash(&self, pos0: u64) -> Option<Hash> {
		if self.prunable && pmmr::is_leaf(pos0) && !self.leaf_set.includes(pos0) {
			return None;
		}
		self.get_from_file(pos0)
	}

	/// Get the data at pos.
	/// Return None if it has been removed or if pos is not a leaf node.
	fn get_data(&self, pos0: u64) -> Option<T::E> {
		if !pmmr::is_leaf(pos0) {
			return None;
		}
		if self.prunable && !self.leaf_set.includes(pos0) {
			return None;
		}
		self.get_data_from_file(pos0)
	}

	/// Remove leaf from leaf set
	fn remove_from_leaf_set(&mut self, pos0: u64) {
		self.leaf_set.remove(pos0);
	}

	/// Returns an iterator over all the leaf positions.
	/// for a prunable PMMR this is an iterator over the leaf_set bitmap.
	/// For a non-prunable PMMR this is *all* leaves (this is not yet implemented).
	fn leaf_pos_iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
		if self.prunable {
			Box::new(self.leaf_set.iter().map(|x| x - 1))
		} else {
			panic!("leaf_pos_iter not implemented for non-prunable PMMR")
		}
	}

	fn n_unpruned_leaves(&self) -> u64 {
		if self.prunable {
			self.leaf_set.len() as u64
		} else {
			pmmr::n_leaves(self.unpruned_size())
		}
	}

	fn n_unpruned_leaves_to_index(&self, to_index: u64) -> u64 {
		if self.prunable {
			self.leaf_set.n_unpruned_leaves_to_index(to_index)
		} else {
			pmmr::n_leaves(pmmr::insertion_to_pmmr_index(to_index))
		}
	}

	/// Returns an iterator over all the leaf insertion indices (0-indexed).
	/// If our pos are [1,2,4,5,8] (first 5 leaf pos) then our insertion indices are [0,1,2,3,4]
	fn leaf_idx_iter(&self, from_idx: u64) -> Box<dyn Iterator<Item = u64> + '_> {
		// pass from_idx in as param
		// convert this to pos
		// iterate, skipping everything prior to this
		// pass in from_idx=0 then we want to convert to pos=1

		let from_pos = 1 + pmmr::insertion_to_pmmr_index(from_idx);

		if self.prunable {
			Box::new(
				self.leaf_set
					.iter()
					.skip_while(move |x| *x < from_pos)
					.map(|x| pmmr::n_leaves(x).saturating_sub(1)),
			)
		} else {
			panic!("leaf_idx_iter not implemented for non-prunable PMMR")
		}
	}

	/// Rewind the PMMR backend to the given position.
	fn rewind(&mut self, position: u64, rewind_rm_pos: &Bitmap) -> Result<(), String> {
		// First rewind the leaf_set with the necessary added and removed positions.
		if self.prunable {
			self.leaf_set.rewind(position, rewind_rm_pos);
		}

		// Rewind the hash file accounting for pruned/compacted pos
		let shift = if position == 0 {
			0
		} else {
			self.prune_list.get_shift(position - 1)
		};
		self.hash_file.rewind(position - shift);

		// Rewind the data file accounting for pruned/compacted pos
		let flatfile_pos = pmmr::n_leaves(position);
		let leaf_shift = if position == 0 {
			0
		} else {
			self.prune_list.get_leaf_shift(position)
		};
		self.data_file.rewind(flatfile_pos - leaf_shift);

		Ok(())
	}

	fn reset_prune_list(&mut self) {
		let bitmap = Bitmap::new();
		self.prune_list = PruneList::new(Some(self.data_dir.join(PMMR_PRUN_FILE)), bitmap);
		if let Err(e) = self.prune_list.flush() {
			error!("Flushing reset prune list: {}", e);
		}
	}

	/// Remove by insertion position.
	fn remove(&mut self, pos0: u64) -> Result<(), String> {
		assert!(self.prunable, "Remove on non-prunable MMR");
		self.leaf_set.remove(pos0);
		Ok(())
	}

	/// Release underlying data files
	fn release_files(&mut self) {
		self.data_file.release();
		self.hash_file.release();
	}

	fn snapshot(&self, header: &BlockHeader) -> Result<(), String> {
		self.leaf_set
			.snapshot(header)
			.map_err(|_| format!("Failed to save copy of leaf_set for {}", header.hash()))?;
		Ok(())
	}

	fn dump_stats(&self) {
		debug!(
			"pmmr backend: unpruned: {}, hashes: {}, data: {}, leaf_set: {}, prune_list: {}",
			self.unpruned_size(),
			self.hash_size(),
			self.data_size(),
			self.leaf_set.len(),
			self.prune_list.len(),
		);
	}
}

impl<T: PMMRable> PMMRBackend<T> {
	/// Instantiates a new PMMR backend.
	/// If optional size is provided then treat as "fixed" size otherwise "variable" size backend.
	/// Use the provided dir to store its files.
	pub fn new<P: AsRef<Path>>(
		data_dir: P,
		prunable: bool,
		version: ProtocolVersion,
		header: Option<&BlockHeader>,
	) -> io::Result<PMMRBackend<T>> {
		let data_dir = data_dir.as_ref();

		// Are we dealing with "fixed size" data elements or "variable size" data elements
		// maintained in an associated size file?
		let size_info = if let Some(fixed_size) = T::elmt_size() {
			SizeInfo::FixedSize(fixed_size)
		} else {
			SizeInfo::VariableSize(Box::new(AppendOnlyFile::open(
				data_dir.join(PMMR_SIZE_FILE),
				SizeInfo::FixedSize(SizeEntry::LEN as u16),
				version,
			)?))
		};

		// Hash file is always "fixed size" and we use 32 bytes per hash.
		let hash_size_info = SizeInfo::FixedSize(Hash::LEN.try_into().unwrap());

		let hash_file = DataFile::open(&data_dir.join(PMMR_HASH_FILE), hash_size_info, version)?;
		let data_file = DataFile::open(&data_dir.join(PMMR_DATA_FILE), size_info, version)?;

		let leaf_set_path = data_dir.join(PMMR_LEAF_FILE);

		// If we received a rewound "snapshot" leaf_set file move it into
		// place so we use it.
		if let Some(header) = header {
			let leaf_snapshot_path = format!(
				"{}.{}",
				data_dir.join(PMMR_LEAF_FILE).to_str().unwrap(),
				header.hash()
			);
			LeafSet::copy_snapshot(&leaf_set_path, &PathBuf::from(leaf_snapshot_path))?;
		}

		let leaf_set = LeafSet::open(&leaf_set_path)?;
		let prune_list = PruneList::open(&data_dir.join(PMMR_PRUN_FILE))?;

		Ok(PMMRBackend {
			data_dir: data_dir.to_path_buf(),
			prunable,
			hash_file,
			data_file,
			leaf_set,
			prune_list,
		})
	}

	fn is_pruned(&self, pos0: u64) -> bool {
		self.prune_list.is_pruned(pos0)
	}

	fn is_pruned_root(&self, pos0: u64) -> bool {
		self.prune_list.is_pruned_root(pos0)
	}

	// Check if pos is pruned but not a pruned root itself.
	// Checking for pruned root is faster so we do this check first.
	// We can do a fast initial check as well -
	// if its in the current leaf_set then we know it is not compacted.
	fn is_compacted(&self, pos0: u64) -> bool {
		if self.leaf_set.includes(pos0) {
			return false;
		}
		!self.is_pruned_root(pos0) && self.is_pruned(pos0)
	}

	/// Number of hashes in the PMMR stored by this backend. Only produces the
	/// fully sync'd size.
	pub fn unpruned_size(&self) -> u64 {
		self.hash_size() + self.prune_list.get_total_shift()
	}

	/// Number of elements in the underlying stored data. Extremely dependent on
	/// pruning and compaction.
	pub fn data_size(&self) -> u64 {
		self.data_file.size()
	}

	/// Size of the underlying hashed data. Extremely dependent on pruning
	/// and compaction.
	pub fn hash_size(&self) -> u64 {
		self.hash_file.size()
	}

	/// Syncs all files to disk. A call to sync is required to ensure all the
	/// data has been successfully written to disk.
	pub fn sync(&mut self) -> io::Result<()> {
		Ok(())
			.and(self.hash_file.flush())
			.and(self.data_file.flush())
			.and(self.sync_leaf_set())
			.and(self.prune_list.flush())
			.map_err(|e| {
				io::Error::new(
					io::ErrorKind::Interrupted,
					format!("Could not sync pmmr to disk: {:?}", e),
				)
			})
	}

	// Sync the leaf_set if this is a prunable backend.
	fn sync_leaf_set(&mut self) -> io::Result<()> {
		if !self.prunable {
			return Ok(());
		}
		self.leaf_set.flush()
	}

	/// Discard the current, non synced state of the backend.
	pub fn discard(&mut self) {
		self.hash_file.discard();
		self.data_file.discard();
		self.leaf_set.discard();
	}

	/// Takes the leaf_set at a given cutoff_pos and generates an updated
	/// prune_list. Saves the updated prune_list to disk, compacts the hash
	/// and data files based on the prune_list and saves both to disk.
	///
	/// A cutoff position limits compaction on recent data.
	/// This will be the last position of a particular block to keep things
	/// aligned. The block_marker in the db/index for the particular block
	/// will have a suitable output_pos. This is used to enforce a horizon
	/// after which the local node should have all the data to allow rewinding.
	pub fn check_compact(&mut self, cutoff_pos: u64, rewind_rm_pos: &Bitmap) -> io::Result<bool> {
		assert!(self.prunable, "Trying to compact a non-prunable PMMR");

		// Calculate the sets of leaf positions and node positions to remove based
		// on the cutoff_pos provided.
		let (leaves_removed, pos_to_rm) = self.pos_to_rm(cutoff_pos, rewind_rm_pos);

		// Save compact copy of the hash file, skipping removed data.
		{
			let pos_to_rm = map_vec!(pos_to_rm, |pos1| {
				let shift = self.prune_list.get_shift(pos1 as u64 - 1);
				pos1 as u64 - shift
			});

			self.hash_file.write_tmp_pruned(&pos_to_rm)?;
		}

		// Save compact copy of the data file, skipping removed leaves.
		{
			let leaf_pos_to_rm = pos_to_rm
				.iter()
				.map(|x| x as u64)
				.filter(|x| pmmr::is_leaf(x - 1))
				.collect::<Vec<_>>();

			let pos_to_rm = map_vec!(leaf_pos_to_rm, |&pos| {
				let flat_pos = pmmr::n_leaves(pos);
				let shift = self.prune_list.get_leaf_shift(pos);
				flat_pos - shift
			});

			self.data_file.write_tmp_pruned(&pos_to_rm)?;
		}

		// Replace hash and data files with compact copies.
		// Rebuild and intialize from the new files.
		{
			debug!("compact: about to replace hash and data files and rebuild...");
			self.hash_file.replace_with_tmp()?;
			self.data_file.replace_with_tmp()?;
			debug!("compact: ...finished replacing and rebuilding");
		}

		// Update the prune list and write to disk.
		{
			let mut bitmap = self.prune_list.bitmap();
			bitmap.or_inplace(&leaves_removed);
			self.prune_list = PruneList::new(Some(self.data_dir.join(PMMR_PRUN_FILE)), bitmap);
			self.prune_list.flush()?;
		}

		// Write the leaf_set to disk.
		// Optimize the bitmap storage in the process.
		self.leaf_set.flush()?;

		self.clean_rewind_files()?;

		Ok(true)
	}

	fn clean_rewind_files(&self) -> io::Result<u32> {
		let data_dir = self.data_dir.clone();
		let pattern = format!("{}.", PMMR_LEAF_FILE);
		clean_files_by_prefix(data_dir, &pattern, REWIND_FILE_CLEANUP_DURATION_SECONDS)
	}

	fn pos_to_rm(&self, cutoff_pos: u64, rewind_rm_pos: &Bitmap) -> (Bitmap, Bitmap) {
		let mut expanded = Bitmap::new();

		let leaf_pos_to_rm =
			self.leaf_set
				.removed_pre_cutoff(cutoff_pos, rewind_rm_pos, &self.prune_list);

		for x in leaf_pos_to_rm.iter() {
			expanded.add(x);
			let mut current = x as u64;
			loop {
				let (parent0, sibling0) = family(current - 1);
				let sibling_pruned = self.is_pruned_root(sibling0);

				// if sibling previously pruned
				// push it back onto list of pos to remove
				// so we can remove it and traverse up to parent
				if sibling_pruned {
					expanded.add(1 + sibling0 as u32);
				}

				if sibling_pruned || expanded.contains(1 + sibling0 as u32) {
					expanded.add(1 + parent0 as u32);
					current = 1 + parent0;
				} else {
					break;
				}
			}
		}
		(leaf_pos_to_rm, removed_excl_roots(&expanded))
	}
}

/// Filter remove list to exclude roots.
/// We want to keep roots around so we have hashes for Merkle proofs.
fn removed_excl_roots(removed: &Bitmap) -> Bitmap {
	removed
		.iter()
		.filter(|pos| {
			let (parent_pos0, _) = family(*pos as u64 - 1);
			removed.contains(1 + parent_pos0 as u32)
		})
		.collect()
}

/// Quietly clean a directory up based on a given prefix.
/// If the file was accessed within cleanup_duration_seconds from the beginning of
/// the function call, it will not be deleted. To delete all files, set cleanup_duration_seconds
/// to zero.
///
/// Precondition is that path points to a directory.
///
/// If you have files such as
/// ```text
/// foo
/// foo.1
/// foo.2
/// .
/// .
/// .
/// .
/// .
/// ```
///
/// call this function and you will get
///
/// ```text
/// foo
/// ```
///
/// in the directory
///
/// The return value will be the number of files that were deleted.
///
/// This function will return an error whenever the call to `std;:fs::read_dir`
/// fails on the given path for any reason.
///

pub fn clean_files_by_prefix<P: AsRef<std::path::Path>>(
	path: P,
	prefix_to_delete: &str,
	cleanup_duration_seconds: u64,
) -> io::Result<u32> {
	let now = time::SystemTime::now();
	let cleanup_duration = time::Duration::from_secs(cleanup_duration_seconds);

	let number_of_files_deleted: u32 = fs::read_dir(&path)?
		.flat_map(
			|possible_dir_entry| -> Result<u32, Box<dyn std::error::Error>> {
				// result implements iterator and so if we were to use map here
				// we would have a list of Result<u32, Box<std::error::Error>>
				// but because we use flat_map, the errors get "discarded" and we are
				// left with a clean iterator over u32s

				// the error cases that come out of this code are numerous and
				// we don't really mind throwing them away because the main point
				// here is to clean up some files, if it doesn't work out it's not
				// the end of the world

				let dir_entry: std::fs::DirEntry = possible_dir_entry?;
				let metadata = dir_entry.metadata()?;
				if metadata.is_dir() {
					return Ok(0); // skip directories unconditionally
				}
				let accessed = metadata.accessed()?;
				let duration_since_accessed = now.duration_since(accessed)?;
				if duration_since_accessed <= cleanup_duration {
					return Ok(0); // these files are still too new
				}
				let file_name = dir_entry
					.file_name()
					.into_string()
					.ok()
					.ok_or("could not convert filename into utf-8")?;

				// check to see if we want to delete this file?
				if file_name.starts_with(prefix_to_delete)
					&& file_name.len() > prefix_to_delete.len()
				{
					// we want to delete it, try to do so
					if fs::remove_file(dir_entry.path()).is_ok() {
						// we successfully deleted a file
						return Ok(1);
					}
				}

				// we either did not want to delete this file or could
				// not for whatever reason. 0 files deleted.
				Ok(0)
			},
		)
		.sum();

	Ok(number_of_files_deleted)
}